
A PROCEDURE MECHANISM FOR BACKTRACK PROGRAMMING*

David R. HANSON +
Department o£ Computer Science, The University of Arizona

Tucson, Arizona 85721

One of the d i f f i c u l t i e s in us ing n o n d e t e r m i n i s t i c a lgo r i t hms f o r the s o l u t i o n o f c o m b i n a t o r i a l
problems i s t h a t most programming languages do not i nc lude f e a t u r e s capable o f e a s i l y r e p r e -
s en t i ng back t r ack ing p r o c e s s e s . This paper d e s c r i b e s a p rocedure mechanism t h a t uses co-
r o u t i n e s as a means f o r the d e s c r i p t i o n and r e a l i z a t i o n o f n o n d e t e r m i n i s t i c a l g o r i t h m s . A
s o l u t i o n to the e i g h t queens problem i s g iven to i l l u s t r a t e the a p p l i c a t i o n o f the procedure
mechanism to back t r ack ing problems.

I. INTRODUCTION

Although back t rack programming has been known f o r
s e v e r a l years [1 - 4] , the method has ye t to become
a common programming t echn ique f o r the r e a l i z a t i o n
o f n o n d e t e r m i n i s t i c a l g o r i t h m s . Floyd [1] a l l uded
to the reason f o r t h i s s i t u a t i o n : most program-
ming languages do not i nc lude f e a t u r e s t h a t f a c i l -
i t a t e back t rack programming. He sugges ted t h a t
programming languages ought to possess mechanisms
capable o f r e p r e s e n t i n g n o n d e t e r m i n i s t i c a lgo -
r i thms .

Since the appearance of Floyd's paper , c o n s i d e r -
ab le r e s e a r c h has been under taken to add f a c i l i -
t i e s o f t h i s kind to new or e x i s t i n g languages .
This work has covered a l a r g e p a r t o f the spec-
trum of programming languages , from gene ra l de-
s c r i p t i o n s wi th a s l a n t toward A l g o l - l i k e l an -
guages [5,6], to languages for artificial intel-
ligence research [7], and even to Fortran [8].
In all the work cited, features that were added
or proposed for backtracking were cast in a
framework of recursive functions with additional
built-in mechanisms or primitives with which to
implement backtracking. That is, the basic pro-
cedure mechanism of the proposed languages or
language extensions was the traditional recursive
function.

This paper p r e s e n t s a gene ra l p rocedure mechanism
t h a t i nc ludes c o r o u t i n e s as a means f o r the de-
s c r i p t i o n and r e a l i z a t i o n o f n o n d e t e r m i n i s t i c
a l g o r i t h m s . The SL5 programming language [9-12]
in which t h i s procedure mechanism i s implemented
i s the v e h i c l e used to d e s c r i b e t h i s method and
i t s a p p l i c a t i o n to back t rack programming.

*This work was supported by the Nat iona l Sc ience
Foundation under Grant DCR75-01307.

+Author ' s p r e s e n t addres s : Department of Computer
Sc ience , Yale U n i v e r s i t y , New Haven, Connec t i cu t
06520.

To f a c i l i t a t e comparison with p r ev ious work, the
e i g h t queens problem [13-15] i s used as the exam-
p l e o£ back t r ack ing throughout t h i s paper . This
i s a n o n t r i v i a l problem whose s o l u t i o n i s i d e a l l y
s u i t e d to the back t r ack ing s t r a t e g y , and has
f r e q u e n t l y been used as an example t h a t can be
so lved by n o n d e t e r m i n i s t i c programming.

2. THE SL5 PROGRAMMING LANGUAGE

SL5 i s an e x p r e s s i o n - o r i e n t e d language t h a t i s
s t r u c t u r a l l y s i m i l a r to BLISS or Algol 68. SL5
i s a " t y p e l e s s " language in the same sense t h a t
SNOBOL4 i s - - a v a r i a b l e can have a va lue o f any
da t a type a t any t ime dur ing program e x e c u t i o n .

