130

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 2, MARCH 1978

Performance of Storage Management in an
Implementation of SNOBOL4

G. DAVID RIPLEY, MEMBER, 1EEE, RALPH E. GRISWOLD, aNp DAVID R. HANSON, MEMBER |, 1EEE

Abstract —Results of measuring the performance of the storage manage-
ment subsystem in an implementation of SNOBOL4 are described. By
instrumenting the storage management system, data concerning the size,
lifetime, and use of storage blocks were collected. These data, like those
obtained from conventional time measurement techniques, were used
to locate program inefficiencies. In addition, these measurements un-
covered some deficiencies in the storage management system, and pro-
vided the basis upon which to judge the heuristics used in the garbage
collector.

Index Terms—Program measurement, SNOBOL 4, storage management.

Manuscript received May 11, 1977; revised August 17, 1977. This
work was supported by the National Science Foundation under Grant
MCS75-21757.

The authors are with the Department of Computer Science, The Uni-
versity of Arizona, Tucson, AZ 85721.

I. INTRODUCTION

ONVENTIONAL techniques of program measurement
Cconcentrate on execution *time [1]. Storage, however, is
an important and expensive resource. This is particularly true
of high-level languages such as SNOBOL4, Lisp, and APL,
which rely on dynamic storage management to support many
language features. Measuring the performance of storage
management in-these kinds of languages may lead to better
implementation techniques, and to a better understanding
of the ways in which the dynamic features of such languages
are actually used [2].

In SNOBOL.4. as in languages such as Lisp and APL, creation
of data objects is a run-time activity. Construction of strings.
patterns, and arrays all require the allocation of storage during
program execution. Other activities, such as pattern matching,

0098-5589/78/0300-0130800.75 © 1978 IEEE

RIPLEY etal.: STORAGE MANAGEMENT AND SNOBOL4

may or may not require allocation. Allocation is an implicit
process—there are no declurations or allocation statements in
SNOBOL4. Although some operations, such as array creation,
obviously require allocation, other operations that cause allo-
cation are not so evident to the programmer, and may even
depend on the history of program execution.

SNOBOL4 also has no explicit deallocation operations.
Storage reclamation (garbage collection) is implicit and occurs
automatically when it is required. Data objects that must be
preserved over garbage collection are determindd by their ac-
cessibility, rather than by any particular program constructs.

It is typical for a SNOBOL4 program to allocate storage con-
tinually during execution and for garbage collection to occur
at irregular intervals in order to reclaim inaccessible storage
for subsequent allocation. While allocation can be charged
back to operations that request the storage, garbage collec-
tion occurs only when it is required, and hence cannot be rea-
sonably charged back to the operation whose allocation re-
quest is unfortunate enough to trigger the collection process.

Since storage management is implicit in SNOBOL4, the
SNOBOL4 programmer typically has little conception of
program storage requirements unless the total amount of
memory required causes problems in running the program.
Generally, the time required for allocation and deallocation,
as well as the space needed to support transient storage utiliza-
tion, is largely unknown to the programmer.

A complicating factor is the richness of the SNOBOL4 lan-
guage, which typically offers many alternative methods of ac-
complishing the same task. The same data structure may be
represented using an array, a string, or a linked list of data ob-
jects. Computation may be performed in conventional ways
or by using the search and backtrack algorithms of pattern
matching. The choice of method has a significant impact on
storage requirements, but in the absence of knowledge of these
requirements, choices usually are made on ad hoc bases.

This paper describes the results of measuring the performance
of storage management in SITBOL [3], a widely used im-
plementation of SNOBOL4 for the DEC-10. At the beginning
of this investigation, it was uncertain what results might be
expected. Even implementers of SNOBOL4 processors have
little objective knowledge about the performance of these
systems. The basic hypothesis motivating this work is that
storage was an important resource whose measurement could
provide insight into implementation techniques and program
behavior, and possibly provide tools for reducing costs of run-
ning SNOBOL4 programs. In addition, the results should have
general applicability to other programming languages and im-
plementations that employ dynamic storage management.

The remainder of this paper describes storage management
in SITBOL, the instrumentation used to measure the per-
formance of storage management, and the tools developed
for processing the resulting data. Some results obtained from
storage measurement are described and some of the uses of
this kind of measurement are discussed.

