SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 11 853-866 (1981)

Is Block Structure Necessary?*

DAVID R. HANSON
Department of Computer Science, The University of Arizona, Tucson, Arizona 85721, U.S.A.

SUMMARY

Block structure is traditionally considered an a priori requirement for algorithmic program-
ming languages. Most new languages since Algol-60 have block structure. Reasons exist,
however, to omit the general form of block structure—nested procedure definitions in which
references to identifiers defined in outer procedures are permitted—from programming
languages, especially those intended for systems programming applications. This paper
reviews the concept of block structure and considers its advantages and disadvantages. It
concludes that, in many cases, a modnle facility is superior to block structure and should be
considered in lieu of block structure in future languages.

KEY WORDs Block structure Programming languages Nested procedures Modules Pascal

1. INTRODUCTION

Since Algol-60, ‘block structure’ has been considered an a priori requirement for every
new programming language of the Algol variety (e.g. Simula, PL/I, Pascal, etc.). This
is true in even the most recently designed languages, such as Ada! and the CCITT
high-level language for telecommunications applications.?

There are, however, reasons why block structure in its most general form should #ot
be included in programming languages, especially those intended for systems
programming applications. This paper reviews the concept of block structure,
considers its advantages and disadvantages, and identifies existing alternatives. The
results is a new view of block structure in which it occupies a less exalted position
among programming language features. It is concluded that, when judged on an equal
basis with other language features, block structure is often simply unnecessary.

Section 2 summarizes the concepts underlying block structure, and Section 3
considers its major advantages. The disadvantages of block structure are detailed in
Section 4. An existing alternative to block structure is described in Section 5, and
conclusions are offered in Section 6.

2. BLOCK STRUCTURE

The term ‘block structure’ refers to different features in different languages, which
leads to a confusion about its precise meaning. There are essentially three language
features for which the term is commonly used: compound statements, blocks and
nested procedure definitions.

* This work was supported in part by the National Science Foundation under Grant MCS—-7802545.

0038-0644/81/080853-14%$01.40 Received 5 September 1980
© 1981 by John Wiley & Sons, Ltd.

854 DAVID R. HANSON

A compound statement is simply a single statement composed of a list of statements,
which are usually delimited by brackets of some form. For example, the Pascal
compound statement has the form.

begin S1; S2;...; Sz end

Compound statements differ from both blocks and procedures in that compound
statements do not permit the introduction of new identifiers; their sole purpose is
statement grouping. As expected, compound statements mayv be nested.

Blocks are the combination of compound statements with the declaration of
identifiers. Blocks in Algol-60 are a typical example and have the form.

begin declarations; S1; S2;...; Sz end

where declarations define new identifiers or redefine identifiers declared in outer blocks.
A block defines the scope of identifiers and restricts their visibilitv—identifiers
introduced in declarations may be used only within the block. More precisely, these
scope rules define the changes in the referencing environment at block entry and exit.
These changes are defined to permit their effect to be determined at compile time to
permit storage for identifiers declared within the block to be allocated upon entry to the
block and deallocated upon exit.>

Procedures are blocks with formal arguments where block bodies are replaced bv
procedure definitions. The Pascal form is

procedure (formal arguments...)

declarations;

procedure definitions;

begin

S1; 52;...;57

end
The important difference between blocks and procedures is that blocks are executed
only when encountered at the site of their definition, whereas procedures are
parameterized and may be invoked from any point within the scope of their names.

Putting these features in terms of actual languages, G,* prior to 1978, had only
compound statements and unnested procedures;* Pascal has compound statements and
nested procedures; and Algol-60, Algol-68, PL./1 and Ada have blocks, compound
statements and nested procedures. Almost all languages with nested procedures permit
so-called ‘up-level addressing’—statements within nested procedures mayv refer to
identifiers declared in outer procedures. A counterexample is the earlv DEC-10 version
of Bliss.® It supported two kinds of nested procedures, one with and one without up-
level addressing. Only the former kind appear in subsequent versions, however.
Clearly, compound statements are a special case of blocks, and blocks amount to

parameterless procedures that are invoked only at their definition site, which
substantially simplifies their implementation.® For the remainder of this paper, ‘block
structure’ refers to nested procedures (with up-level addressing) since thev are the most
general of the mechanisms.