2.1 Contro l S t r u c t u r e s and S i g n a l i n g

An expression returns a signal, "success" or
" f a i l u r e " , as we l l as a v a l u e . The combinat ion
o£ a va lue and a s i g n a l i s c a l l e d the r e s u l t o f
the e x p r e s s i o n . SL5 posse s se s most o£ the "mod-
e rn" c o n t r o l s t r u c t u r e s , each o f which i s an
exp re s s ion and r e t u r n s a r e s u l t . Contro l
s t r u c t u r e s are d r i v e n by s i g n a l s r a t h e r than by
boolean v a l u e s . For an example, in the exp re s s ion

i_~f e 1 then e 2 e l s e e 3

e I is evaluated first. If the resulting signal
i s success , e 2 i s e v a l u a t e d . Otherwise , e 5 i s
e v a l u a t e d . The r e s u l t o f the i f - t h e n - e l s e ex-
p r e s s i o n i s the r e s u l t (va lue and s i g n a l) o£ e 2
or e 3, whichever i s e v a l u a t e d .

Other typical control s t r u c t u r e s are:

while e I do e 2
until e I do e 2
repeat e
for v from e I to e 2 do e 5

I

401

The whi le and f o r exp re s s ions behave in the con-
ventlo~-6n~manner. The u n t i l exp re s s ion r e p e a t e d -
l y e v a l u a t e s e 2 u n t i l e I succeeds . The r e p e a t
exp re s s ion e v a l u a t e s e r e p e a t e d l y u n t i l a f a i l u r e
s i g n a l i s r e t u r n e d . Express ions may be grouped
t o g e t h e r as a s i n g l e exp re s s ion us ing
begin . . . end or { . . . }.

2.2 Procedures

In SL5, p rocedures and t h e i r environments
(a c t i v a t i o n r eco rds) a re s e p a r a t e source - l anguage
da ta o b j e c t s . A procedure i s " c r e a t e d " by an
e x p r e s s i o n such as

gcd := procedure (x, y)
while x ~= y do

if x > y then x := x-y else y := y-x;
succeed x

end;

which a s s i g n s to gcd a procedure t h a t computes
the g r e a t e s t common d i v i s o r o f i t s arguments.

The invocation of a procedure in the standard
recursive fashion is accomplished using the usual
functional notation f(el,e 2 en) , which
invokes the procedure that is the current value
of the variable f.

Procedure activation may be decomposed into sev-
eral distinct source-language operations that
permit SL5 procedures to be used as coroutines.
These operations are the creation of an environ-
ment for the execution of the given procedure,
the bindin~ of the actual arguments to that envi-
ronment, and the resumption of the execution of
the procedure.

The c r e a t e exp re s s ion t akes a s i n g l e argument o f
da t a type p rocedure , c r e a t e s an environment f o r
i t s e x e c u t i o n , and r e t u r n s t h i s environment as
i t s v a l u e . For example, the exp re s s ion

e := create f

as s igns to e an environment f o r the execu t ion o f

f .

The with. exp re s s ion i s used to bind the a c t u a l
arguments to an environment . The exp re s s ion

e with (el,e 2, e n)

binds the actual arguments, e I through en, to the
environment e.

The execution of a procedure is accomplished by
"resuming" it via the resume expression. The
expression

resume e

suspends execu t ion o f the c u r r e n t p rocedure and
a c t i v a t e s the procedure f o r which e i s an e n v i -
ronment.

A procedure usually "returns" a result to its
"resumer". This is accomplished by the expressions

succeed v

w h i c h r e t u r n V as t he v a l u e o f the p rocedure and
s i g n a l e i t h e r success or f a i l u r e as i n d i c a t e d .
I f the procedure i s a c t i v a t e d by a resume, the
r e s u l t g iven in succeed or f a i l i s t r a n s m i t t e d
and becomes the r e s u l t o f teh-6"~esume e x p r e s s i o n .
The e x e c u t i o n o f succeed or f a i l causes the sus -
pens ion o f t h a t envi ronment . I f the environment
i s again resumed, e x e c u t i o n proceeds from where
i t l e f t o f f . The argument v may be omi t t ed , in
which case the n u l l s t r i n g i s assumed.