II. STORAGE MANAGEMENT IN SITBOL

SITBOL is an interpreter-based implementation of SNOBOL4
designed specifically for the DEC-10. Inspite of its interpretive

ALLOCATED SPACE

FREE SPACE GRID
POINTER ———sfm============o=n-no=-d ‘
FREE SPACE
ALLOCATED SPACE
FLID
FREE SPACE
POINTER ——+f---===~=-======c=~--d

FREE SPACE

Fig. 1. Allocated storage regions in SITBOL.

nature, it is sufficiently efficient for production work. One of
the reasons for using SITBOL in this investigation was that the
results may be of practical value because of the widespread use
of SITBOL. In addition, the implementation is well structured
and extensively documented [4], [5], facilitating evaluation
and the modifications needed for storage measurement. Fi-
nally, the storage management facilities of SITBOL are sophis-
ticated and include many of the features included in other
recent language implementations such as Algol 68 [6] and
SLS {7].

SITBOL uses heap storage management techniques with a
variety of elaborations and heuristics that are designed to im-
prove performance. There are two main areas from which
storage is allocated: the GRID and the FLID. The GRID
(Growing Impure Data) contains dynamically allocated objects
that are not subject to reclamation. Examples are I/0 buffers
and blocks for variables. The FLID (Floating /mpure Data)
contains dynamically allocated ‘objects that are subject to
reclamation. Examples are strings, patterns, and arrays. In
each region, space is allocated upon request, linearly from
the beginning of the region. Thus each region is subdivided
into an allocated region and a free region. The two regions
are contiguous, as shown in Fig. 1.

Allocation is both simple and fast: a free space pointer is
incremented by the amount of storage that is requested. Each
allocated object constitutes a block of storage und has heading
information containing its length and type. The type may cor-
respond to a source-language data type (such as ARRAY), or
identify a particular kind of internal object (such as blocks
used temporarily during pattern matching).

When an allocation request cannot be satisfied because the
remaining free space is inadequate, a garbage collection occurs.
A marking phase, tracing possible access paths, is carried out
to identify those blocks that must be preserved. Although ac-
cess paths exist through the GRID, no attempt is made to re-
claim space in this region. When the accessible objects in the
FLID have been determined, storage in the FLID is compacted,
eliminating the inaccessible blocks, and pointers are adjusted
accordingly. Following a garbage collection, all the allocated
space in the FLID is at the beginning, so that allocation may
proceed as befere. Details of this process are described in [4].

If the GRID becomes full, a garbage collection is first per-
formed to compact the FLID. The FLID is then relocated to
make more free space available in the GRID.

132 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 2, MARCH 1978

SEDIMENT

LEVEL ——=1 = " 7

FREE SPACE
POINTER —— -~

ALLOCATED SPACE

FREE SPACE

SEDIMENT

FLID

Fig. 2. “Sediment’ in the FLID.

One problem with this kind of storage management is the
potential for thrashing that results from garbage collections
that produce only a small amount of free space. An attempt
is made to mitigate this problem by requiring that garbage
collection produce an excess of at least 1000 words over the
amount needed to satisfy the allocation request. This assures
some “breathing room™ for subsequent allocation. If a gar-
bage collection does not provide the required breathing room.
more memory is requested from the operating system.

Garbage collection also may return more free space than is
justified by expected future allocation requests. thus increas-
ing memory charges unnecessarily. [f too much space is re-
turned (more than 3000 words), the excess is returned to the
operating system. The default values of 1000 and 3000 for
these free space limits can be changed by the SNOBOL4 pro-
grammer using the explicit coLLECT function with the desired
values as arguments.

Another potential cause of thrashing occurs in the expansion
of the GRID. When the GRID is expanded, a margin of 500
words is provided. There is no provision for the programmer
to change thus value.

Several other heuristics are used in an attempt to improve
performance [4]. One of these heuristics concerns blocks
that accumulate at the bottom of the FLID. This “‘sediment™
is due to objects with long retention periods (such as com-
piled code and patterns and arrays that are set up during
program initialization and which remain accessible through-
out program execution). As garbage collections occur, such
objects are forced to the bottom of the FLID by compaction,
as illustrated in Fig. 2.

The sediment level is determined for the succeeding garbage
collection by observing the first unmarked block in the FLID.
In hopes of reducing processing time during garbage collection.
no attempt is made to collect objects in the sediment unless
garbage collection fails to produce the required margin. The
sediment is broken up when the GRID is expanded and when
one garbage collection results in a sediment level below the
previous one. In the latter case, the next garbage collection
reclaims inaccessible blocks in the sediment.

