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SUMMARY

cdb is a simple, source-level debugger for ANSI/ISO C programs compiled by lcc, a
retargetable C compiler. cdb is completely independent of its target architecture. This
independence is achieved by embedding a small amount of itself — a ‘nub’ — in the pro-
gram to be debugged and by having the compiler emit machine-independent symbol-table
data and related code. This paper describes the design of a nub interface for debugging,
a target-independent implementation of this interface for cdb, and the implementation
of cdb itself. When compared to platform-specific debuggers, cdb’s implementation is
minuscule: the nub, debugger, and associated communications routines take about 1500
lines of C, and fewer than 600 lines were added to lcc’s front end to emit symbol tables
and breakpoint hooks. All this code is machine independent.
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INTRODUCTION

Source-level debuggers are notoriously machine-dependent programs. Most debuggers
depend not only on the machine on which they run, but also depend on the compil-
ers, linkers, and operating systems with which they collaborate. These dependencies
usually involve arcane data formats, complicated protocols, or obscure and even un-
documented system calls.

Debuggers depend on compilers because compilers and linkers generate the sym-
bol tables and object code that debuggers must read to interpret user input, display
source-level values, and to find source-code locations. Debuggers depend on machine
architectures because most debuggers use hardware-specific facilities for implement-
ing breakpoints and single stepping. Debuggers depend on operating systems because
debuggers must arrange to access the address space of the program being debugged
— the target — and they must control the target’s execution. The situation is even
more complicated in debuggers for concurrent languages.

Building a source-level debugger for a new machine, even for an existing language, is
a complex and time-consuming process that can easily dwarf the effort needed to build
the compiler. It usually involves rewriting most of the code that deals with symbol
tables and with object-code formats, because these vary widely with architectures
and operating systems. Similarly, each architecture and operating system has its own
facilities for accessing and controlling the target. gdb,1 a widely used debugger on
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many Unix platforms, illustrates the complexity involved even for a single operating
system: gdb is more than 150,000 lines of C of which over 47,000 is machine dependent.

This paper describes the design for a debugger that disentangles the machine-
dependent parts of a debugger from its machine-independent parts, and a prototype
of a minimal debugger for ANSI/ISO C that is almost totally machine independent.
This debugger, cdb, illustrates the advantages of the design and exposes areas where
it falls short of its goals.
cdb and the design strategy on which it is based capitalize on and extend recent work

on machine-independent debuggers. ldb,2, 3 a retargetable debugger for ANSI/ISO C,
uses a variety of techniques to isolate architecture, compiler, and operating system
dependencies. It uses a programmable symbol-table format in which the form of the
symbol table is machine independent but its content is machine dependent; the de-
bugger itself simply interprets symbol table ‘programs.’ ldb loads a small, mostly
machine-dependent debug nub4 with the target and communicates with it to manipu-
late breakpoints and to access the target’s address space. ldb evaluates C expressions
by using a variant of its companion compiler, lcc,5 to compile C expressions and emit
code in the same language used for its symbol tables, which ldb is already equipped
to interpret. These techniques collaborate effortlessly to make ldb a cross debugger:
it can run on one architecture and debug a target running on different architecture
elsewhere on the network.

These techniques each sound simple and even obvious in theory, but ldb shows that
it can be excruciatingly laborious to combine them effectively in practice to build a
realistic, retargetable source-level debugger. cdb is simpler than ldb because it’s a
minimalist design: it takes a few of the components of the ldb approach and strips
them down as much as possible, and, wherever possible, it avoids a priori assumptions
about how these components can be combined. For example, the cdb design says
nothing about symbol-table formats. It provides only a mechanism for debuggers to
access the target’s symbol table as if it were just another address space; compilers and
debuggers must agree on the representation details. cdb also omits easily separable
facilities, such as expression evaluation.

DESIGN

All communication between a debugger and a target funnels through a nub, as de-
picted in Figure 1. The details of the nub interface define what the debugger can do
to and with the target, and thus constrain the debugger’s design space. The nub in-
terface is small so that its implementation will be small. The interface is independent
of the environment, but its implementation is not; a particular nub implementation
might depend on everything — the target architecture, language, compiler, linker, and
operating system. The cdb nub, on the other hand, depends only on the compilation
and operating systems. As described below, cdb has almost no dependencies on the
target architecture.

