ATOMS

more arbitrary bytes. Most atoms are pointers to null-terminated
strings, but a pointer to any sequence of bytes can be an atom.
There is only a single occurrence of any atom, which is why it’s called an
atom. Two atoms are identical if they point to the same location. Com-
paring two byte sequences for equality by simply comparing pointers is
one of the advantages of atoms. Another advantage is that using atoms
saves space because there’s only one occurrence of each sequence.
Atoms are often used as keys in data structures that are indexed by
sequences of arbitrary bytes instead of by integers. The tables and sets
described in Chapters 8 and 9 are examples.

g n atom is a pointer to a unique, immutable sequence of zero or

3.1 Interface

The Atom interface is simple:

(atom.h)=
#ifndef ATOM_INCLUDED
#define ATOM_INCLUDED

extern int Atom_length(const char *str);

extern const char *Atom_new (const char *str, int len);
extern const char *Atom_string(const char *str);

extern const char *Atom_int (long n);

#endif

33

34

ATOMS

Atom_new accepts a pointer to a sequence of bytes and the number of
bytes in that sequence. It adds a copy of the sequence to the table of
atoms, if necessary, and returns the atom, which is a pointer to the copy
of the sequence in the atom table. Atom_new never returns the null
pointer. Once an atom is created, it exists for the duration of the client’s
execution. An atom is always terminated with a null character, which
Atom_new adds when necessary.

Atom_string is similar to Atom_new; it caters to the common use of
character strings as atoms. It accepts a null-terminated string, adds a
copy of that string to the atom table, if necessary, and returns the atom.
Atom_int returns the atom for the string representation of the long inte-
ger n — another common usage. Finally, Atom_length returns the length
of its atom argument.

It is a checked runtime error to pass a null pointer to any function in
this interface, to pass a negative Ten to Atom_new, or to pass a pointer
that is not an atom to Atom_1length. It is an unchecked runtime error to
modify the bytes pointed to by an atom. Atom_length can take time to
execute proportional to the number of atoms. Atom_new, Atom_string,
and Atom_int can each raise the exception Mem_Failed.

3.2 Implementation

The implementation of Atom maintains the atom table. Atom_new,
Atom_string, and Atom_int search the atom table and possibly add
new elements to it, and Atom_Tlength just searches it.

(atom.c)=
(includes 34)
{(macros 37)
(data 36)
{functions 35)

(includes 34)=
#include "atom.h"

Atom_string and Atom_int can be implemented without knowing the
representation details of the atom table. Atom_string, for example, just
calls Atom_new:

IMPLEMENTATION

(functions 35)=
const char *Atom_string(const char *str) {
assert(str);
return Atom_new(str, strlen(str));

}

(includes 34)+=
#include <string.h>
#include "assert.h"

Atom_int first converts its argument to a string, then calls Atom_new:

{functions 35)+=
const char *Atom_int(Tong n) {
char str[43];
char *s = str + sizeof str;
unsigned long m;

if (n == LONG_MIN)

m = LONG_MAX + 1UL;
else if (n < 0)

ms= -n;
else

m = n;
do

*——s = m%l0 + '0';
while ((m /= 10) > 0);
if (n < 0)

*__S = ‘_';
return Atom_new(s, (str + sizeof str) - s);

}

(includes 34)+=
#include <limits.h>

Atom_int must cope with the asymmetrical range of two’s-
complement numbers and with the ambiguities of C’s division and mod-
ulus operators. Unsigned division and modulus are well defined, so
Atom_int can avoid the ambiguities of the signed operators by using
unsigned arithmetic.

35

36

ATOMS

The absolute value of the most negative signed long integer cannot be
represented, because there is one more negative number than positive
number in two’s-complement systems. Atom_new thus starts by testing
for this single anomaly before assigning the absolute value of its argu-
ment to the unsigned long integer m. The value of LONG_MAX resides in
the standard header Timits.h.

The loop forms the decimal string representation of m from right to
left; it computes the rightmost digit, divides m by 10, and continues until
m is zero. As each digit is computed, it’s stored at --s, which marches s
backward in str. If n is negative, a minus sign is stored at the beginning
of the string.

When the conversion is done, s points to the desired string, and this
string has &str[43] - s characters. str has 43 characters, which is
enough to hold the decimal representation of any integer on any conceiv-
able machine. Suppose, for example, that longs are 128 bits. The string
representation of any 128-bit signed integer in octal — base 8 — fits in
128/3 + 1 =43 characters. The decimal representation can take no more
digits than the octal representation, so 43 characters are enough.

The 43 in the definition of str is an example of a “magic number,” and
it’s usually better style to define a symbolic name for such values to
ensure that the same value is used everywhere. Here, however, the value
appears only once, and sizeof is used whenever the value is used.
Defining a symbolic name might make the code easier to read, but it will
also make the code longer and clutter the name space. In this book, a
symbolic name is defined only when the value appears more than once,
or when it is part of an interface. The length of the hash table buckets
below — 2,048 — is another example of this convention.