A l a b e l g e n e r a t o r i l l u s t r a t e s a s imple example o f
c o r o u t i n e usage :

genlab :={procedure (n)
r e p e a t

succeed "U' l] lp~Cn, 3, "0");
n := n+1
}

end;

An environment f o r genlab g e n e r a t e s the nex t
l a b e l o f the form Lnnn each t ime i t i s resumed.
The sequence beg ins a t the i n t e g e r g iven by the
argument. (lpad i s a b u i l t - i n p rocedure t h a t
pads n on the l e f t wi th zeros to form a
S - c h a r a c t e r s t r i n g , and [] denotes s t r i n g c o n c a t -
e n a t i o n .) For example, an e x p r e s s i o n such as

gen := create genZab with 10

as s igns to gen an environment f o r genlab t h a t
g e n e r a t e s a sequence o f l a b e l s beg inn ing a t L010.
To o b t a i n the nex t l a b e l , the e x e c u t i o n o f the
environment i s resumed;

x := resume gen

Not ice t h a t the sequence may be r e s t a r t e d by
r e t r a n s m i t t i n g the argument, e . g . ,

gen := gen with 10

2.3 Declarations

SL5 has d e c l a r a t i o n s f o r i d e n t i f i e r s t h a t a re
used to de te rmine on ly the i n t e r p r e t a t i o n and
scope o f i d e n t i f i e r s t h a t appear in a p rocedure ,
not t h e i r type . The d e c l a r a t i o n

private x

d e c l a r e s x to be a p r i v a t e i d e n t i f i e r whose v a l u e
i s a v a i l a b l e only to the p rocedure in which i t i s
d e c l a r e d ; i t cannot be examined or modi f i ed by
any o t h e r p rocedure . P r i v a t e i d e n t i f i e r s a r e
used, f o r example, when a c o r o u t i n e must "remem-
b e r " i n f o r m a t i o n from one resumpt ion t o the n e x t .
Other d e c l a r a t i o n s and the scope o f i d e n t i f i e r s
a re d e s c r i b e d in r e f s . 9 and 12.

3. BACKTRACKING AND THE EIGHT QUEENS PROBLEM

There are many problems for which an analytic
solution is not known, but for which a solution
can be constructed by trial and error. A classic
example is the eight queens problem, sometimes
referred to as the n-by-n nonattacking queens
problem. The object is to place eight queens on
a chess board so that no queen can capture any of
the others. One such solution is shown in fig. I.

402

There are 92 solutions to this problem, although
only 12 are unique.

tOW

8

7

6

5

4

5

2

I 2 5 4 5 6 7 8

column

Fig. 1 - A Solution to the Eight Queens Problem

A brute force approach to this problem is to test
all the possible configurations of the queens to
find the 92 "safe" ones. Although the number of
possible configurations can be substantially
reduced by observing that only one queen may
occupy a given column, the brute force approach
requires an impractical amount of computation.

3.1 Backtracking

A better approach for solving this type of prob-
lem is to construct a solution one queen at a
time rather than testing the validity of every
possible configuration. This is called the
"backtracking" approach. For example, if the
first queen (the leftmost one in fig. I) is
placed on row 1, the second queen can only be
placed on rows 5 through 8. Configurations with
the first queen on row 1 and the second queen on
row 1 or 2 cannot lead to a solution regardless
of the positions of queens 5 through 8. Thus
only the partial solutions (1,3), (1,4) ,
{1,8) need to be considered when searching for a
solution.

The idea in backtracking is to form the k th par-
tial solution (Xl,X2,...,Xk) and extend it to a
k+Ist partial solution (Xl,X2,...,Xk,Xk+l) by
selecting a suitable Xk+ 1. When k+l is equal to
8, a complete solution has been found. The term
backtrackin~ is derived from the action taken
when the k th partial solution cannot be extended
to a k+Ist partial solution. In this case, it is
necessary to "backtrack" to the k-I partial solu-
tion and try to compute a different x k for a k th
partial solution. This backtracking step re-
quires that whatever computation was required to
form the k th partial solution be undone in order
to get back to the k-I partial solution. This is
often called "reversing effects" or "backwards
execution". For the eight queens problem, this
amounts to freeing the squares on the board
covered by the k th queen.

For example, it is easy to place the first five
queens to form the partial solution (1,3,5,2,4).
But the sixth queen cannot be placed. It is
necessary to backtrack to the partial solution
(1,3,5,2) and try again. This partial solution
can be extended to (1,3,5,2,8) but no further.
It is necessary to backtrack all the way to the
partial solution (1,3,5), which can then be ex-
tended to (1,3,5,7,2,4,6). This backtracking
process continues until the solution
(1,5,8,6,3,7,2,4) is found, which is shown in
fig. 1.

A more formal description of the backtracking
strategy is given in ref. 2. A particularly
lucid explanation can be found in ref. 16, which
describes a method for estimating the efficiency
of backtracking programs.

5.2 R e a l i z a t i o n of the Nonde te rmin i s t i c
Algori thm

The usual method for programming the solution to
the eight queens problem is to use a procedure
that generates all solutions with the first queen
on rows 1 to 8 by calling itself recursively to
generate all solutions for the second queen in
rows 1 to 8, etc. The foliowing procedure, simi-
lar to the Pascal solution given in ref. 15,
operates in this fashion.

generate := procedure (col) p r i v a t e row;
for row from 1 to 8 do

i_~f teet(row, col) t-hen {
occupy (row, col) ;
x[col] := row;
if col = 8 then print(x)

e l s e generate (col+l) ;
release (row, col)
};

succeed
end;

The details of the board representation are con-
tained in procedures test, occupy, and release.
test(row, col) succeeds if the queen in column
col can be placed on the indicated row. The
procedure occupy(row, col) marks as occupied all
positions covered by the queen at the position
row, col. relea8e(row, col) reverses the effect
of occupy; it marks those positions covered by
the given queen as free. Possible representa-
tions for the actual board are given in refs. 1 and
15-15. print(x) prints the contents of the solu-
tion vector x.

The program is started by generate(1). A portion
of the backtracking in this solution is somewhat
obscured by the recursion; it is accomplished
implicitly by repeated recursive invocations of
generate. It is not necessary to use recursion
to accomplish the backtracking but it is some-
times used because the only form of procedure
available is the recursive function.

The coroutine method, on the other hand, does not
require the use of recursion to accomplish the
backtracking. The basic approach is to create
eight environments for a single procedure; one
for each column. Each environment represents one
queen. The procedure, called queen, attempts ¢o
place a queen on the given column beginning with

403

row 1. I£ a queen i s s u c c e s s f u l l y p laced , the
procedure suspends i t s execu t ion and s i g n a l s
success to i t s resumer. I f i t i s subsequen t ly
resumed, i t r eve r se s i t s p rev ious e f f e c t s , i . e .
removes the queen from the row, and t r i e s the
next row. I f the queen cannot be p laced , the
procedure f a i l s i n d i c a t i n g t h a t back t r ack ing must
occur . Subsequent resumption a f t e r f a i l u r e i n d i -
ca tes t h a t the process should begin aga in a t
r o w 1 .

The e igh t environments fo r procedure queen are
s tored i n a v e c t o r q. The f i r s t s tep i s to
c r ea t e the e igh t environments f o r procedure
queen, each with the proper column number:

q := vector(I , 8);
fo r i from 1 to 8 do

q~i] := c r e a t e queen with i ;

To begin the search fo r a s o l u t i o n , the execu t ion
of the f i r s t queen, q [1] , i s resumed. The second
queen i s then resumed, and so on. I f the resump-
t i o n of a queen f a i l s , back t r ack ing i s i n d i c a t e d .
I f the i th queen f a i l s , queen "i-1 must be resumed
in order to be r e p o s i t i o n e d . This i s e q u i v a l e n t
to queen i - 1 a t t empt ing to f i n d a new i - 1 p a r t i a l
s o l u t i o n . I£ the i th queen succeeds, ~ e e n i+1
i s resumed i n hopes of ex tend ing the i p a r t i a l
s o l u t i o n . A complete s o l u t i o n has been found
when the e igh th queen i s s u c c e s s f u l l y p laced .
This e n t i r e process can be w r i t t e n as

i := ~;
u n t i l i > & do
~ r e s u m e q-~i]

- - - then i :ffi i+1
e-~i := i - I ;

p ~ n t (- ' (~ ;

The index i i s inc remented as long as the ith
queen is success~ully nlaced, i . e . , as long as
the extension to the i ~h partial solution is
possible. It is decremented when the~ th queen
signals failure indicating that the ivn partial
solution could not be formed.

The procedure queen is as follows.

queen := procedure (col) private row;
r epea t (

fo r rob) from I to 8 do
i_ff test~, ~l) t-~en {
occupy(row, col);
x[col] := row;
succeed;
~(row, col)
};

f a i l
)

end;

The expression repeat { ... } is a nonterminating
loop.

All 92 solutions can be found by modifying the
until loop given above so that after a solution
has been found the execution of the eighth queen
is again resumed. If the subsequent placement is
successful, a second solution is generated. If
i t f a i l s , the seventh queen must be r e p o s i t i o n e d .
This is e q u i v a l e n t to making a solution fail,

a f t e r r eco rd ing it, i n order to search fo r a l l
p o s s i b l e s o l u t i o n s us ing the back t rack ing s t r a t e g y .
T h e p r o c e s s i s stopped when the f i r s t queen
s i g n a l s f a i l u r e . This loop can be w r i t t e n as
fo l lows.

i := I;
until i = 0 do

i~ resume q-~i]
---th-~---~(_£i = 8 then p~ntCx) else i := i+l)

else i := i - 1 ;

Notice t h a t i i s no t incremented a f t e r s u c c e s s f u l
placement of the e igh th queen, thus f o r c i n g i t s
r e p o s i t i o n i n g a t the next resumpt ion . This pro-
gram can be g e n e r a l i z e d fo r n queens by s u b s t i -
t u t i n g n wherever 8 appears .

The genera l form i s the same f o r many s i m i l a r
back t r ack ing problems. For example, i f the pro-
cedures test, occupy, and release are modified to
assume rooks instead of queens, the program com-
putes all possible permutations of the integers 1
to n.

4. COMPARISON OF THE METHODS

The major d i f f e r e n c e between the r e c u r s i v e ap-
proach and the c o r o u t i n e approach i s i n the con-
t r o l regime used to achieve ba c k t r a c k i ng . This
i s i l l u s t r a t e d in f i g . 2. The l e f t p a r t o f f i g . 2
shows the c o n t r o l r e l a t i o n s h i p among the e igh t
i n s t a n t i a t i o n s o£ generate when a r e c u r s i v e s o l u -
t i o n has been computed. The r e l a t i o n s h i p i s
s t r i c t l y h i e r a r c h i c a l : generate i s w r i t t e n to use
r e c u r s i o n i n order to "resume" the next queen.
The procedure generate must i nc l ude not on ly the
semant ics of p l a c i n g a queen, bu t i s must a l so
c o n t a i n the back t r ack ing mechanism.

The right part of fig. 2 shows the control rela-
tionship among the eight environments for the
coroutine solution. In this case, the procedure
only needs to know how to place a queen, not
about the order in which each environment is
resumed. The main program controls the resump-
tion of the c o r o u t i n e s .

main f
progr~n ~,,

generate (I) (

2(

' (

6(
7(

generate (8) (

in • program

quee~l queen
I 2 3 4 5 6 7 8

Fig. 2 - Control Regimes among the Eight Queens

404

5. CONCLUSIONS

The procedure f a c i l i t y o f a h i g h - l e v e l language
is one of the most powerful tools for abstraction
available to the programmer. The SL5 mechanism is
designed to provide, at the linguistic level,
facilities that permit the programmer to implement
solutions to backtracking problems in a way that
closely parallels the abstract formulation of the
problem.

The coroutine approach t o backtracking is not lim-
ited to SLS. The same idea can be used in other
languages that support coroutines, such as Simula
67 LITJ. Alternatively, SL5 can be used as a
specification language in which to formulate the
solutions to backtracking problems. The resulting
program can then be used as a guide to an actual
implementation in a lower-level language. This is
done in the Appendix for the eight queens problem;
the SL5 program given in sec. 5.2 is used as a
guide for constructing a solution in Fortran.

There are o the r problems, such as pa r s i ng and
s t r i n g p a t t e r n matching, t h a t can be so lved us ing
back t r ack ing t e chn iques . Unl ike the e i g h t queens
problem, however, the domain o f the search i s not
known beforehand, but i s determined as the search
p roceeds . Non'etheless , the c o r o u t i n e approach
appears to be a p p l i c a b l e to t he se types o f prob-
lems. For example, SL5 con t a in s a p a t t e r n -
matching f a c i l i t y t h a t i s based on a c o r o u t i n e
model o f p a t t e r n matching in SNOBOL4 [18] . The
SL5 f a c i l i t y i s s i g n i f i c a n t l y more genera l and
f l e x i b l e tSan the f a c i l i t y in SNOBOL4, and has
proven to be e a s i e r to implement and to unders tand
than the r e s u r s i v e approach used in SNOBOL4
[1 9 , 2 0] .

ACKNOWLEDGEMENT

Significant contributions to SLS have been made
by Dianne E. Britton, Frederick C. Druseikis, and
Ralph E. Griswold.

APPENDIX

The following Fortran program computes all 92
solutions to the eight queens problem, and is
derived from the SL5 program given in sec. 3.2.
The board representation, embodied in test, occu-
py, and release, can be derived from that given
in refs. 13-15.

logical function queen(col)
integer ro~iJ, col, j . p(8)
logical test
common /env/ row(8)
data p/B*I/

c
j = p(col)
go to (10, 20, 50),j

c
10 i f (row(col) .gt. 8) go to 40

i f (.not. test(row(col), col))
1 go to 30
call occupy(row(col), col)
P(COI) = 2
queen = .true
return

¢
20 call relea~(row(co]), col)
30 row(col) = row(col) + I

go to 10
c

40 p (c o l) = 3
queen = . f a l s e .
return

¢
50 r o w (c o l) = l

go to 10
end

c main program
logical queen
integer row, i
common /env/ row(8)

C
I = I

30 i f (i . le. O) stop
i f (queen(i)) go to 40
I = i - 1
go to 30

c
40 i f (i .eq. 8) go to 50

I = i + 1
go to 30

50 write(6, I00) row
100 format(B(lx, i l))

go to 30
end

REFERENCES

[I] Robert W. Floyd, Nondeterministic algorithms,
J. ACM, vol. 14, October 1967, 636-644.

[2] Solomon W. Golomb and Leonard D. Baumert,
Backtrack programming, J. ACM, vol. 12,
October 1965, 516-524.

[3] Derrick H. Lehmer, Combinatorial problems
with digital computers, Prec. of the Fourth
Canadian Math. Congress, 1957, 160-173.

[4] Robert J. Walker, An enumerative technique
for a class of combinatorial problems,
Prec. of the Symposium o__n_nApplied Mathemat-
ics, vol. 10, October 1960, 91-94.

[5] Charles J. Prenner, Jay M. Spitzen and Ben
Wegbreit, An implementation of backtracking
for programming languages, Proc. of the ACM
Annual Conference, August 1972, 763-771.

[6] John A. Self, Embedding non-determinism,
Software -- Practice and Experience, vol.
5, September 1975, 221-227.

[7] Daniel G. Bobrow and Bertram Raphael, New
programming languages for artificial intel-
ligence, Computing Surveys, vol. 6, Septem-
ber 1974, 155-174.

[8] Jacques Cohen and Eileen Carton, Non-
deterministic fortran, Computer ~., vol. 17,
February 1974, 44-51.

[9] Dianne E. Britton, et al., Procedure refer-
encing environments in SLS, Third ACM
Symposium on Principles of Programming
Languages, January 1976, 185-191.

[10] Ralph E. Griswold and David R. Hanson, An
overview of the SL5 programming language,
SL5 project document SSLDIa, Dept. of
Computer Science, The University of Arizona,
Tucson, February 1976.

[II] David R. Hanson, The syntax and semantics of
SL5, SL5 project document SSLD2a, Dept. of
Computer Science, The University of Arizona,
Tucson, April 1976.

[12] David R. Hanson and Ralph E. Griswold, The
SL5 procedure mechanism, SL5 project document
SSLD4, Dept. of Computer Science, The Univer-
sity of Arizona, Tucson, February 1976.

[13] Ole-Jahn Dahl, Edsger W. Dijkstra and C. A.
R. Hoare, Structured Programming, Academic
Press, London, 1972, sec. 1.17.

[14] Niklaus Wirth, Program development by step-
wise refinement, Comm. ACM, vol. 14, April
1971, 221-227.

[15] Niklaus Wirth, Algorithms + Data = Prosrams,
Prentice-Hall, Englewood Cliffs, New Jersey,
1976, sec. 3.5.

[16] Donald E. Knuth, Estimating the efficiency of
backtrack programs, Mathematics of Computa-
tion, vol. 29, January 1975, 121-139.

[17] 01e-Jahn Dahl, Bjorn Myhrhaug and Kristen
Nygaard, The Simula 67 common base language,
Norwegian Computing Centre, Oslo, Norway,
1968.

[18] Frederick C. Druseikis and John N. Doyle, A
procedural approach to pattern matching in
SNOBOL4, Pr0c. of the ACM Annual Conference,
November 1974, 311-317.

[19] Ralph E. Griswold, String scanning in SL5,
SL5 project document SSLDSa, Dept. of
Computer Science, The University of
Arizona, Tucson, June 1976.

[20] Ralph E. Griswold, String analysis and
synthesis in SL5, Proc. of the ACM Annual
Conference, October 1976.

405

