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One of  the  d i f f i c u l t i e s  in  us ing  n o n d e t e r m i n i s t i c  a lgo r i t hms  f o r  the  s o l u t i o n  o f  c o m b i n a t o r i a l  
problems i s  t h a t  most programming languages  do not  i nc lude  f e a t u r e s  capable  o f  e a s i l y  r e p r e -  
s en t i ng  back t r ack ing  p r o c e s s e s .  This paper  d e s c r i b e s  a p rocedure  mechanism t h a t  uses  co-  
r o u t i n e s  as a means f o r  the  d e s c r i p t i o n  and r e a l i z a t i o n  o f  n o n d e t e r m i n i s t i c  a l g o r i t h m s .  A 
s o l u t i o n  to  the  e i g h t  queens problem i s  g iven  to  i l l u s t r a t e  the  a p p l i c a t i o n  o f  the  procedure  
mechanism to  back t r ack ing  problems.  

I. INTRODUCTION 

Although back t rack  programming has been known f o r  
s e v e r a l  years  [ 1 - 4 ] ,  the  method has ye t  to  become 
a common programming t echn ique  f o r  the  r e a l i z a t i o n  
o f  n o n d e t e r m i n i s t i c  a l g o r i t h m s .  Floyd [1] a l l uded  
to  the  reason f o r  t h i s  s i t u a t i o n :  most program- 
ming languages do not  i nc lude  f e a t u r e s  t h a t  f a c i l -  
i t a t e  back t rack  programming. He sugges ted  t h a t  
programming languages ought to  possess  mechanisms 
capable  o f  r e p r e s e n t i n g  n o n d e t e r m i n i s t i c  a lgo -  
r i thms .  

Since  the  appearance of Floyd's paper ,  c o n s i d e r -  
ab le  r e s e a r c h  has been under taken to  add f a c i l i -  
t i e s  o f  t h i s  kind to new or  e x i s t i n g  languages .  
This work has covered  a l a r g e  p a r t  o f  the  spec-  
trum of  programming languages ,  from gene ra l  de-  
s c r i p t i o n s  wi th  a s l a n t  toward A l g o l - l i k e  l an -  
guages [5,6], to languages for artificial intel- 
ligence research [7], and even to Fortran [8]. 
In all the work cited, features that were added 
or proposed for backtracking were cast in a 
framework of recursive functions with additional 
built-in mechanisms or primitives with which to 
implement backtracking. That is, the basic pro- 
cedure mechanism of the proposed languages or 
language extensions was the traditional recursive 
function. 

This paper  p r e s e n t s  a gene ra l  p rocedure  mechanism 
t h a t  i nc ludes  c o r o u t i n e s  as a means f o r  the  de-  
s c r i p t i o n  and r e a l i z a t i o n  o f  n o n d e t e r m i n i s t i c  
a l g o r i t h m s .  The SL5 programming language [9-12] 
in  which t h i s  procedure  mechanism i s  implemented 
i s  the  v e h i c l e  used to  d e s c r i b e  t h i s  method and 
i t s  a p p l i c a t i o n  to  back t rack  programming. 
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To f a c i l i t a t e  comparison with  p r ev ious  work, the  
e i g h t  queens problem [13-15] i s  used as the  exam- 
p l e  o£ back t r ack ing  throughout  t h i s  paper .  This  
i s  a n o n t r i v i a l  problem whose s o l u t i o n  i s  i d e a l l y  
s u i t e d  to  the  back t r ack ing  s t r a t e g y ,  and has 
f r e q u e n t l y  been used as an example t h a t  can be 
so lved  by n o n d e t e r m i n i s t i c  programming. 

2. THE SL5 PROGRAMMING LANGUAGE 

SL5 i s  an e x p r e s s i o n - o r i e n t e d  language t h a t  i s  
s t r u c t u r a l l y  s i m i l a r  to  BLISS or  Algol  68. SL5 
i s  a " t y p e l e s s "  language in  the  same sense  t h a t  
SNOBOL4 i s  - -  a v a r i a b l e  can have a va lue  o f  any 
da t a type  a t  any t ime dur ing  program e x e c u t i o n .  