A hash table is the obvious data structure for the atom table. The hash
table is an array of pointers to lists of entries, each of which holds one
atom:

(data 36)=
static struct atom {
struct atom *1ink;
int len;
char *str;
} *buckets[2048];

The linked list emanating from buckets[i] holds those atoms that hash
to i. An entry’s 1ink field points to the next entry on the list, the len
field holds the length of the sequence, and the str fields points to the

IMPLEMENTATION

sequence itself. For example, on a little endian computer with 32-bit
words and 8-bit characters, Atom_string("an atom") allocates the
struct atom shown in Figure 3.1, where the underscore character (_)
denotes a space. Each entry is just large enough to hold its sequence. Fig-
ure 3.2 shows the overall structure of the hash table.

Atom_new computes a hash number for the sequence given by
str[0..1en-1] (or the empty sequence, if Ten is zero), reduces this hash
number modulo the number of elements in buckets, and searches the
list pointed to by that element of buckets. If it finds that str[0..1en-1]
is already in the table, it simply returns the atom:

(functions 35)+=
const char *Atom_new(const char *str, int Ten) {
unsigned long h;
int i;
struct atom *p;

assert(str);
assert(len >= 0);
(h <« hash str[0..1en-1] 39)
h %= NELEMS(buckets) ;
for (p = buckets[h]; p; p = p->1ink)
if (len == p->Ten) {
for (i =0; i < len & p->str[i] == str[il;)
T4+
if (i == len)
return p->str;
3
(allocate a new entry 39)
return p->str;

}

(macros 37)=
#define NELEMS(x) ((sizeof (x))/(sizeof ((x)[01)))

The definition of NELEMS illustrates a common C idiom: The number of
elements in an array is the size of the array divided by the size of each
element. sizeof is a compile-time operator, so this computation applies
only to arrays whose size is known at compile time. As this definition
illustrates, macro parameters are italicized to highlight where they are
used in the macro body.

37

38 ATOMS

Tink -1 —»

Ten 7

str L
aj|_|n|a ::>
NO|m|o|t

Figure 3.1 Little endian layout of a struct atom for "an atom"

buckets
O ° [Ps [Ps [° »
D=l
BN
L] D
2047 o« |

Figure 3.2 Hash table structure

IMPLEMENTATION

If str[0..Ten-1] isn’t in the table, Atom_new adds it by allocating a
struct atom and enough additional space to hold the sequence, copying
str[0..1en-1] into the additional space and linking the new entry onto
the beginning of the list emanating from buckets[h]. The entry could
be appended to the end of the list, but adding it at the front of the list is
simpler.

(allocate a new entry 39)=
p = ALLOC(sizeof (*p) + len + 1);
p->Ten = len;
p->str = (char *)(p + 1);
if (len > 0)
memcpy (p->str, str, Tlen);
p->str[len] = '"\0';
p->1ink = buckets[h];
buckets[h] = p;

(includes 34)+=
#include "mem.h"

ALLOC is Mem’s primary allocation function, and it mimics the standard
library function malloc: its argument is the number of bytes needed.
Atom_new cannot use Mem’s NEW, which is illustrated in Stack_push
because the number of bytes depends on 1en; NEW applies only when the
number of bytes is known at compile time. The call to ALLOC above allo-
cates the space for both the atom structure and for the sequence, and the
sequence is stored in the immediately succeeding bytes.

Hashing the sequence passed to Atom_new involves computing an
unsigned number to represent the sequence. Ideally, these hash numbers
should be distributed uniformly over the range zero to NELEMS (buck-
ets)-1 for N sequences. If they are so distributed, each list in buckets
will have N/NELEMS (buckets) elements, and the average time to search
for a sequence will be N/2-NELEMS(buckets). If N is less than, say
2 -NELEMS (buckets), the search time is essentially a constant.

Hashing is a well-studied subject, and there are many good hash func-
tions. Atom_new uses a simple table-lookup algorithm:

(h « hash str[0..Ten-1] 39)=
for (h =0, i =0; i < len; i++)
h = (h<<1) + scatter[(unsigned char)str[il];

39

40

ATOMS

scatteris a 256-entry array that maps bytes to random numbers, which
were generated by calling the standard library function rand. Experience
shows that this simple approach helps to more uniformly distribute the
hash values. Casting str[i] to an unsigned character avoids C’s ambigu-
ity about “plain” characters: they can be signed or unsigned. Without the
cast, values of str[i] that exceed 127 would yvield negative indices on
machines that use signed characters.

