Volume 4, number 4

INFORMATION PROCESSING LETTERS

January 1976

A SIMPLE VARIANT OF THE BOUNDARY-TAG ALGORITHM
FOR THE ALLOCATION OF COROUTINE ENVIRONMENTS

David R. HANSON

Department of Computer Science, The University of Arizona, Tucson, Arizona 85721, USA

Received 6 September 1975, revised manuscript received 6 November 1975

Storage allocation, coroutines, programming languages

1. Introduction

This note describes a simple variant of the bounda-
ry-tag algorithm [4] for the dynamic allocation of
storage. The technique has been developed and suc-
cessfully implemented for the allocation of coroutine
environments in the Silf2 programming language [2].
Sil/2 is a high-level system programming language
used primarily for the construction of transportable
interpreters. Currently, Sil/2 is being used for the
implementation of an experimental language called
SL5 [1,3]. One of the reasons for choosing Silf2 was
the desire to support a reasonably efficient implemen-
tation of coroutines.

An environment in Silf2 is a variable-size block of
storage that contains the values of the local variables
for a particular instance of a coroutine. A variable can
contain the address of an environment as its value,
and such addresses.are indistinguishable from positive
integers. Thus the allocation policy must not cause the
relocation of an active environment since the location
of pointers {0 other environments cannot be deter-
mined. In the initial implementation of Sil/2 [2],
allocation was performed in a stack-like fashion. Al-
though this is very fast, it is inappropriate for the allo-
cation of environments for coroutines. The standard
stack method works well for the allocation of environ-
ments for recursive functions because the “lifespan”
of an environment is well-defined. The lifespan of a
coroutine environment, however, is usually unpre-
dictable. Stack-like allocation gives an upper bound on
the amount of storage required for coroutine environ-

ments, but does not allow storage to be reused unless
blocks are allocated and returned in a first-in, last-out
manner.

The free list scheme described here is based on the
observation that the distribution of environment size
during the execution of an SLS program is semi-inde-
pendent of the particular program. This distribution.
obtained at runtime, is referred to as the dynamic dis-
tribution. The declarations of the routines in the
Sil/2 source program define a static distribution of
environment size, which can be obtained at compile-
time. It has also been observed that the dynamic dis-
tribution of environment size is essentially the same
as the static distribution. This is illustrated in fig. 1.
Squares indicate the static distribution and circles are
values obtained from empirical measurements of sever-
al SLS5 programs.

These observations suggest that a simplified version
of the boundary-tag method described by Knuth [4]
can be used without significant loss of efficiency. The
simplifications are that adjacent available blocks are
not coalesced when the storage for an environment is
returned and that the free list is not ordered by ad-
dress. This makes the process of returning a block to
the pool of available blocks trivial and very fast.

It is assumed that after the program reaches a
“steady state’ the distribution of blocks on the free
list is approximately the same as shown in fig. 1. In
other words, when the program reaches a state in
which the rate of allocation is approximately equal to
the rate of liberation, the distribution of available
blocks tends to reflect the distribution of allocation

109

Volume 4, number 4

Q5

@ STATIC MEASUREMENTS
o O DYNAMIC MEASUREMENTS
o4r

FREQUENCY OF OCCURRENCE ,#(x)

<)
(]
oz} o
°
[
o,u—E e
o o)
Bgs. 8
00.1||||?4!!!j0.1l
(o] 2 4 6 8 0 12 14

ENVIRONMENT SIZE, =

Fig. 1. Static and dynamic distributions of coroutine ¢nviron-
nent size.

requests. Therefore, for the majority of requests, allo-
cation is quite fast and requires the examination of
only a small portion of the free list.

2. Allocation and liberation

The storage for a coroutine environment is allo-
cated from a fixed-size contiguous region of memory
called a vector. The available blocks in a vector are
linked together in a singly-linked free list. An available
block is characterized by its first word containing the
size of the block and its second word containing the
address of the next block on the free list. These fields
are referred to as the size and link fields respectively.
A block housing an active coroutine environment is
characterized by the size field containing the negative
ol the length of the allocated block.