3. ADVANTAGES

The major advantage of block structure is the restricted visibility it provides for local
identifiers.” The visibility, or scope, rules are used to associate an identifier with its

* Blocks were added to C circa 1978.

IS BLOCK STRUCTURE NECESSARY? 855

proper declaration. These rules are based on the static structure of the program arid, in
most cases, permit all associations to be determined during compilation.

In the case of blocks, identifiers may be declared in close proximity to their use. The
visibility restrictions help prevent unintended interference with other uses of the same
identifier.

In the case of nested procedures, the scope rules permit, for example, the definition
of a procedure to include the definition of subsidiary procedures without concern for
interference with other global procedures. This capability facilitates writing pro-
cedures and often simplifies their usage. A good example is a procedure for sorting an
array as illustrated by the Pascal procedure in Figure 1. Within sorz, nested procedures
(quick, partition and exchange) embody the implementation details of quicksort. The
scope rules restrict the use of these procedures, permitting them to be changed without
impacting the use of sort. In languages without block structure, sort would probably be
written as a single procedure to avoid name conflicts. In addition, the array bounds
would most likely be required as additional arguments to permit their obvious use in
the recursion; block structure permits this usage to be confined to a nested procedure.

Block structure permits efficient use of storage. As a consequence of the scope rules,
storage may be shared among local variables of procedures declared at the level. This is
the reason that an Algol program, for example, often requires less storage than the
equivalent Fortran program. In Algol, storage is required for only the data associated
with the active procedures, whereas in most implementations of Fortran, storage is
required for the data associated with all procedures.

procedure sort {var a : array 1..1000 of integer);
procedure quick {lb, ub : 1..1000});
var k : 1..1000;
function partition (i, j : integer) : 1..1000;
var v : integer;
procedure exchange (var x, y : integer);
var t : integer;
begin
t=xx:=y,y =t
end;
begin
I
v = a[i};
while i < j do
begin
i=i+1;
while ali] < v doi:
p=i-1
while afj] >v doj:=j-1;
if i < j then exchange(ali]. afjl)
end;
exchange{afil, a[il};
partition = j

i+ 1;

end;

begin
k := partition(lb, ub};
quick(lb, k - 1);
quick(k + 1, ub)

end;

begin
quick(1, 1000}

end;

Figure 1. An example of nested procedures

856 DAVID R. HANSON

4. DISADVANTAGES

The advantages of block structure described in the previous section are the major
justifications for including it in a language. There are, however, disadvantages that
suggest that block structure should not appear in a language, especiallv one intended
for systems programming.

4.1 Readability

Block structure can make even moderately large programs difficult to read. The
difficulty is due to the physical separation of procedure headings from their bodies and
the well known problems associated with using non-local variables.® This physical
separation is a consequence of the ‘definition before use’ rule in most languages. PL/1
does not have this rule, but its compilation requires at least two passes in order to obtain
the necessary information.

The result of this physical separation is illustrated to some degree by sort (see Figure
1), and to a much greater degree by the program in Figure 2, which is the Banker’s
algorithm given by Brinch Hansen® modified to make it a valid Pascal program.* To
read the body of procedures safe and completetransactions in detail, for example, their
headings must be readily accessible. In a large program, the heading and the bodyv may
be separated by several pages. The Pascal compiler for the CDC 6000 series computers
is another example of this effect; it is very hard to read because of this physical
separation. There are places in the compiler, for instance, where over 10 pages separate
the procedure heading from the body. Comments such as the one identifving the
beginning of the procedure body for safe in Figure 2 are used throughout the compiler,
but they are of little use in locating declarations for local variables and tvpes. Reading
even short programs is tedious if many nested procedures are present.