Another heuristic has to do with the handling of strings.
Strings are stored in blocks of contiguous characters and refer-
enced by pointers indicating the length and offset of refer-
enced substrings. As program execution continues, situations
may arise in which there are pointers into a string block, but
significant portions of the block may be no longer accessible.
In such a case, the unused trailing portion of the string block
is discarded during garbage collection. To balance the savings

in space produced by this heuristic against the time required for
the processing, string block compression is attempted only on
every eighth garbage collection.

III. COLLECTION AND ANALYSIS OF
STORAGE MANAGEMENT DATA

Information about individual blocks provides most of the
data needed to measure the performance of storage manage-
ment. Relevant facts include the type of block, its size, its
time of creation, its “lifetime,” and the source-language opera-
tion responsible for its creation. The first two items are con-
tained in the standard header that is part of all blocks in the
FLID, the region of greatest interest. An additional word
was added to this header and the allocation routines were
modified to store the creation time and the number of the.
statement which caused the allocation (providing an approxi-
mation to the specific sourcelanguage operation). The in-
formation contained in this enlarged header is called the crea-
tion history.

Since SNOBOL4 has no specific deallocation primitives, the
lifetime of a block is determined not by its actual period of
accessibility from the source-language program, but rather by
its accessibility when garbage collection occurs. That is, a
block may be created and subsequently become inaccessible,
but still occupy storage until the next garbage collection oc-
curs. Since this block does occupy storage until garbage
collection under such a system, it is reasonable to consider
block lifetimes as ending only at garbage collections. Con-
sequently, the state of storage when garbage collection occurs
provides a realistic picture of storage utilization. Furthermore,
since garbage collections tend to occur fairly frequently, ade-
quate resolution is obtained by this approach.

To provide the data needed to measure the performance of
storage management, the state of the FLID including all block
creation histories is output before and after each garbage col-
lection and at program termination. These accumulated data
provide the raw material for the analysis of various aspects of
storage management.

Using the method just described, a substantial amount of
data are gathered during the execution of a typical SNOBOL4
program. As is usually the case in such investigations, the
major problem is not getting the data, but rather in making
sense out of it—suppressing detail and integrating useful in-
formation into a concise and meaningful form. To accomplish
this, programs were written to postprocess the raw storage
management data.

RIPLEY etal.: STORAGE MANAGEMENT AND SNOBOL4 133
Block type Stmt Blocks Blocks Words Words Average Block Collected
Allocated Collected Allocated Collected Lifetime Allocated
datatype field 700 2 0 12 0.5% 0 0.0% 0.013 0.0%
defined datatype 700 1 0 7 0.3 0 0.0 0.026 0.0
string 6 3 32 1.2 12 0.6 0.01 37.5
100 3 1 13 0.5 4 0.2 0.054 30.8
800 3 2 19 0.7 8 0.4 0.008 42.1
table 2 1 2506 97.7 2003 99.1 0.037 79.9
200 1 1 2003 78.1 2003 99.1 0.039 100.0
600 1 0 503 19.6 4] 0.0 0.036 0.0
table element 300 1 1 7 0.3 7 0.3 0.039 100.0

Fig. 3. Summary of storage management data.

Garbage Collection 3,

at statement 700, after executing 7 statements:

Location Before After
Beginning of FLID 3977 4480
Sediment level 3977 4480
Free pointer 6610 5101
End of FLID 7103 7103
Rlocks Words
Storage recovered 2 2010 79%
Storage preserved L] €19 21%
Action Block Tyge Stmt Size Lifetime
Storage recovered table 200 2003 0.039
table element 300 7 0.039
Storage preserved string 100 L} 0.056
string 100 5 0.056
table 600 503 0.010
defined datatype 700 7 0.000

Fig. 4. Detailed storage management data.

One of these programs condenses the raw data and provides
a summary “profile” of various storage parameters and the
blocks in the FLID. Options permit the presentation of data
by source-program statement number, block type, or both.
Fig. 3 illustrates a typical profile produced by this program.

Such summaries often raise questions that can be answered
only by examination of more detailed data. To provide a tool
for gleaning this information, another program was written to
provide a “motion picture” of FLID usage. An example of
the results produced by this program is shown in Fig. 4,
which depicts data from a single garbage collection.

Most of the- performance analysis was obtained by using
these two postprocessing programs. applied to a variety of
SNOBOL4 programs. The programs chosen represent a variety
of programming styles and levels of quality, but were mostly
selected from programs in production use or appearing in the
literature. Some of the more significant results of these analyses
are given in the following sections.