The head of the free list is the link field of an active
block that occupies the first two words of a vector.
The last two words of a vector form a permanently
active block whose presence simplifies the coalescing
procedure (see the Appendix). Blocks are allocated be-
ginning at the third word of a vector. Initially. the en-
tire vector. except for the first and last two words, is
composed of one available block.

Thus, at any time during execution. a vector is com-

prised of a number of self-identifying active environ-

110

INFORMATION PROCESSING LETTERS

January 1976

ments-and available blocks, the latter being linked to-
gether in a free list.

The first fit method [4] is used tor the allocation
of a block for a coroutine environment. The free list
is searched in a linear fashion for the first block whose
size is greater than or equal to the amount of the re-
quest. A large block is split into two smaller blocks
only if the amount in excess of the request is large
enough to accommodate a coroutine environment.

If an allocation request cannot be satisfied. a linear
sweep of the vector is performed coalescing adjacent
available blocks and simultancously reconstructing
the free list. This is possible becuuse the blocks in the
vector coniain the information necessary to determine
whether they are active or available.

Liberation is accomplished by simply inserting the
block at the beginning of the free list and negating the
contents of the size field. .

Algorithms for allocation and liberation. written in
PASCAL, are given in the Appendix.

3. Discussion

Initial experience with this simple technique indi-
cates that it is well-suited to the particular application
of allocating storage for coroutine environments. Exe-
cution times tend to be slightly longer than times
measured using the stack-like allocation scheme. The
stack method, however, can only liberate blocks that
are used in a stack-like fashion. Heavy use of co-
routines results in a significant number of blocks that
cannot be reused. Consequently, the stack method re-
quires that the vector be substantially larger than is
necessary for the simplified free list method.

Results also indicate that the additional overhead
in execution time can be attributed primarily to the
time required to coalesce available blocks. As long as
the vector does not need to be coalesced, allocation is
quite fast. The number of coalescings required de-
pends on the size of the vector and the point at which
a large block is divided into two smaller blocks during
allocation. In an initial version of this allocation
scheme, a large block was divided if the excess was
large enough to acconmodate a minimumn-size environ-
ment. This tended to proliferate small blocks. thereby
distorting the expected distribution shown in fig. 1
and requiring that the vector be coalesced more often.

Volume 4, number 4

By requiring that the excess be large enough to accom-
modate an average-size environment, the number of
coalescings may be significantly reduced.

For example, in programs that caused the alloca-
tion of 4000 blocks from a 512 word vector, the aver-
age length of the free list search was only 4 blocks.
The vector had to be coalesced 8 times when large
blocks were divided if the excess was enough for a
minimum-size environment. When the cutoff point
was increased so that the excess had to be enough for
an average-size environment. only 3 coalescings were
required. In addition, this modification also resulted
in shorter searches of the free list: since the free list
contained a large number of blocks of the average size,
the request was often satisfied by the first btock on
the list.

The distribution shown in fig. 1 is marred by a dis-
tinct anomaly at x = 7. This is known to be due to the
heavy use of a single routine whose environment size
is 7 words rather than a large number of routines with
an environment size of 7 words. This single routine,
BLOCK, is the basic SLS storage allocation routine.
Thus the measurements provided not only a basis on
which the environment allocation policy was chosen,
but aided in identifying routines that could be revised
to favor the chosen policy.

Appendix

INFORMATION PROCESSING LETTERS

January 1976

Acknowledgements

I would like to thank Dianne Britton. Douglas
Brotz, Frederick Druseikis, Richard Orgass, and Ralph
Griswold for numerous stimulating discussions con-
cerning this subject. I would also like to express my
appreciation to David Gries for a careful review of
the manuscript and for suggesting the form in which
the algorithms in the Appendix are presented. This
work was supported by the National Science Founda-
tion under Grant DCR75-01307.

References

(1] D.E. Britton. F.C. Druseikis, R.E. Griswold, D.R. llanson
and R.A. Holmes, Procedure referencing environments in
SL5. to be presented at the Third Ann. SIGACT-SIGPLAN
Symp. on the Principles of programming languages, Janu-
ary 1976.