One common approach to organizing many procedures in a large program is to place
them all at the same level in alphabetical order. The success of the software in reference
10 is evidence of the success of this approach. It is interesting to note that some
programmers writing large Pascal programs organize their procedures in this wayv using
the forward declaration'! or using what amounts to an ‘include’ preprocessor.!? The
MAP preprocessor for Pascal'? is an example of a large Pascal program written using
this approach. For programmers like these, block structure is something to avoid in
order to improve the readability of their programs.

program banker (f, output);

const
ncustomers = 200;
ncurrencies = 5;
type
B = 1.ncustomers;
D = 1..ncurrencies;
C = array D of integer;
S = record
transactions : array B of
record
claim : C;
loan : C;
completed : boolean
end;

* 1t is common practice to typeset program material in italics and boldface founts. This practice makes published
programs more readable. The issue here, however, is the readability of ‘everyday’ code that programmers must read.
Hence, all program material in this paper is set in a single fount.

IS BLOCK STRUCTURE NECESSARY?

capital : C;
cash : C
end;
var
f . file of S;
function safe (currentstate : S) : boolean;
var
state : S;
procedure completetransactions (var state : S);
var
customer : B;
progress : boolean;
function completionpossible {(claim : C; cash : C} : boolean;
var
currency : D;
count : O..ncurrencies;
begin
count = O;
for currency = 1 to ncurrencies do
if claim[currency] > cashfcurrency] then
count := count + 1;
completionpossible := count = O

end;
procedure returnloan (var loan, cash : C);
var
currency : D;
begin

for currency := 1 to ncurrencies do
cash[currency] := cash[currency] + loan[currency]
end;
begin { completetransactions }
with state do
repeat
progress := false;
for customer := 1 to ncustomers do
with transactions[customer] do
if not completed then
if completionpossible{claim, cash) then
begin
returnloan(loan, cash};
completed ;= true;
progress := true
end
until not progress
end; { completetransactions }
function alitransactionscompleted (state : S) : boolean;
begin
with state do
alltransactionscompleted := capital <> cash
end;
begin { safe }
state := currentstate;
completetransactions(state);
safe = alltransactionscompleted(state)
end; { safe }
begin { program banker }
reset(f);
if safe(ft) then
writeln{” safe’)
else
writeln{" unsafe’)
end.

Figure 2. The banker’s algorithm

857

858 DAVID R. HANSON

4.2 Separate Compilation

Separate compilation is essential in any large software project where the designers
must work ‘in-the-large’ (with many modules) as opposed to ‘in-the-small’ (with several
procedures in one module).'# Block structure does not preclude separate compilation
per se, but few block-structured languages provide it. Because procedures depend on
the environment in which they are nested, only outermost procedures are suitable for
separate compilation. Recompilation of an outermost procedure involves recompi-
lation of the procedures nested within it. While this restriction is acceptable in theory, it
is generally unworkable in practice because block structure induces the nesting of entire
programs. For example, the CDC Pascal compiler has onlv a few outermost
procedures.

Some block-structured languages provide separate compilation, but at the cost of
severely limiting or not checking the interfaces between separately compiled proce-
dures (e.g. agreement in the types and number of arguments). Techniques exist for
detecting interface inconsistencies,'> but they are incomplete and relyv on the treatment
of external references by the link editor. Languages that support separate compilation
and complete checking usually check interfaces during link editing or execution. This
approach usually necessitates language changes; an example appears in reference 16.
Some languages, such as Mesa,!”" !'® have additional mechanisms for specifving
separate compilation. A recent separate compilation technique for Pascal'® has little
syntactic impact on the language, but it does require the division of programs into a
main segment and any number of deferred segments. The main segment contains
definitions of all global entities and stubs for the procedures in the deferred segments.
Deferred segments can be changed and recompiled at will; recompilation of the main
segment, however, requires the recompilation of a{l deferred segments.

The efforts to provide separate compilation for Pascal demonstrate several important
points. First, they indicate the importance of separate compilation in large software
projects. Second, changes to the language necessary to support separate compilation
encourage a usage that diminishes the importance of block structure. Finallv, and most
importantly, the facilities are non-trivial to implement and explain.

Language features that are especially difficult to implement or explain should be
suspect.”? In most languages, separate compilation is ultimately omitted because of
implementation difficulties. Omitting block structure, however, simplifies the im-
plementation and explanation of separate compilation. And, as described below, there
are alternatives to block structure that have some of the same benefits and have little
impact on the implementation of separate compilation.