2.1 Contro l  S t r u c t u r e s  and S i g n a l i n g  

An expression returns a signal, "success" or 
" f a i l u r e " ,  as we l l  as a v a l u e .  The combinat ion 
o£ a va lue  and a s i g n a l  i s  c a l l e d  the  r e s u l t  o f  
the  e x p r e s s i o n .  SL5 posse s se s  most o£ the  "mod- 
e rn"  c o n t r o l  s t r u c t u r e s ,  each o f  which i s  an 
exp re s s ion  and r e t u r n s  a r e s u l t .  Contro l  
s t r u c t u r e s  are  d r i v e n  by s i g n a l s  r a t h e r  than by 
boolean v a l u e s .  For an example, in  the  exp re s s ion  

i_~f e 1 then e 2 e l s e  e 3 

e I is evaluated first. If the resulting signal 
i s  success ,  e 2 i s  e v a l u a t e d .  Otherwise ,  e 5 i s  
e v a l u a t e d .  The r e s u l t  o f  the  i f - t h e n - e l s e  ex-  
p r e s s i o n  i s  the  r e s u l t  (va lue  and s i g n a l )  o£ e 2 
or  e 3, whichever  i s  e v a l u a t e d .  

Other typical control s t r u c t u r e s  are: 

while e I do e 2 
until e I do e 2 
repeat e 
for v from e I to e 2 do e 5 

I 
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The whi le  and f o r  exp re s s ions  behave in  the  con- 
ventlo~-6n~manner. The u n t i l  exp re s s ion  r e p e a t e d -  
l y  e v a l u a t e s  e 2 u n t i l  e I succeeds .  The r e p e a t  
exp re s s ion  e v a l u a t e s  e r e p e a t e d l y  u n t i l  a f a i l u r e  
s i g n a l  i s  r e t u r n e d .  Express ions  may be grouped 
t o g e t h e r  as a s i n g l e  exp re s s ion  us ing  
begin  . . .  end or  { . . .  }. 

2.2 Procedures 

In SL5, p rocedures  and t h e i r  environments  
( a c t i v a t i o n  r eco rds )  a re  s e p a r a t e  source - l anguage  
da ta  o b j e c t s .  A procedure  i s  " c r e a t e d "  by an 
e x p r e s s i o n  such as 

gcd := procedure  (x, y) 
while x ~= y do 

if x > y then x := x-y else y := y-x; 
succeed x 

end; 

which a s s i g n s  to  gcd a procedure  t h a t  computes 
the  g r e a t e s t  common d i v i s o r  o f  i t s  arguments.  

The invocation of a procedure in the standard 
recursive fashion is accomplished using the usual 
functional notation f(el,e 2 ..... en) , which 
invokes the procedure that is the current value 
of the variable f. 

Procedure activation may be decomposed into sev- 
eral distinct source-language operations that 
permit SL5 procedures to be used as coroutines. 
These operations are the creation of an environ- 
ment for the execution of the given procedure, 
the bindin~ of the actual arguments to that envi- 
ronment, and the resumption of the execution of 
the procedure. 

The c r e a t e  exp re s s ion  t akes  a s i n g l e  argument o f  
da t a type  p rocedure ,  c r e a t e s  an environment  f o r  
i t s  e x e c u t i o n ,  and r e t u r n s  t h i s  environment as 
i t s  v a l u e .  For example, the  exp re s s ion  

e := create f 

as s igns  to  e an environment  f o r  the  execu t ion  o f  

f .  

The with. exp re s s ion  i s  used to  bind the  a c t u a l  
arguments to  an environment .  The exp re s s ion  

e with (el,e 2, .... e n) 

binds the actual arguments, e I through en, to the 
environment e. 

The execution of a procedure is accomplished by 
"resuming" it via the resume expression. The 
expression 

resume e 

suspends execu t ion  o f  the  c u r r e n t  p rocedure  and 
a c t i v a t e s  the  procedure  f o r  which e i s  an e n v i -  
ronment. 