[2] F.C. Druseikis, The design of transportable interpreters.
SNOBOL4 Project Document S4D49, The University of
Arizona, Tucson, February 1975.

[3] R.E. Griswold and D.R. Hanson, An overview of the

SLS programming language, SL5 Project Document

S5L.DI1. The University of Arizona, Tucson, 1975.

D.E. Knuth. The art of computer programming. Volume }|:

Fundamental algorithms, scc. e¢d. (Addison-Wesley. Read-

ing. Mass.. 1973) section 2.5.

(4

—_—

The algorithuns given in this sppendix are writien in PASCAL and assume the following declarations.

type vector = array |0 .. M] of integer:

const minsize = 3: {cutoff point for dividing a large block }
avail = 0 {offset in vector of head of fiee list}
first = 2:{offsel in vector where bloeks are allocated
size = 00; {of¥set in block of the size ficld)
link = 1: {offset in block of the link field}

var po vector;

A vector is initialized as follows.

v lavai) +size] = =2
v [avail +link] = first
vlfirst +size] =M -4
v[fiest +link) =0
M-t =-2

viM] =0

Blocks are allocated by the function aflicare that retirns the address of the first word of the allocasted block
and sets the size ficld to the negative of the length ol the block. The function aflucate calls coalesce if the vector
must be coalesced in an attempt to satisty the request. The procedure coalesce reconstructs the free list and deter-
mines the size of the largest available block. An error is signaled if the largest available block is too small 1o satisfy
the request. Procedure free is called to return a black 1o the free list. [t also negates the contents of the size tield

so that the block can be identified as available by coalesce.
In the comments, the notation v|i. . | denotes the block v[i. . v[i +sizel].

111

Volume 4, number 4 INFORMATION PROCESSING LETTERS January 1976

{Find a free block v[p. . | of size # or larger, allocate it, and return its index p. If this is not possible, signal an
error.}

function allocate (var ¥: vector: n: integer): integer:

var g, {all free list blocks up tov|g . . | have size <n}
p. {p = v{g +link]. index of free block followingv[q.. |}
k: {(size of u[p..) - n}
integer;
present: boolean: {indicates the size of v[p.. | is>=n}
begin
{Find the index of free block vp ..] with size >=n. letting u[q . . | be its predecessor. Signal an error if no
such block exists.}
q = avail; present : = false:

repeat
p = vlq+link}:
if p = O then

{coalesce free blocks and initialize for another attempt}
begin coalesce (v. n): g : = avail: p 1= v|q +link] end:
if v [p +size] < then g := p else present - = true
until present:
{take at least i locations of v|p . . | as the new block}
c :=vfp+size] - n:
if k < minsize
then v(g +link] := v{p +link]
else begin v [p +size] :=k:p = p + k;v[ptsize] ;= nend:
{allocate the block and mark it active}
allocate 1= prulp +size) 1= —vp +size]
end {allocate}:

1Coalesce the free blocks of v and reconstruct the free list. Signal an ecror if there are no free blocks of size
>=n}

procedure coalesce {var u: vector: n: integer):

var 5. {size of largest free block processed thus far}

p. {index of block currently being processed}
k> {all adjacent blocks from vp. . | up tow|k .. | are free}

integer:
begin
p:=first: s 1= 0: wlavail +link) := 0:
while p < M do

if v[p tsize] <0
then {skip active block vip.. |}
p:=p - v|p tsize)
else begin
{add available block ufp . . | to free list}
vlp +link| : = v]avail + link]:
vlavail +link] := p:
{find end index k — 1 of last adjacent free block }
c i=p +v|p +size]:
while u[k +size] >0dok 1=k + v[k +size];
{coalesce following adjacent blocks intou(p .. |}
vlp +size] 1=k - p:
s =max(s, k- p).
p =k - vlk +size]
end:
if s < then signal error
end {coalesce}:
{Put block & [p . . | back on the free list and mark it available.}
procedure free (var v: vector: p: integer):
begin
v(p tlink] : = v [avail +1ink]:
v[avail +link] 1= p:
v[p +size} 1= —v[p +size]
end {free}:

