Date: Sun, 24 Mar 91 16:47:57 -0500
From: Dave Hanson <drh>

To: preston@rice.edu

Subject: Arenapaper in SP&E

Date: Sun, 24 Mar 91 14:01:42 CST
From: preston@rice.edu (Preston Briggs)

A friend pointed out your “Fast Allocation...” paper in the January 1990 SP&E. It's very nice, both
the ideas and the writing, and | expect it will be very useful. However, | think I've discovered a
slight performance bug, causing it to use more memory than necessary.

The inline code for allocation is given as

p = arena[t]->avail;
if ((arena[t]->avail += k) > arena[t]->limt)
p = allocate(k, &arena[t]);

In the if-condition, you increment the value of “ar ena[t] - >avai | ”. This happens even if
al | ocat e is called. You also increment avai | at the end of al | ocat e. This is normally ok,
since al | ocat e will be working with a different arena.

But in the final version of al | ocat e, which will extend the last arena if possible, an extended
arena will have avai | incremented twice, leaving an unused gap in the current arena.

The simplest correction seems to be a change to the inline code:

p = arena[t]->avail;

if (arena[t]->avail + k > arena[t]->limt)
p = allocate(k, &arena[t]);

el se
arena[t]->avail += k;

| think your analysisis correct; good detective work!
In practice, | use adifferent inline allocation macro that can be used in any expression context:
#define alloc(n,ap) (ap->avail + (n) > ap->limt ?\

all ocate(n, &ap) : \

(ap->avai|l += (n), ap->avail - (n)))

eg., al l oc(k, arenat]).Asyou can see, thismacro is equivalent to your version. | wanted to clean it up and
avoid using macros for publication, but in doing so, | introduced a bug!