A procedure usually "returns" a result to its 
"resumer". This is accomplished by the expressions 

succeed v 

w h i c h r e t u r n  V as t he  v a l u e  o f  the  p rocedure  and 
s i g n a l  e i t h e r  success  or  f a i l u r e  as i n d i c a t e d .  
I f  the  procedure  i s  a c t i v a t e d  by a resume, the  
r e s u l t  g iven  in  succeed or  f a i l  i s  t r a n s m i t t e d  
and becomes the  r e s u l t  o f  teh-6"~esume e x p r e s s i o n .  
The e x e c u t i o n  o f  succeed or  f a i l  causes  the  sus -  
pens ion  o f  t h a t  envi ronment .  I f  the  environment  
i s  again  resumed, e x e c u t i o n  proceeds  from where 
i t  l e f t  o f f .  The argument v may be omi t t ed ,  in  
which case  the  n u l l  s t r i n g  i s  assumed. 

A l a b e l  g e n e r a t o r  i l l u s t r a t e s  a s imple  example o f  
c o r o u t i n e  usage :  

genlab :={procedure (n) 
r e p e a t  

succeed "U' l] lp~Cn,  3,  "0"); 
n := n+1 
} 

end; 

An environment  f o r  genlab g e n e r a t e s  the  nex t  
l a b e l  o f  the  form Lnnn each t ime i t  i s  resumed. 
The sequence beg ins  a t  the  i n t e g e r  g iven  by the  
argument.  (lpad i s  a b u i l t - i n  p rocedure  t h a t  
pads n on the  l e f t  wi th  zeros  to  form a 
S - c h a r a c t e r  s t r i n g ,  and [] denotes  s t r i n g  c o n c a t -  
e n a t i o n . )  For example, an e x p r e s s i o n  such as 

gen := create genZab with 10 

as s igns  to  gen an environment  f o r  genlab t h a t  
g e n e r a t e s  a sequence o f  l a b e l s  beg inn ing  a t  L010. 
To o b t a i n  the  nex t  l a b e l ,  the  e x e c u t i o n  o f  the  
environment  i s  resumed; 

x := resume gen 

Not ice  t h a t  the  sequence may be r e s t a r t e d  by 
r e t r a n s m i t t i n g  the  argument,  e . g . ,  

gen := gen with  10 

2.3 Declarations 

SL5 has d e c l a r a t i o n s  f o r  i d e n t i f i e r s  t h a t  a re  
used to  de te rmine  on ly  the  i n t e r p r e t a t i o n  and 
scope o f  i d e n t i f i e r s  t h a t  appear  in  a p rocedure ,  
not  t h e i r  type .  The d e c l a r a t i o n  

private x 

d e c l a r e s  x to  be a p r i v a t e  i d e n t i f i e r  whose v a l u e  
i s  a v a i l a b l e  only  to  the  p rocedure  in  which i t  i s  
d e c l a r e d ;  i t  cannot be examined or  modi f i ed  by 
any o t h e r  p rocedure .  P r i v a t e  i d e n t i f i e r s  a r e  
used,  f o r  example, when a c o r o u t i n e  must "remem- 
b e r "  i n f o r m a t i o n  from one resumpt ion t o  the  n e x t .  
Other d e c l a r a t i o n s  and the  scope o f  i d e n t i f i e r s  
a re  d e s c r i b e d  in  r e f s .  9 and 12. 

3. BACKTRACKING AND THE EIGHT QUEENS PROBLEM 

There are many problems for which an analytic 
solution is not known, but for which a solution 
can be constructed by trial and error. A classic 
example is the eight queens problem, sometimes 
referred to as the n-by-n nonattacking queens 
problem. The object is to place eight queens on 
a chess board so that no queen can capture any of 
the others. One such solution is shown in fig. I. 
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There are 92 solutions to this problem, although 
only 12 are unique. 

tOW 

8 

7 

6 

5 

4 

5 

2 

I 2 5 4 5 6 7 8 

column 

Fig. 1 - A Solution to the Eight Queens Problem 

A brute force approach to this problem is to test 
all the possible configurations of the queens to 
find the 92 "safe" ones. Although the number of 
possible configurations can be substantially 
reduced by observing that only one queen may 
occupy a given column, the brute force approach 
requires an impractical amount of computation. 

3.1 Backtracking 

A better approach for solving this type of prob- 
lem is to construct a solution one queen at a 
time rather than testing the validity of every 
possible configuration. This is called the 
"backtracking" approach. For example, if the 
first queen (the leftmost one in fig. I) is 
placed on row 1, the second queen can only be 
placed on rows 5 through 8. Configurations with 
the first queen on row 1 and the second queen on 
row 1 or 2 cannot lead to a solution regardless 
of the positions of queens 5 through 8. Thus 
only the partial solutions (1,3), (1,4) .... , 
{1,8) need to be considered when searching for a 
solution. 

The idea in backtracking is to form the k th par- 
tial solution (Xl,X2,...,Xk) and extend it to a 
k+Ist partial solution (Xl,X2,...,Xk,Xk+l) by 
selecting a suitable Xk+ 1. When k+l is equal to 
8, a complete solution has been found. The term 
backtrackin~ is derived from the action taken 
when the k th partial solution cannot be extended 
to a k+Ist partial solution. In this case, it is 
necessary to "backtrack" to the k-I partial solu- 
tion and try to compute a different x k for a k th 
partial solution. This backtracking step re- 
quires that whatever computation was required to 
form the k th partial solution be undone in order 
to get back to the k-I partial solution. This is 
often called "reversing effects" or "backwards 
execution". For the eight queens problem, this 
amounts to freeing the squares on the board 
covered by the k th queen. 

For example, it is easy to place the first five 
queens to form the partial solution (1,3,5,2,4). 
But the sixth queen cannot be placed. It is 
necessary to backtrack to the partial solution 
(1,3,5,2) and try again. This partial solution 
can be extended to (1,3,5,2,8) but no further. 
It is necessary to backtrack all the way to the 
partial solution (1,3,5), which can then be ex- 
tended to (1,3,5,7,2,4,6). This backtracking 
process continues until the solution 
(1,5,8,6,3,7,2,4) is found, which is shown in 
fig. 1. 

A more formal description of the backtracking 
strategy is given in ref. 2. A particularly 
lucid explanation can be found in ref. 16, which 
describes a method for estimating the efficiency 
of backtracking programs. 

5.2 R e a l i z a t i o n  of the  Nonde te rmin i s t i c  
Algori thm 

The usual method for programming the solution to 
the eight queens problem is to use a procedure 
that generates all solutions with the first queen 
on rows 1 to 8 by calling itself recursively to 
generate all solutions for the second queen in 
rows 1 to 8, etc. The foliowing procedure, simi- 
lar to the Pascal solution given in ref. 15, 
operates in this fashion. 

generate := procedure (col) p r i v a t e  row; 
for  row from 1 to 8 do 

i_~f teet(row, col) t-hen { 
occupy (row, col) ; 
x[col] := row; 
if col = 8 then print(x) 

e l s e  generate (col+l) ; 
release (row, col) 
}; 

succeed 
end; 

The details of the board representation are con- 
tained in procedures test, occupy, and release. 
test(row, col) succeeds if the queen in column 
col can be placed on the indicated row. The 
procedure occupy(row, col) marks as occupied all 
positions covered by the queen at the position 
row, col. relea8e(row, col) reverses the effect 
of occupy; it marks those positions covered by 
the given queen as free. Possible representa- 
tions for the actual board are given in refs. 1 and 
15-15. print(x) prints the contents of the solu- 
tion vector x. 

The program is started by generate(1). A portion 
of the backtracking in this solution is somewhat 
obscured by the recursion; it is accomplished 
implicitly by repeated recursive invocations of 
generate. It is not necessary to use recursion 
to accomplish the backtracking but it is some- 
times used because the only form of procedure 
available is the recursive function. 

The coroutine method, on the other hand, does not 
require the use of recursion to accomplish the 
backtracking. The basic approach is to create 
eight environments for a single procedure; one 
for each column. Each environment represents one 
queen. The procedure, called queen, attempts ¢o 
place a queen on the given column beginning with 
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row 1. I£ a queen i s  s u c c e s s f u l l y  p laced ,  the  
procedure suspends i t s  execu t ion  and s i g n a l s  
success to i t s  resumer.  I f  i t  i s  subsequen t ly  
resumed, i t  r eve r se s  i t s  p rev ious  e f f e c t s ,  i . e .  
removes the queen from the row, and t r i e s  the 
next  row. I f  the queen cannot  be p laced ,  the 
procedure f a i l s  i n d i c a t i n g  t h a t  back t r ack ing  must 
occur .  Subsequent resumption a f t e r  f a i l u r e  i n d i -  
ca tes  t h a t  the process  should begin  aga in  a t  
r o w 1 .  