(data 36)+=
static unsigned long scatter[] = {
2078917053, 143302914, 1027100827, 1953210302, 755253631, 2002600785,
1405390230, 45248011, 1099951567, 433832350, 2018585307, 438263339,
813528929, 1703199216, 618906479, 573714703, 766270699, 275680090,
1510320440, 1583583926, 1723401032, 1965443329, 1098183682, 1636505764,
980071615, 1011597961, 643279273, 1315461275, 157584038, 1069844923,
471560540, 89017443, 1213147837, 1498661368, 2042227746, 1968401469,
1353778505, 1300134328, 2013649480, 306246424, 1733966678, 1884751139,
744509763, 400011959, 1440466707, 1363416242, 973726663, 59253759,
1639096332, 336563455, 1642837685, 1215013716, 154523136, 593537720,
704035832, 1134594751, 1605135681, 1347315106, 302572379, 1762719719,
269676381, 774132919, 1851737163, 1482824219, 125310639, 1746481261,
1303742040, 1479089144, 899131941, 1169907872, 1785335569, 485614972,
907175364, 382361684, 885626931, 200158423, 1745777927, 1859353594,
259412182, 1237390611, 48433401, 1902249868, 304920680, 202956538,
348303940, 1008956512, 1337551289, 1953439621, 208787970, 1640123668,
1568675693, 478464352, 266772940, 1272929208, 1961288571, 392083579,
871926821, 1117546963, 1871172724, 1771058762, 139971187, 1509024645,
109190086, 1047146551, 1891386329, 994817018, 1247304975, 1489680608,
706686964, 1506717157, 579587572, 755120366, 1261483377, 884508252,
958076904, 1609787317, 1893464764, 148144545, 1415743291, 2102252735,
1788268214, 836935336, 433233439, 2055041154, 2109864544, 247038362,
299641085, 834307717, 1364585325, 23330161, 457882831, 1504556512,
1532354806, 567072918, 404219416, 1276257488, 1561889936, 1651524391,
618454448, 121093252, 1010757900, 1198042020, 876213618, 124757630,
2082550272, 1834290522, 1734544947, 1828531389, 1982435068, 1002804590,
1783300476, 1623219634, 1839739926, 69050267, 1530777140, 1802120822,
316088629, 1830418225, 488944891, 1680673954, 1853748387, 946827723,
1037746818, 1238619545, 1513900641, 1441966234, 367393385, 928306929,
946006977, 985847834, 1049400181, 1956764878, 36406206, 1925613800,
2081522508, 2118956479, 1612420674, 1668583807, 1800004220, 1447372094,
523904750, 1435821048, 923108080, 216161028, 1504871315, 306401572,

IMPLEMENTATION

2018281851, 1820959944, 2136819798, 359743094, 1354150250, 1843084537,
1306570817, 244413420, 934220434, 672987810, 1686379655, 1301613820,
1601294739, 484902984, 139978006, 503211273, 294184214, 176384212,
281341425, 228223074, 147857043, 1893762099, 1896806882, 1947861263,
1193650546, 273227984, 1236198663, 2116758626, 489389012, 593586330,
275676551, 360187215, 267062626, 265012701, 719930310, 1621212876,
2108097238, 2026501127, 1865626297, 894834024, 552005290, 1404522304,
48964196, 5816381, 1889425288, 188942202, 509027654, 36125855,
365326415, 790369079, 264348929, 513183458, 536647531, 13672163,
313561074, 1730298077, 286900147, 1549759737, 1699573055, 776289160,
2143346068, 1975249606, 1136476375, 262925046, 92778659, 1856406685,
1884137923, 53392249, 1735424165, 1602280572

};

Atom_length can’t hash its argument because it doesn’t know its
length. But the argument must be an atom, so Atom_Tlength can simply
scream through the lists in buckets comparing pointers. If it finds the
atom, it returns the atom’s length:

{functions 35)+=
int Atom_length(const char *str) {
struct atom *p;
int 1;

assert(str);
for (i = 0; i < NELEMS(buckets); i++)
for (p = buckets[i]; p; p = p->1ink)
if (p->str == str)
return p->Tlen;
assert(0);
return O;

assert(0) implements the checked runtime error that Atom_length
must be called only with an atom, not just a pointer to a string.
assert(0) is also used to signal conditions that are not supposed to
occur — so-called “can’t-happen” conditions.

41

42

ATOMS

Further Reading

Atoms have long been used in LISP, which is the source of their name,
and in string-manipulation languages, such as SNOBOL4, which imple-
mented strings almost exactly as described in this chapter (Griswold
1972). The C compiler T1cc (Fraser and Hanson 1995) has a module that is
similar to Atom and is the predecessor to Atom’s implementation. 1cc
stores the strings for all identifiers and constants that appear in the
source program in a single table, and never deallocates them. Doing so
never consumes too much storage because the number of distinct
strings in C programs is remarkably small regardless of the size of the
source programs.

Sedgewick (1990) and Knuth (1973b) describe hashing in detail and
give guidelines for writing good hash functions. The hash function used
in Atom (and in 1cc) was suggested by Hans Boehm.

Exercises

3.1 Most texts recommend using a prime number for the size of
buckets. Using a prime and a good hash function usually gives a
better distribution of the lengths of the lists hanging off of buck-
ets. Atom uses a power of two, which is sometimes explicitly cited
as a bad choice. Write a program to generate or read, say, 10,000
typical strings and measure Atom_new’s speed and the distribu-
tion of the lengths of the lists. Then change buckets so that it has
2,039 entries (the largest prime less than 2,048), and repeat the
measurements. Does using a prime help? How much does your
conclusion depend on your specific machine?

3.2 Scour the literature for better hash functions; likely sources are
Knuth (1973b), similar texts on algorithms and data structures
and the papers they cite, and texts on compilers, such as Aho,
Sethi, and Ullman (1986). Try these functions and measure their
benefits.

3.3 Explain why Atom_new doesn’t use the standard C library function
strncmp to compare sequences.

3.4 Here’s another way to declare the atom structure:

3.5

3.6

3.7

3.8

EXERCISES

struct atom {
struct atom *1ink;
int Tlen;
char str[1];

3

A struct atom for a string of Ten bytes is allocated by
ALLOC(sizeof (*p) + Ten), which allocates space for the 1ink
and 1en fields, and a str field long enough to hold Ten + 1 bytes.
This approach avoids the time and space required for the extra
indirection induced by declaring str to be a pointer. Unfortu-
nately, this “trick” violates the C standard, because clients access
the bytes beyond str[0], and the effect of these accesses is unde-
fined. Implement this approach and measure the cost of the indi-
rection. Are the savings worth violating the standard?

Atom_new compares the Ten field of struct atoms with the length
of the incoming sequence to avoid comparing sequences of differ-
ent lengths. If the hash numbers (not the indices into buckets) for
each atom were also stored in struct atoms, they could be com-
pared, too. Implement this “improvement” and measure the bene-
fits. Is it worthwhile?

Atom_length is slow. Revise Atom’s implementation so that
Atom_length’s running time is approximately the same as that of
Atom_new.

The Atom interface evolved to its present form because its func-
tions were the ones that clients used most often. There are other
functions and designs that might be useful, which this exercise
and those that follow explore. Implement

extern void Atom_init(int hint);
where hint estimates the number of atoms the client expects to
create. What checked runtime errors would you add to constrain

when Atom_1init could be called?

There are several functions to deallocate atoms that extensions to
the Atom interface might provide. For example, the functions

43

44

ATOMS

3.9

3.10

extern void Atom_free (const char *str);
extern void Atom_reset(void);

could deallocate the atom given by str and deallocate all atoms,
respectively. Implement these functions. Don’t forget to specify
and implement appropriate checked runtime errors.

Some clients start execution by installing a bunch of strings as
atoms for later use. Implement

extern void Atom_vload(const char *str, ...);
extern void Atom_aload(const char *strs[]);

Atom_vload installs the strings given in the variable length argu-
ment list up to a null pointer, and Atom_aTload does the same for
a null-terminated array of pointers to strings.

Copying the strings can be avoided if the client promises not to
deallocate them, which is trivially true for string constants. Imple-
ment

extern const char *Atom_add(const char *str, int Tlen);

which works like Atom_new but doesn’t make a copy of the
sequence. If you provide Atom_add and Atom_free (and
Atom_reset from Exercise 3.8), what checked runtime errors
must be specified and implemented?

	Atoms
	3.1����� Interface
	3.2����� Implementation
	Figure 3.1���� Little endian layout of a struct atom for "an atom"
	Figure 3.2���� Hash table structure

	Further Reading
	Exercises
	3.1 Most texts recommend using a prime number for the size of buckets. Using a prime and a good h...
	3.2 Scour the literature for better hash functions; likely sources are Knuth (1973b), similar tex...
	3.3 Explain why Atom_new doesn’t use the standard C library function strncmp to compare sequences.
	3.4 Here’s another way to declare the atom structure:
	3.5 Atom_new compares the len field of struct atoms with the length of the incoming sequence to a...
	3.6 Atom_length is slow. Revise Atom’s implementation so that Atom_length’s running time is appro...
	3.7 The Atom interface evolved to its present form because its functions were the ones that clien...
	3.8 There are several functions to deallocate atoms that extensions to the Atom interface might p...
	3.9 Some clients start execution by installing a bunch of strings as atoms for later use. Implement
	3.10 Copying the strings can be avoided if the client promises not to deallocate them, which is t...