4.3 Implementation

The implementation of block structure is well understood. The main problem is up-
level addressing—addressing non-local variables. This problem is simplified by the
fact that the static nesting level associated with each variable can be determined during
compilation. As a result, only the location of the most recent activation record for each
nesting level must be maintained during execution. Some form of displav® ?! or static
chain® is commonly used to keep track of the appropriate information.

Both methods are logically equivalent, but the static chain method usually makes
references to non-local variables less efficient than local references because it involves
traversing a list. For this reason, the display method is favoured in most implemen-
tations (and texts). Logically, a display is an array d in which d[{] points to the most

IS BLOCK STRUCTURE NECESSARY? 859

recent activation record for a procedure at nesting level ;. Local and non-local variables
are referenced as an offset from the appropriate d[7] value.

Conceptually, the display does not greatly complicate procedure entry and exit. Most
compiler texts (e.g. reference 6) suggest placing d in the activation record created for
each procedure. This is perhaps the simplest approach, but imposes unnecessary
overhead on procedure calls. In the absence of label and procedure parameters, there is
another approach: Make d global and incrementally change it at procedure entry and
exit. Assuming that actual arguments are pushed onto a stack prior to calling a
procedure, the entry and exit sequences for a procedure at nesting level 7 have the form.

name: push d[i] onto the stack
set d[i] to the stack pointer
adjust the stack pointer to accommodate locals

set the stack pointer to dfi]

pop the stack into d[7]

return
The additional overhead of these sequences is acceptable—for some machine architec-
tures. Specifically, it is the location of d that is of concern. On a machine that is rich in
registers, d can be stored in registers, and the sequences outlined above can often be
translated one-for-one into machine instructions. For example, on the DEC-10, the
sequences are

name: push sp,di ; push d[i] onto the stack
move di,sp ; establish new d[i]
adjsp sp,nlocals ; allocate space for locals
move sp,di ; veset stack pointer
pop sp,di ; vestove previous d[i]
popj sp ; return

References to variables at level 7 are made by simply indexing off di.

There are, however, machines that do not possess enough registers for several of
them to be dedicated to d. The PDP-11, a machine in wide use, isa good example. It has
only 6 registers for general use (the other 2 are used for the stack pointer and the
program counter). An obvious solution is to place 4 in fixed memory locations. The
solution makes the entry and exit sequences look superficially the same, but the
additional memory references can make them twice as slow as the case in which d is in
registers. More importantly, it makes addressing calculations inefficient, which are of
paramount importance in high-level language implementation.??

A partial solution to the latter problem is to keep the ‘top’ of din a register, permitting
efficient access to local variables. The entry and exit sequences must be revised to
update that register, however. In the following sequences for the PDP-11, register 5 is
used as the top of d.

name: mov di,-(sp) ; push d[z] onto the stack
mov r3,-(sp) ; push top d onto the stack
mov sp,di ; establish new d[i]

860 DAVID R. HANSON

mov sp,r5 s establish new top of d
sub F#nlocals,sp s allocate space for locals
mov r5,sp s veset stack pointer

mov (sp)+,r5 ; vestore previous top of d
mov (sp)*,di ; restore previous d[i)

rts pc s return

In these sequences, 75 is used as a ‘shadow’ copy of the appropriate d[] value.
Maintenance of the ‘real’ 4[i] is still necessary to insure the correct referencing
environment for invocations of other procedures.

The implementation burden imposed by block structure becomes even greater on
microprocessors, whose importance is increasing rapidly. Many microprocessors not
only lack enough registers but cannot do addressing arithmetic efficiently, making the
implementation of block structure awkward at best. On these machines, the code for
procedure entry exit and referencing non-local variables tends to be very long,
consuming scarce memory. Even extensive optimization cannot greatly change the
situation since the lack of registers precludes many typical optimizations.