The e igh t  environments  fo r  procedure  queen are 
s tored  i n  a v e c t o r  q.  The f i r s t  s tep  i s  to 
c r ea t e  the  e igh t  environments  f o r  procedure 
queen, each with the  proper  column number: 

q := vector(I ,  8);  
fo r  i from 1 to  8 do 

q~i]  := c r e a t e  queen with i ;  

To begin  the  search fo r  a s o l u t i o n ,  the  execu t ion  
of  the  f i r s t  queen, q [ 1 ] ,  i s  resumed. The second 
queen i s  then resumed, and so on. I f  the resump- 
t i o n  of  a queen f a i l s ,  back t r ack ing  i s  i n d i c a t e d .  
I f  the i th queen f a i l s ,  queen "i-1 must be resumed 
in  order  to be r e p o s i t i o n e d .  This i s  e q u i v a l e n t  
to queen i - 1  a t t empt ing  to f i n d  a new i - 1  p a r t i a l  
s o l u t i o n .  I£ the  i th  queen succeeds,  ~ e e n  i+1 
i s  resumed i n  hopes of  ex tend ing  the i p a r t i a l  
s o l u t i o n .  A complete s o l u t i o n  has been found 
when the  e igh th  queen i s  s u c c e s s f u l l y  p laced .  
This e n t i r e  process  can be w r i t t e n  as 

i := ~; 
u n t i l  i > & do 
~ r e s u m e  q-~i] 

- - - then i :ffi i+1 
e-~i := i - I ;  

p ~ n t  ( - ' (~ ;  

The index i i s  inc remented  as  long as  the  ith 
queen is success~ully nlaced, i . e . ,  as long as 
the extension to the i ~h partial solution is 
possible. It is decremented when the~ th queen 
signals failure indicating that the ivn partial 
solution could not be formed. 

The procedure queen is as follows. 

queen := procedure (col) private row; 
r epea t  ( 

fo r  rob) from I to 8 do 
i_ff test~, ~l) t-~en { 
occupy(row, col); 
x[col] := row; 
succeed; 
~(row, col) 
}; 

f a i l  
) 

end; 

The expression repeat { ... } is a nonterminating 
loop. 

All 92 solutions can be found by modifying the 
until loop given above so that after a solution 
has been found the execution of the eighth queen 
is again resumed. If the subsequent placement is 
successful, a second solution is generated. If 
i t  f a i l s ,  the seventh  queen must be r e p o s i t i o n e d .  
This is e q u i v a l e n t  to making a solution fail, 

a f t e r  r eco rd ing  it, i n  order  to  search fo r  a l l  
p o s s i b l e  s o l u t i o n s  us ing  the  back t rack ing  s t r a t e g y .  
T h e p r o c e s s  i s  stopped when the  f i r s t  queen 
s i g n a l s  f a i l u r e .  This loop can be w r i t t e n  as 
fo l lows.  

i := I; 
until i = 0 do 

i~ resume q-~i] 
---th-~---~(_£i = 8 then p~ntCx) else i := i+l) 

else i := i - 1 ;  

Notice t h a t  i i s  no t  incremented a f t e r  s u c c e s s f u l  
placement  of  the e igh th  queen, thus  f o r c i n g  i t s  
r e p o s i t i o n i n g  a t  the next  resumpt ion .  This  pro-  
gram can be g e n e r a l i z e d  fo r  n queens by s u b s t i -  
t u t i n g  n wherever 8 appears .  

The genera l  form i s  the same f o r  many s i m i l a r  
back t r ack ing  problems.  For example, i f  the  pro-  
cedures test, occupy, and release are modified to 
assume rooks instead of queens, the program com- 
putes all possible permutations of the integers 1 
to n. 

4. COMPARISON OF THE METHODS 

The major d i f f e r e n c e  between the  r e c u r s i v e  ap- 
proach and the c o r o u t i n e  approach i s  i n  the  con- 
t r o l  regime used to  achieve  ba c k t r a c k i ng .  This 
i s  i l l u s t r a t e d  in  f i g .  2. The l e f t  p a r t  o f  f i g .  2 
shows the c o n t r o l  r e l a t i o n s h i p  among the  e igh t  
i n s t a n t i a t i o n s  o£ generate when a r e c u r s i v e  s o l u -  
t i o n  has been computed. The r e l a t i o n s h i p  i s  
s t r i c t l y  h i e r a r c h i c a l :  generate i s  w r i t t e n  to  use 
r e c u r s i o n  i n  order  to  "resume" the  next  queen. 
The procedure  generate must i nc l ude  not  on ly  the  
semant ics  of  p l a c i n g  a queen, bu t  i s  must a l so  
c o n t a i n  the  back t r ack ing  mechanism. 