IV. LoCcATING PROGRAM INEFFICIENCIES

It is well known that one of the most efficacious uses of
performance measurement is to locate high spots that con-

tribute disproportionately to the cost of program execution
[1]. In many programs, rewriting of only a few high spots
can lead to substantial performance improvements.

One interesting question is whether storage management
data can be used in this fashion. Storage management is
relatively uncorrelated with specific language constructs.
Therefore it is possible that storage measurement cannot be
used to significantly improve program performance because
of this lack of correlation. On the other hand, storage high
spots may identify problems that would not be evident in
conventional time measurement. In SNOBOL4, garbage
collection occurs when it is needed. In time sampling mea-
surements, the time spent in garbage collection is charged
to the statements in which garbage collection happens to
occur, even if those statements are not responsible for sig-
nificant allocation. Thus a statement with heavy allocation
demands actually may not be charged for the subsequent pro-
cessing costs that are incurred. A number of tests were made
in an attempt to settle this issue.

In a program called SLICER, which produces summaries of
SNOBOL4 program execution time activity from measure-
ment samples [8]. two heavily exercised statements were of

134

the form
:s(L)

The programmer intended a multiple predicate: if A is less than
or equal to B and c is identical to p, then proceed to the
statement labeled L. While having the same control effect
as a multiple predicate, this statement actually produces a
needless pattern match of “pattern™ IDENT(C,D) on subject
LE(A,B). resulting in the allocation of 17 words of temporary
storage per statement execution. During one execution of
SLICER, storage measurements indicated that these state-
ments accounted for about 4000 words of storage allocated
and two garbage collections. The solution, of course, is to
enclose the two predicates in parentheses, forming a com-
pound subject. This results in roughly a 10 percent decrease
in program execution time. Although time measurement with
intrastatement resolution would have identified pattemn-
matching activity and hence raised suspicions, a statement-
level time measurement would not have indicated this problem.

The second example. from a formatting program [9]. illus-
trates how deceptive storage management in SITBOL can be.
Storage measurement identified a single pattern-matching state-
ment in which an inordinately large amount of allocation oc-
curred. This statement was particularly simple:

LE(A.B) IDENT(C,D)

GET CONTROL ‘S(SCSTRING)F(SMODE)

The purpose of this statement is to test input lines in order to
distinguish control lines from text lines. The sources of atloca-
tion in this statement are the pattern-matching process itself
and an unevaluated component in the pattern CONTROL, which
is defined as

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 2, MARCH 1978

tributed to these statements by time sampling. Even if this
high spot had been identified by conventional time-sampling
techniques, the source of the problem would not have been
as evident and would likely have been attributed to the com-
plexity of the pattern and the frequency with which the
pattern-matching statement was executed. Thus storage mea-
surement not only located the high spot but also identified
its specific cause, making an improvement possible.

There are cases, however, in which storage measurement
provides no additional information concerning program in-
efficiencies. For instance, experience from these tests indi-
cates that in some cases either storage requirements are fairly
obvious. time sampling identifies the same high spots as stor-
age management, or little improvement in program performance
can be obtained by attempting to-rewrite program sections
identified as allocation high spots.

An example is the line justification process in ACOLYTE
(10]. a rather large document preparation program. Line
justification typically accounts for about 30 percent of the
storage allocated and 10 percent of ACOLYTE's execution
time. Examination of the code. which inserts extra blanks in
lines to produce even margins, suggests several possible optimi-
zation techniques. The overall saving in storage resulting from
one of these optimizations was only 3 percent, however.
Furthermore. it was not at all clear that additional optimiza-
tion would reduce storage usage significantly, or that reduc-
tions would result in significantly lower execution costs.

ACOLYTE also uses 1 dictionary file for hyphenation. In
order to hyphenate a word, ACOLYTE searches the file
sequentially. Search of the dictionary requires the words to
be read into memory, which causes the allocation of a large

CONTROL = p0s(0) *cw (BREAK("). CSTRING REM . VALUE

+ | REM . CSTRING NULL . VALUE)

The identifying control character is the value of cw, which is
left unevaluated so that it can be changed by the user during
formatting if desired.

Since cw is not evaluated until pattern matching occurs, a
pattern component for it is built dynamically each time the
statement is executed. This is done once for each line of
input. The resulting allocation of storage is significant and
shows up as a high spot. The unevaluated component in
CONTROL can be removed without affecting the program
behavior by simply changing the mechanism by which the
user redefines the control character so that the entire pattern
CONTROL is rebuilt. Since changing the control character is
done very infrequently, the additional processing required
to rebuild conTroL is insignificant in practice.

The results of this trivial change—modifying only two
lines of the program—were dramatic. In formatting a typical
document, the overall amount of storage allocated dropped
by 15 percent and the overall time and cost of running the
program dropped by 8 percent.

Interestingly. time sampling does not show this high spot
so clearly. The reason is that 25 percent of program execu-
tion time saved by this optimization is due to reduction of
garbage collection time. which in general would not be at-

number of string blocks. Measurement of a typical case
showed that the few statements involved in searching the
hyphenation file consumed 37 percent of the storage used
by ACOLYTE and 27 percent of its execution time. While
the hyphenation facility certainly could be redesigned (such
as using a hyphenation algorithm and a user-supplied dic-
tionary of exceptions), such optimizations also would have
been suggested by a high point in time sampling, giving storage
measurement no significant advantage over time measurement.

Another example occurs in SLICER. Dynamic measurement
of SLICER'’s storage usage proved interesting and useful in
some ways as described above. However. its storage can
largely be estimated statically given a few facts such as the
number of words required in SITBOL to store numeric data
and pointers, which items are pointed to and which are self-
contained, and table element size. This static information,
used in conjunction with time measurements, led to many
of the reductions made in storage usage of SLICER.

V. STORAGE USAGE AND LANGUAGE IMPLEMENTATION

The analysis of actual storage utilization can be used to im-
prove the design and implementation of a storage manage-
ment system [2}. This section describes some of the investi-

RIPLEY etal.: STORAGE MANAGEMENT AND SNOBOL4

gations and results that relate to the implementation of
storage management in SITBOL.

Heuristics

The various heuristics used in SITBOL storage management
operate in an environment of such complexity that analytic
techniques for their evaluation are impractical. Heuristics
frequently have intuitive appeal, but their actual usefulness
is hard to demonstrate. To get a better assessment of the
heuristics, the storage management algorithm was modified
and the resulting changes in performance were measured.

Storage management was first simplified by making the
sediment and string compression heuristics optional. The
range of performance differences observed for a number of
SNOBOL4 programs are as follows. (Here “time-space”
refers to kilocore-seconds.)

String Compression Sediment

Time improvement:
Time-space
improvement:

-1 percent to 1 percent 0 percent to 5 percent

-1 percent to 1 percent 1 percent to 4 percent

Although these figures are in the “noise’” range with respect
to the reliability of the timing, it is clear that the value of
string compression is very questionable and the potential im-
provement of performance from sedimentation is minor. For
string compression, it seems that the time spent in doing the
compression may be greater than the savings effected.

In another area, a new feature, “dynamic breathing room,”
was added after measurement data showed that for certain
programs only a small fraction of the FLID was collectable.
Due to the static size of breathing room in the FLID, this can
result in many time-consuming garbage collections (garbage
collection time in SITBOL is roughly proportional to the
amount of preserved storage). The dynamic breathing room
heuristic modifies these minimum and maximum values based
on storage usage patterns. Both ends of the range are incre-
mented each time memory expands and decremented each
time memory contracts. This usually results in fewer regen-
erations, somewhat more memory used, shorter execution
time, and an overall execution cost savings. The range of im-
provement was

Breathing Room

Time improvement:
Time-space improvement:

-1 percent to 17 percent
~1 percent to 9 percent

System Deficiencies

In addition to evaluating the- basic properties of the storage
management system, a number of logical flaws or oversights
were discovered through the use of storage measurement tools.
Some of these problems are rather minor. Other deficiencies
vary in importance, depending on the characteristics of the
program being executed. What follows is a list of some of
these, not as a criticism of SITBOL but rather to illustrate the
value of storage measurement in uncovering deficiencies that
are bound to exist in large, complex systems, and are difficult
to uncover in any other way.

135

Unnecessary Allocation: One problem was exposed by a
summary by source statement and block type of a program
that used SNOBOL4 tables. The profile indicated that seven
words of storage were consumed for each table element ac-
cessed, regardless of whether the element existed prior to ac-
cessing. Thus unnecessary allocation continually occurred
when existing table elements were accessed. In one program
this accounted for 4000 words of allocated storage and several
garbage collections. Investigation showed that the table
element access mechanism always allocates space for a new
table element, on the possibility that the element had not yet
been defined. Although no attempt was made to remedy most
problems uncovered by storage measurement, a minor change
was made to fix this one, with the following improvement.

2 percent to 9 percent
1 percent to 9 percent

Time improvement:
Time-space improvement:

Another example of unnecessary allocation occurs in the
copE function that compiles additional source code at run-
time. SITBOL allocates sequences of 400-word blocks for
the compiled code, the unused portion of which becomes
garbage if no additional space is allocated by copE. Storage
measurement showed that frequently only a few words of the
block were used, producing extraneous garbage on each call
of copk. Since code created during execution tends to be
short, a smaller block size for this purpose is desirable.

Matching Strings: Storage measurements pointed out that
simple string patterns are handled in the same way as arbi-
trarily complex patterns, invoking the general pattem-con-
structing mechanism and unnecessarily consuming storage.
While some extra code is required to handle this case specially,
it does seem to occur frequently and in fact most other
SNOBOL4 implementations do consider it worthwhile to treat
this case separately. In addition, by treating this case sepa-
rately, the allocation resulting from the multiple predicate

LE(A,B) IDENT(C,D)

discussed earlier could be avoided without requiring the pro-
grammer to change the source statement.

Transient Storage: Heavy storage consumption in a number
of programs measured was due to “transient’ strings, i.e.,
strings created and discarded within the execution of one
statement. An example is

OUTPUT = “The temperature,” TEMP *, and humidity.”

&

+ HUMID . result in a chill factor of " cF

Here five concatenations are performed per statement execu-
tion, four of which are transient. Furthermore, when oUTPUT
is assigned a value, its previous value is of course discarded. A
statement of this type in SLICER accounted for 8 percent of
execution time and 16 percent of storage usage. Hyphenation
in ACOLYTE, described earlier, involves input to a variable
that was examined. If no match was found, the statement was
reexecuted, resulting in the previous value of the variable being
discarded. The point is that transient storage can sometimes
be immediately deallocated, and hence never contribute to
accumulating garbage. Other proposed SNOBOL4 implemen-
tations, such as SIXBOL [11], use a separate storage region

136

for strings in order to treat this important type of storage
specially.

Use of Character-Set Blocks: The example concerning the
pattern assigned to CONTROL, given in Section IV, illustrates
another use of storage measurement to suggest a refinement in
an implementation. A profile of the block types allocated by
the pattern-matching statement prior to modification shows
approximately one-fourth of the storage is allocated for
character-set blocks [12]. Ordinarily character sets are used
by lexical pattern-matching primitives such as BREAK and
spaN. Each construction of a pattern component for *cw
also consumes a portion of a character-set block, which is
not subsequently reused, accounting for the large amount of
allocation of this block type. An examination of the pattern
at first reveals no explanation of this unusual situation—there
is nothing inherent in the pattern that requires the use of a
new character-set block for each pattern match.

The cause of this problem actually lies in an unnecessary
application of a heuristic that SITBOL uses to quickly posi-
tion the cursor to the first character of interest in a string.
This heuristic only applies when the first component of a
pattern is a character string and matching is unanchored. In
the situation here. the dynamic construction of a pattern com-
ponent that results from =Cw treats this as a separate pattern
without recognizing that it is imbedded in a context that
makes this heuristic meaningless. The entire pattern still
works properly because of the presence of pos(0), which
causes the heuristic to be bypassed. The extra storage is con-
sumed needlessly, however. It is doubtful that this “bug”
would ever have been discovered without the attention pro-
vided by storage measurement.

VI. CONCLUSIONS

The techniques used to measure the performance of stor-
age management in SITBOL have a brute-force character.
The major reason for this approach was the lack of prior
work in this field and hence the absence of a priori informa-
tion on the areas that were important to study. Adding
facilities to an existing system rather than designing them in
conjunction with the design of the system contributed to the
nature of the result.

The main consequence of the brute-force approach is the
massive amount of data that accumulates from a typical
measurement. As a result, the artifact is large, the measure-
ment tool is relatively cumbersome to use, and it is difficult
to extract meaningful results from the measurement data.
Postprocessing programs reduce the last problem to a manage-
able level, but there still is much information inherent in the
measurement data that is difficult to extract. Examples of
possible further analysis are the determination of average
block lifetimes, average lifctimes of specific block types,
“spectral analysis™ by block type. and statistical summaries
of more sophisticated kinds. The problem is a typical one:
the amount of work needed is large, even prohibitive. There-
fore selections must be made. There is no guarantee that
the selections made in this paper are the most meaningful
ones, although that seems likely. Conversely, if it could be

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 2, MARCH 1978

determined that a more restricted set of data was adequate
to provide the information needed for performance measure-
ment, the instrumentation might be considerably simplified
and the artifact and related problems correspondingly reduced.

Applicability of the Results

As indicated in the preceding sections, one of the areas that
may benefit from storage management performance measure-
ment is the optimization of programs written in SNOBOL4
and other languages in which dynamic storage management
plays a major role. Unfortunately, the usefulness of storage
management measurement as an optimization tool is ques-
tionable. Conventional time-measurement facilities often
indicate storage utilization inefficiencies, thereby reducing
the usefulness of a separate tool. In addition, even in languages
with many dynamic features, it appears that static analysis,
which is simpler and cheaper, often proves as useful as dy-
namic measurement and furthermore often provides more
directly useful information on methods of improving program
performance.

In many cases, the tradeoff between space and time that
takes place internally balances out the total cost. Forexample,
a greater allocation of storage may offset inefficient access
mechanisms. Perhaps more importantly, alternative forms of
storage usage present complexities that the average source-
language programmer may not wish or be able to cope with.
Therefore, storage management measurement may be difficult
for the source-language programmer to interpret and use con-
structively. In SNOBOL4, at least, implicit management of
storage is a strong component of the language design. For the
SNOBOL4 programmer to have to become sufficiently expert
in the language internals and to become preoccupied with
“what is going on behind the scenes” runs contrary to the
philosophy of the language and neutralizes many of the
benefits the language otherwise offers.

Storage management measurements appear to be most use-
ful for improving the algorithms and strategies used in the
implementation of dynamic storage management subsystems.

It is generally known that almost all implementations of
complex systems have large ad hoc components and that ac-
curate, quantitative measures of their performance are un-
available. Quality of performance is therefore largely a matter
of conjecture, inference, and comparison with other, similar
systems. In the abstract, algorithms can be analyzed, com-
pared, and used as the basis for design. In the extremely
complex environment of the running program, measurements
of the type used in this study may be the only practical
method of validating performance and lncating unsuspected
problems.

The discoveries made in measuring the performance of
storage management in SITBOL are not important in them-
selves, but they provide a case in point, and are all the more
significant because of the basically high quality of the SITBOL
implementation.

Since SITBOL distills much of the conventional wisdom
about storage management techniques suitable for SNOBOL4-
like languages, the problems located in this study may be
useful in the continuing attempt to produce viable implemen-

RIPLEY etal.: STORAGE MANAGEMENT AND SNOBOL4

tations of these kinds of languages on smaller and smaller
computers. In these efforts, there is a fundamental problem:
nonnumeric data inherently occupy more space than numeric
data. Strings simply require more memory than numbers. In
limited-memory environments, the question is not so much
one of performance but of feasibility. Perhaps the most
significant problem here is that of transient storage, mentioned
in Section V. Unfortunately, the measurement techniques
used for SITBOL do not provide enough resolution to deter-
mine the extent of iwus problem, since retention periods in
SITBOL are extended to times of garbage collections. Tech-
niques to effectively deal with this problem are essential for
implementations on small machines. One approach to this
problem is described in [13].

It is difficult to draw general conclusions about the imple-
mentation of dynamic storage management systems from the
specific experiences with SITBOL. These experiences do,
however, lead to several recommendations concerning the
design and implementation of dynamic storage management
systems:

1) a basically simple strategy for storage management
should be chosen for the initial implementation;

2) a measurement facility similar to that described in
this paper should be incorporated in the design from the
beginning;

3) using this measurement facility, sources of inefficiency
should be sought and heuristics or more complex strategies
should be added only as there is evidence of the need for
them and their utility in practice.

ACKNOWLEDGMENT

The authors are indebted to C. C. Daugherty for implement-
ing most of the instrumentation and for running test programs.

REFERENCES

[1] D. E. Knuth, “An empirical study of Fortran programs,” Soft-
ware—Practice and Experience, vol. 1, pp. 105-133, Apr.-June
1971.

[2] D. W. Clark and C. C. Green, ““An empirical study of list struc-
ture in Lisp,” Commun. Ass. Comput. Mach., vol. 20, pp. 78-86,
Feb. 1977.

[3) J. F. Gimpel, SITBOL Version 3.0, Tech. Rep. S4D30b, Bell
Lab., Holmdel, NJ, Nov. 1972.

{4] D. R. Hanson, “Storage management for an implementation of
SNOBOLA4,” Software—Practice and Experience, vol. 7, pp.
179-192, Mar.-Apr. 1977.

[5} . F. Gimpel, A Design for SNOBOL4 for the PDP-]10, Tech.
Rep. S4D29b, Bell Lab., Holmdel, NJ, May 1973.

[6] U. Hill, “Special runtime organization techniques for Algol
68." in Lecture Notes in Computer Science, Vol 21: Compiler
Construction, G. Goos and J. Hartmanis, Ed. Berlin: Springer-
Verlag. 1974, pp. 222-252.

[7] R. E. Griswold and D. R. Hanson, “An Overview of SLS.”
SIGPLAN Notices, vol. 12, pp. 40-50, Apr. 1977.

[8] G. D. Ripley, “Program perspectives: A relational representa-
tion of measurement data,” IEEE Trans. Software Eng., vol.
SE-3, pp. 296-300, July 1977.

[9]1 R. E. Griswold, String and List Processing in SNOBOL4, Tech-

niques and Applications. Englewood Cliffs, NJ: Prentice-Hall,

1975, pp. 168-191.

R. O. Anderson and R. E. Griswold, ACOLYTE, A Document

Formatting Program, Tech. Rep. S4PD11b, Univ. Arizona, Tuc-

son, AZ, Feb. 1976.

W. R. Sears, The Design of SIXBOL: A Fast Implementation

{10]

{11}

137

of SNOBOL4 for the CDC6000 Series Computers, Tech. Rep.
S4D45, Univ. Arizona. Tucson, AZ. Nov. 1974.

J. F. Gimpel, “The minimization of spatially-multiplexed char-
acter sets,” Comunun. Ass. Compui. Mach., vol. 17, pp. 315-
318, June 1974.

J. F. Gimpel and D. R. Hanson, The Design of ELFBOL-A Full
SNOBQOL4 for the PDP-]1,Tech.Rep. S4D34, Bell Lab., Holmdel,
NJ, Oct. 1973.

(12]

(13]

G. David Ripley (M'72) reccived the B.A. de-
gree in mathematics from the California State
University at Sacramento, the M.A. degree in
mathematics from the University of California,
Berkeley, and thc Ph.D. degree in computer
science from lowa State University, Ames, in
1965,1967, and 1970, respectively.

He was a member of the Programming Lan-
guage Research Group at RCA Laboratories in
Princeton from 1970 to 1972. He is presently
an Assistant Professor of Computer Science,
University of Arizona, Tucson, with interests in program performance,
programming languages, and language translators.

Dr. Ripley is a member of the Association for Computing Machinery,
Phi Kappa Phi, and Sigma Xi.

Ralph E. Griswold was born in Modesto, CA,
on May 19, 1934. He received the B.S. degree
in physics in 1956, and the M.S. and Ph.D. de-
grees in eclectrical engineering in 1960 and
1962, respectively, all from Stanforc Univer-
sity, Stanford, CA.

From 1962 to 1971, he was a member of the
Technical Staff of Bell Laboratories. where he
was head of the Programming Research and
Development Department. He is presently
Professor and Head of the Department of Com-

NN

puter Science, University of Arizona, Tucson, AZ. His research interests
include programming language design and implementation. nonnumeric
computing, programming methodology . and software engineering.

Dr. Griswold is a member of the Computer Society. the Association
for Computing Machinery, and the Association for Computational
Linguistics.

David R. Hanson (M'72) was born in Oakland,
CA. in 1948. He received the B.S. degree in
physics in 1970 from Oregon State University.
Corvallis, the M.S. degree in optical sciences in
1972, and the Ph.D. degree in computer science
in 1976, both from the Univetsity of Arizona,
Tucson.

From 1970 to 1973, he was a member of the
Research Staff at Western Electric Engineering
Rescarch Center, Princeton, NJ, where he did
applied research initially in laser physics and
then in computer science. From 1976 to 1977, he was an Assistant
Professor of Computer Science at Yale University, New Haven, CT.
He is presently an Assistant Professor of Computer Science at the Uni-
versity of Arizona, Tucson. He is also a consultant for ITT Telecom-
munications Technology Center, Stamford, CT. His areas of interest
include the design and implementation of programming languages, pro-
gramming methodology, operating systems, and software engineering.

Dr. Hanson is a member of the Association for Computing Machinery
and the American Physical Society.