It is, of course, possible to avoid some overhead by handling outermost procedures
differently from nested procedures. However, making the implementation of pro-
cedures depend on where in the program they are used violates the principle of
transparency,?> which states that the basic implementation of a language feature be
independent of other features and that its explanation provide a clear indication of its
computational cost. The danger in not following this principle, especially in languages
designed for systems programming, is that programmers may formulate false ideas
about the suitability of certain features and may misuse them in the name of efficiency.
This tendency helps explain the reluctance of some programmers to use recursive
procedures,?* especially since the inefficiency attributed to recursion is usually due to
its interaction with poor implementations of block structure.?® If outermost pro-
cedures are more efficient than nested procedures, programmers will avoid nested
procedures altogether, thereby losing what benefits block structure does have to offer.

Mouch of the effectiveness of a high-level language rests with the effectiveness of its
procedure mechanism.?% 27 The influence of other features—even those whose
influence appears minimal—on that mechanism must be considered carefully during
design. Block structure is not sufficiently useful to put i1t above such careful
considerations.

4.4 Interference

High-level languages are meant to facilitate programming by people. It is therefore
typical, and reasonable, to consider low-level implementation details such as those
given above to be less important than higher-level aspects that directly affect the
programmer. Block structure can, however, adversely influence language design at the
higher level. Specifically, it precludes the use of some potentially useful features, or at
least complicates their implementation and explanation.

Typical examples of such features are label and procedure parameters.® Correct
implementation of procedure parameters, for instance, requires the transmission of all
or part of the display in addition to the address of the procedure itself, or the placement
of the display in the activation record. This is because procedure parameters can be

IS BLOCK STRUCTURE NECESSARY? 861

invoked at points other than those the static scope rules would normally permit. In
addition, global optimization is complicated by the undecidability of the reachability
problem when procedure parameters and block structure are present.?® Label
parameters present similar problems, but they are less important, of course.

The seemingly simple extension of procedure types in a language like Pascal is
another example. Assume ‘procedure variables’ may be declared like

var f:procedure (71, 72);

which declares f to be a variable to which values representing procedures with two
arguments of types T'1 and T2 may be assigned, and that assignment and invocation are
the only legal operations on procedure values. If g is declared as

procedure g(x: T1, y: T2)

begin

end;
then after the assignment

fi=g
g could be invoked by f(...). (The syntax for invoking parameterless procedures would
also have to be changed to require parentheses, i.e. f() instead of £.)

This feature is quite useful; it can be used, for example, in many table-driven
programming techniques. In a block-structured language, however, the use of
procedure types must be severely restricted. In the program shown in Figure 3, the
assignment to f in procedure ¢ must be prohibited. Consider the consequences if it is
not: The invocation of a ultimately results in the invocation of ¢ in which fisassigned b.
The second invocation of b via f will cause a reference to a non-existent . This results
because the second invocation of b is made without first invoking @, which declares and
allocates space for it. The assignment to f has defeated the scope rules by making b
available outside of a.

Rules restricting the values that can be assigned to f might avoid this problem, but
make the legal use of such variables depend on where in the program they are

begin
var f. procedure (T1, T2);
procedure al...)
var t: integer;
procedure b{...)
procedure ¢f...)
begin
fi=0b
end;
begin {b}
t:=1;
o...)
end;
begin {a}
bf...)
end;
al...);
fl...)

end;

Figure 3.

862 DAVID R. HANSON

referenced. More importantly, since procedure types result in aliasing similar to that
for procedure parameters, determining the proper restrictions is likely to be un-
decidable. Permitting only the assignment of outermost procedures to procedure
variables is the only ‘safe’ restriction. This problem is identical to the ‘dangling
references’ that could occur in Pascal if pointers to local variables were permitted,
which is why pointers in that language may refer only to objects in the heap.

5. AN ALTERNATIVE

One of the major purposes of block structure is to hide information, but it is an
inadequate mechanism for doing so. The visibility rules are implicit and based only on
nesting. The need for an explicit and more general means of controlling visibility has
been recognized recently,?® especially for languages emphasizing data abstractions.
The module concept of Modula’ epitomizes this trend; other examples are the
encapsulation mechanisms in Concurrent Pascal,?° CLU,3! Alphard,32 Euclid,?? and
Ada.’

The module facility in the ¥ programming language ># is typical of such facilities.* A
module is a collection of scope, data, and procedure declarations. Explicit declarations
are required to make identifiers visible outside the module (‘exported’ identifiers) and
to use identifiers that are defined in another module(‘imported’ identifiers). The
visibility of all other identifiers is restricted to within the module; there are no implicit
visibility assumptions.

Since nesting is not used to restrict visibility, the module contents can be arranged as
desired. Figure 4 and 5 show the programs from Figure 1 and 2, respectively, as they
would be written in v.T The revised Banker’s algorithm has been packaged as a module
in which only safe and S are exported, since they are clearly the identifiers of interest;
the others are only in the implementation of the algorithm.

Modules lack the disadvantages of block structure detailed in Section 4. The linear
structure of the code in Figures 4 and 5 makes them easier to read than the nested
versions. The export declarations explicitly specify, in one place, the entry points to the
module. Although not shown in these examples, modules also permit static data to be
exported, which cannot be expressed with block structure. Note that the modified
versions of quick and partition (see Figure 4) access the array @ as a parameter rather
than as a non-local variable (see Figure 1). It is debatable, however, whether the
implicit accessibility of a in the previous version is more readable than the explicit
accessibility in the revised version.

Like block structure, modules do not impact separate compilation per se. Unlike
block structure, however, they do not induce a structure on programs that essentially

-precludes separate compilation. Experience with separate compilation in v, for
example, which is described in reference 35, suggests that modules encourage
programs to be decomposed into manageable, logically independent components with
well-defined interfaces. An example is the v compiler itself; it consists of 14 modules
totaling nearly 2700 lines of code, but has only 106 exported identifiers.

Modules impose no overhead on the implementation of procedures. The absence of
up-level addressing makes a display or static chain unnecessary. Only a pointer to the

*v°s module facility is simpler than that in most other languages because modules may not be nested. Experience
with Y indicates there is little reason for nesting them.

+v’s syntax is similar to Ratfor’® and its semantics are similar to C.* Pascal syntax is used in Figures 4 and 5 to provide
a meaningful comparison with Figures 1 and 2.

IS BLOCK STRUCTURE NECESSARY?

module quicksort
export sort;
procedure sort (var a : array 1..1000 of integer);
begin
quick(a, 1, 1000)
end;
procedure quick (var a :
var k : 1..1000;
begin
k := partition(a, Ib, ub);
quick(a, Ib, k - 1);
quickia, k + 1, ub)
end;
function partition (var a : array 1..1000 of integer; i, j
var v . integer;
begin
=g+
v = gfi];
while i < j do
begin
i=i+1;
while a[i] < vdoi:=i+1;
j=i-n
while a[f] >v doj:=j-1;
if i < j then exchange{a[i], a[j])
end;
exchange(a[i], a[j])
partition := j
end;
procedure exchange (var x, y : integer);
var t : integer;
begin
t=x X =y y =t
end
end { quicksort }

array 1..1000 of integer; Ib, ub : 1..1000);

Figure 4. Reorganized sort procedure

module banker;
export safe, S;

const
ncustomers = 200;
ncurrencies = 5;
type

B = 1.ncustomers;
D = 1..ncurrencies;
C = array D of integer;

S = record
transactions : array B of
record
claim : C;
loan : C;
completed : boolean
end;
capital : C;
cash : C
end;
function alltransactionscompleted (state : S) : boolean;
begin

with state do

alltransactionscompleted := capital <> cash
end;

. integer} : 1..1000;

863

864 DAVID R. HANSON

function completionpossible {claim : C; cash : C) : boolean;
var
currency : D;
count : O..ncurrencies;
begin
count := O;
for currency := 1 to ncurrencies do
if claim[currency] > cash[currency] then
count = count + 1;
completionpossible := count = O
end;
procedure completetransactions {var state : S}
var
customer : B;
progress : boolean;
begin
with state do
repeat
progress := false;
for customer := 1 to ncustomers do
with transactions[customer] do
if not completed then
if completionpossible(claim, cash} then
begin
returnlioan{loan, cashy);
completed := true;
progress = true
end
until not progress

end;
procedure returnloan (var loan, cash : C)
var
currency : D;
begin

for currency := 1 to ncurrencies do
cashfcurrency] := cash[currency] + loanfcurrency]

end;
function safe {currentstate : S) : boolean;
var
state : §;
begin

state := currentstate;
completetransactions(state};
safe := alltransactionscompleted(state)
end
end {banker}

Figure 5. Reorganized banker’s algorithm

current activation record, which is used to access arguments and local variables, 1s
required. For example, the v entry and exit sequences for the PDP-11 are

name: mov r5,-(sp) ; save current activation record pointer
mov sp,rd ; establish new activation record pointer
sub #nlocals,sp ; allocate space for locals
mov r5,sp s veset stack pointer
mov (sp)+,r5 ;vestore previous activation record pointer

rts pcC s return

IS BLOCK STRUCTURE NECESSARY? 865

In these sequences, register 5 points to the current activation record. Even on
machines with few registers, there is usually one that can be used for a similar purpose.
It interesting that two popular systems implementation languages, BCPL3® and C,#
use a similar implementation for recursive procedures and neither have block structure
as defined in this paper.

The problems with procedure types described in Section 44 do not arise in a
module-based language like Y. All procedures are outermost procedures and hence can
be assigned to procedure variables. Since modules effectively decouple scope from
activation, it is even permissible to assign procedures that are not exported. Note that
modules do not solve the dangling reference problem associated with pointers to local
variables, however, since that problem is an activation rather than scope problem.

6. CONCLUSIONS

The disadvantages of block structure are perhaps not significant when considered
individually. Taken collectively however, they at least balance, if not overshadow, the
advantages. Block structure should not, therefore, be treated as an a priori requirement,
but should be considered carefully during language design. Moreover, as described in
the previous section, a simple module facility has many of the same advantages of block
structure and none of its disadvantages.

Block structure has both compile-time and runtime aspects. One of the attractive
aspects of a module facility is that it is strictly a compile-time feature. This not only
simplifies its explanation, but insures that it cannot impact the runtime efficiency of
other features. For example, it is unnecessary to maintain scope information at
runtime.

Some languages that have modules also have block structure. A better design
choice—or one that at least deserves consideration—is the inclusion of modules and
exclusion of block structure. As this paper has attempted to point out, the result would
be a language that is particularly clean, efficient to implement, easy to describe, and that
has most of the advantages of block structure but not its disadvantages.

ACKNOWLEDGEMENTS

Insightful comments by Doug Comer, Chris Fraser, and Peter Downey were especially
helpful in preparing this paper.

REFERENCES

1. J. D. Ichbiah et al., ‘Preliminary ADA reference manual’, SIGPLAN Notices, 14, part A (1979).

2. Proposal for a recommendation for a CCITT high level programming language, CCITT Study Group
X1, Brown Document, 1979.

3. T. W. Pratt, Programming Languages: Design and Implementation, Prentice-Hall, Englewood Cliffs,
NJ, 1975, Chap. 6.

4. B. W. Kernigham and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood CIliff,
NJ, 1978.

5. W. A. Wulf, D. B. Russell and A. N. Habermann, ‘BLISS: A language for systems programming’,
Comm. ACM, 14, 780-790 (1971).

6. A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading, MA, 1977.

7. N. Wirth, ‘Modula: a language for modular multiprogramming’, Softzware— Practice and Experience,
7, 3-35 (1977).

866 DAVID R. HANSON

8.

14.

15.
16.

17.
18.

19.

20.

W. A. Wulf and M. Shaw, ‘Global variables considered harmful’, SIGPLAN Notices, 8, 28-34
(1973).

. P. Brinch Hansen, Operating System Principles, Prentice-Hall, Englewood Cliffs, NJ, 1973, pp.

48-49.

. B. W. Kernighan and P. J. Plauger, Softzare Tools, Addison-Wesley, Reading, MA, 1976.

. D. Comer, private communication, 1979.

. W. M. Waite, private communication, 1978.

. D. Comer, ‘MAP: A Pascal macro preprocessor for large program development’, Softeware—Practice

and Experience, 9, 203—-209 (1979).

F. DeRemer and H. H. Kron, ‘programming-in-the-large versus programming-in-the-small’, IEEE
Trans. Software Eng., SE-2, 80-86 (1976).

R. G. Hamlet, ‘High-level binding with low-level linkers’, Comm. ACM, 19, 642-644 (1976).

R. B. Keiburtz, W. Barabash and C. R. Hill, ‘A type-checking linkage system for Pascal’, Proceedings
3rd International Conference on Software Engineering, 23-28 (1978).

C. M. Geschke, J. H. Morris and E. H. Satterwaite, ‘Early experience with Mesa’, Comm. ACM, 20,
540-553 (1977).

J. G. Mitchell, W. Maybury and R. Sweet, ‘Mesa language manual’, Tech. Rep. CSL-78-1, Xerox
PARC, Palo Alto, CA, 1978.

R. J. LeBlanc and C. N. Fisher, ‘On implementing separate compilation in block-structured
languages’, Proceedings SIGPLAN Symposium on Compiler Construction, Denver, CO, 139-143
(1979).

N. Wirth, ‘Programming languages: what to demand and how to assess them’, Proceedings of the
Symposium on Software Engineering, Belfast, Ireland, (1976).

. D. Gries, Compiler Construction for Digital Computers, Wiley, New York, 1971.
. N. Wirth, “The design of a PASCAL compiler’, Software—Practice and Experience, 1, 309-333

(1971).

. N. Wirth, ‘On the design of programming languages’, Proceedings IFIPS 74, 386-393 (1974).
. G. L. Steele, ‘Debunking the expensive procedure call myth’, Proceedings ACM Annual Conference,

153-162 (1977).

. W. A. Wulf, “Trends in the design and implementation of programming languages’, Computer, 13,

14-24 (1980).

. E. W. Dijkstra, “The humble programmer’, Comm. ACM, 15, 859-866 (1972).
. D. A. Fisher, ‘A survey of control structures in programming languages’, SIGPLAN Notices, 7, 1-13

(1972).

. H. Langmaak, ‘On correct parameter transmission in higher programming languages’, Acta

Informatica, 2, 110-142 (1973).

. E. W. Dijkstra, A Discipline of Programming, Prentice Hall, Englewood Cliffs, NJ, 1976, chap. 10.
. P. Brinch Hansen, ‘The programming language Concurrent Pascal’, IEEE Trans. Software Eng.,

SE-1, 199-207 (1975).

. B. H. Liskov et al., ‘Abstraction mechanisms in CLU’, Comm. ACM, 20, 564-576 (1977).
. W. A. Wulf, R. L. London and M. Shaw, ‘An introduction to the construction and verification of

Alphard programs’, IEEE Trans. Software Eng., SE-2, 253-265 (1976).

. B. Lampson et al., ‘Report on the programming language Euclid’, SIGPLAN XNotices, 12, 1-79

1977).

. D. R. Hanson, “The ¥ programming language’, SIGPLAN Notices, 16, 59-68 (1981).
. D. R. Hanson, ‘A simple technique for controlled communication among separately compiled

modules’, Soffware—Practice and Experience, 9, 921-924 (1979).

. M. Richards, ‘BCPL: A tool for compiler writing and system programming’, Proceedings AFIPS

Sprint Joint Computer Conference, 34, 557-566 (1969).

Note added in Proof: Since the submission of this paper, two papers that are particularly relevant to the subject have
appeared. The first paper [J. M. Bishop and D. W. Barron, ‘Procedure Calling and Structured Architecture’, Computer
Sournal, 23, 115-122(1980)] discusses in detail the maintenance of the environment for block structured languages in the
context of structured computer architecture. The second paper [L.. A. Clarke,). C. Wiledon, and A. L. Wolf, "Nesting in
Ada Programs is for the Birds’, Proc. ACM Symposium on the Ada Programming Language, SIGPLAN Notices, 11,
139145 (1980)] promotes the view that nesting is an anachronism and describes a nest-free style for Ada programs that
exploits Ada’s novel features.