The right part of fig. 2 shows the control rela- 
tionship among the eight environments for the 
coroutine solution. In this case, the procedure 
only needs to know how to place a queen, not 
about the order in which each environment is 
resumed. The main program controls the resump- 
tion of  the c o r o u t i n e s .  

main f 
progr~n ~,, 

generate ( I ) (  

2( 

' (  

6( 
7( 

generate ( 8 ) (  

in • program 

quee~l queen 
I 2 3 4 5 6 7 8 

Fig. 2 - Control  Regimes among the  Eight Queens 
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5. CONCLUSIONS 

The procedure  f a c i l i t y  o f  a h i g h - l e v e l  language 
is one of the most powerful tools for abstraction 
available to the programmer. The SL5 mechanism is 
designed to provide, at the linguistic level, 
facilities that permit the programmer to implement 
solutions to backtracking problems in a way that 
closely parallels the abstract formulation of the 
problem. 

The coroutine approach t o  backtracking is not lim- 
ited to SLS. The same idea can be used in other 
languages that support coroutines, such as Simula 
67 LITJ. Alternatively, SL5 can be used as a 
specification language in which to formulate the 
solutions to backtracking problems. The resulting 
program can then be used as a guide to an actual 
implementation in a lower-level language. This is 
done in the Appendix for the eight queens problem; 
the SL5 program given in sec. 5.2 is used as a 
guide for constructing a solution in Fortran. 

There are  o the r  problems,  such as pa r s i ng  and 
s t r i n g  p a t t e r n  matching,  t h a t  can be so lved  us ing  
back t r ack ing  t e chn iques .  Unl ike  the  e i g h t  queens 
problem, however, the  domain o f  the  search  i s  not  
known beforehand,  but  i s  determined as the search  
p roceeds .  Non'etheless ,  the  c o r o u t i n e  approach 
appears  to  be a p p l i c a b l e  to  t he se  types  o f  prob-  
lems. For example, SL5 con t a in s  a p a t t e r n -  
matching f a c i l i t y  t h a t  i s  based on a c o r o u t i n e  
model o f  p a t t e r n  matching in SNOBOL4 [18] .  The 
SL5 f a c i l i t y  i s  s i g n i f i c a n t l y  more genera l  and 
f l e x i b l e  tSan the  f a c i l i t y  in  SNOBOL4, and has 
proven to  be e a s i e r  to  implement and to  unders tand 
than the r e s u r s i v e  approach used in  SNOBOL4 
[ 1 9 , 2 0 ] .  
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APPENDIX 

The following Fortran program computes all 92 
solutions to the eight queens problem, and is 
derived from the SL5 program given in sec. 3.2. 
The board representation, embodied in test, occu- 
py, and release, can be derived from that given 
in refs. 13-15. 

logical function queen(col) 
integer ro~iJ, col, j .  p(8) 
logical test 
common /env/ row(8) 
data p/B*I/ 

c 
j = p(col) 
go to (10, 20, 50),j 

c 
10 i f  (row(col) .gt. 8) go to 40 

i f  (.not. test(row(col), col)) 
1 go to 30 
call occupy(row(col), col) 
P(COI) = 2 
queen = .true 
return 

¢ 
20 call relea~(row(co]), col) 
30 row(col) = row(col) + I 

go to  10 
c 

40 p ( c o l )  = 3 
queen = . f a l s e .  
return 

¢ 
50 r o w ( c o l )  = l 

go to  10 
end 

c main program 
logical queen 
integer row, i 
common /env/ row(8) 

C 
I = I  

30 i f  (i . le. O) stop 
i f  (queen(i)) go to 40 
I = i - 1  
go to 30 

c 
40 i f  (i .eq. 8) go to 50 

I = i + 1  
go to 30 

50 write(6, I00) row 
100 format(B(lx, i l ) )  

go to  30 
end 
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