OUVUVRAO

courses. I liked the book, although it is not exactly light
reading. I would recommend it for practitioners who are
exploring software engineering methods.
— N. R. Mead, Pittsburgh, PA
REFERENCES

[1]  WirT, B. I; BAKER, F. T.; AND MERRITT, E. W.  Software archi-
tecture and design: principles, models, and methods. Van Nostrand
Reinhold, New York, 1994.

GENERAL TERMS: DESIGN, LANGUAGES, VERIFICATION

D.2.2 Tools and Techniques

See: 9709-0628 [D.1.5]; 9709-0647 [D.3.2—Eiffe]

Computer-aided software engineering (CASE)
See: 9709-0632 [D.2.1—Methodologies)

Modules and interfaces

HaNsoN, Davib R. (Princeton Univ.,
Princeton, NJ)

C interfaces and implementations: techniques for
creating reusable software.

Addison-Wesley Longman Publ. Co., Inc., Reading,
MA, 1996, 544 pp., $40.83, ISBN 0-201-49841-3.
[Addison-Wesley professional computing series.]

9709-0633

Hanson’s book will teach experienced C programmers how
to code reusable modules in C. It includes some well-known
data structures but is not a data structures and algorithms
text, nor does it use some computer science ideas that are
rare in the C programming community. You could use this
book as a litmus test for computer professionals. If they
like it, they are really C programmers. If they turn pink and
throw it out, they are really computer scientists.

The book covers interfaces and implementations (1 chap-
ter), exceptions and runtime error checks (1 chapter), mem-
ory management (2 chapters), arithmetic (3 chapters), threads
(1 chapter), and some data structures (11 chapters). The data
structures covered are lists, hash tables, sets, dynamic arrays,
sequences, double-linked deques, bit vectors, and various
kinds of ASCII character string (four chapters). There is
a useful set of appendices, a bibliography, and an index.
Each chapter includes examples and exercises, which make
it suitable for classroom use.

A properly coded C module should have a shared public
interface (a “.h” file) and a private or hidden implementation
(a “.c” file ). Each chapter in the book presents a module
with these two parts. First, Hanson gives the interface.
Second, he uses it in an application program. Third, he
presents an implementation. Other implementations and
applications are set as exercises. This pattern is one of the
book’s strengths.

Hanson is a superior C programmer who uses literate
programming. This process generates both testable programs
and readable narrative from a common source. The goal is
to create an easy-to-read explanation of the code that also
defines the code. The code in the book has been extracted,
“tangled,” compiled, and tested. Notice, however, that the
code itself contains no comments. It is split into small
chunks that are embedded in a large commentary. The
readability of the narrative is another of this book’s strengths.

o0nware

19709-0b335)

The book’s strengths lead to weaknesses. Hanson uses
many tricks of the C trade: do-loops that do not loop,
switches that do not switch, macros, unions, void*, longjmp(),
and so on. But even given his skill with C, Hanson fails to
write statically checkable generic modules or runtime poly-
morphic functions. C’s void* is used as an opaque type
instead. This is the C tradition. It works when appli-
cation programmers follow the rules, but is unpredictable
otherwise.

Hanson follows the C tradition of limiting interfaces to
C macros, declarations, and function prototypes. Modemn
computer science texts include formal rules defining the
use of each function (pre- and post-conditions). So do the
interfaces defined in the C++ Standard Template Library.
Hanson does say when a call would cause a “checked
run time error,” and when it may not work because of an
“unchecked error.” You must study the informal commentary
and the implementation to try to figure out any other rules.

A skilled and literate C programmer creates plausible and
testable code that can have hidden assumptions. If these
assumptions are false, the programs can have bugs and
redundancies. Here are the examples I noticed in this book.

On page 203, the code for calculating the number of
“unsigned long int”s that can store a given number of bits can
underestimate the correct answer when the number of bytes
is not a power of two. The code on page 122 looks as if
a function call is misplaced. I spent 30 minutes convincing
myself that the code is incorrect. Three days later, I saw
the trick and spent 30 more minutes convincing myself that
the code is correct. A comment would have saved me 60
minutes.

Literacy is no guarantee of clarity. On pages 79 and 80,
and on 94 and 95, a pointer is carefully aligned with the
union of all the elementary data types plus void* and pointers
to functions. It looks as if the memory allocation routines
are designed to work only with the data types listed in the
union. This should be clarified by a more rigorous narrative
or comments. I did not notice any other problems in the
code. This defect density is much lower than in most of the
C source code I have debugged over the years.

This is a good book for practitioners, but it will not
work as a textbook in a modern baccalaureate program in
computer science. It is too advanced for beginners, and it is
too incomplete for data structures and algorithm courses.
The analysis of algorithms, and several classical sorting
algorithms, are missing. Trees appear only as an alternative
to hashing in an implementation of the “table” data type in
Exercise 8.2. The book does not have enough on analysis,
design, and process to be a software engineering textbook.
Instead, I will be recommending it to people who ask for a
book to improve their C programming.

— Dick Botting, San Bernardino, CA
GENERAL TERMS: DESIGN, LANGUAGES
User interfaces
See: 9709-0631 [D.1.5); 9709-0636 [D.2.10—Methodologies]

D.2.4 Program Verification

Computing Reviews ¢ September 1997 413