The nub is simply a conduit for opaque data, which reduces the tension between a
small nub interface and one that’s rich enough to support practical debuggers. The
producers and consumers of this data must agree on its format and interpretation.
Symbol-table data is the prime example. The nub interface permits a debugger to read
and write ‘address spaces’ associated with the target; the debugger and the compilation
system must collaborate to dedicate one of these address spaces to the symbol table
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Figure 1. A debugger design based on a nub.

and agree on a format. The important consequence of this design is that it forces
modularity on debuggers, but this approach also makes the nub interface language
independent.

Some concrete decisions must be made, so the nub interface specifies types that
describe source-code coordinates and a target state:

typedef struct {
char file[32];
unsigned short x, y;

} Nub_coord_T;

typedef struct {
char name[32];
Nub_coord_T src;
void *fp;
void *context;

} Nub_state_T;

typedef void (*Nub_callback_T)(Nub_state_T state);

A Nub_coord_T describes a location in the source code — a source ‘coordinate’ — by
giving its file name, line number (y), and character number in that line (x). Source co-
ordinates identify where breakpoints may be set. Many debuggers permit breakpoints
only on lines. Carrying around both line numbers and character positions in coordi-
nates supports the relatively rare debugger, like ldb and cdb, that permits breakpoints
at any expression and at other strategic locations, such as block entries and exits.

A Nub_state_T describes the state of a stopped single-threaded target, that is, a
target whose execution is suspended because it’s being examined by the debugger.
The target is stopped in the function given by the name field at the source coordinate
given by src. The fp and context fields are opaque pointers that describe the func-
tion’s stack frame and the symbol table at the coordinate src. The nub passes these
data uninterpreted to the debugger, which must coordinate their meanings with the
compilation system.
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Nub_callback_T is a function pointer type that describes the callback functions in
the debugger that are called by the nub in response to breakpoints and interrupts.
These callbacks are passed to the functions

void _Nub_init(Nub_callback_T startup, Nub_callback_T fault);
Nub_callback_T _Nub_set (Nub_coord_T src, Nub_callback_T onbreak);
Nub_callback_T _Nub_remove(Nub_coord_T src);

_Nub_init initializes the nub and establishes a start-up function and a fault handler.
The nub arranges to call startup after the target has been loaded but before it begins
execution. All the values in the Nub_state_T passed to startup are null, except for
context, which represents the symbol table before execution, which usually holds just
globals and types. Debuggers usually permit users to explore the target before it begins
execution in order to, for example, examine initialized data and set breakpoints. When
startup returns, the target begins execution.

If a fault occurs in the target, the nub regains control and calls fault, which usually
permits users to examine the target’s corpse before it’s discarded. When fault returns,
the target terminates.
_Nub_set and _Nub_remove set and remove breakpoints. Debuggers must implement

higher level debugging features, like conditional breakpoints, using these lower level
nub functions. _Nub_set sets a breakpoint at the coordinate given by src and arranges
to call the breakpoint handler onbreak the next time execution reaches src. The nub
uses the most recently specified handler for all breakpoints. _Nub_set returns the
previous handler, if a breakpoint was already set at src; otherwise, it returns null.
_Nub_set also returns null when src does not describe a valid source coordinate.
_Nub_remove removes the breakpoint set at src and returns the handler; if there is
no breakpoint at src or src does not describe a valid source coordinate, _Nub_remove
returns null.

As cdb illustrates below, debuggers often work with incomplete source coordinates,
i.e., _Nub_coord_Ts in which name is the null string or x or y is zero. The nub function

extern void _Nub_src(Nub_coord_T src,
void apply(int i, Nub_coord_T *src, void *cl), void *cl);

accepts an incomplete coordinate, src, and calls apply for each coordinate in the
target that ‘matches’ src. Coordinates x and y match if their nonzero fields are equal.
For example, the coordinate {"", 0, 17}matches every coordinate for line 17 in every
module of the target. For each matching coordinate, apply is called with the index of
the coordinate, a pointer to a _Nub_coord_T for the coordinate, and cl, which is a
client-specific pointer value.

Breakpoint and fault handlers are called with a _Nub_state_T for the function in
which the breakpoint or fault occurred. They can call

int _Nub_frame(int n, Nub_state_T *state);

to traverse the target’s stack. n names a stack frame, where the top frame at the top
of the stack is frame 0 and increasing numbers identify older frames. If n specifies a
valid frame, _Nub_frame sets *state to a _Nub_state_T for that frame and returns
n. If n specifies a nonexistent frame, _Nub_frame sets *state to a _Nub_state_T for
the frame at the bottom of the stack and returns that frame number. If there is no
stack, _Nub_frame returns −1.
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Debuggers call

int _Nub_fetch(int space, void *address, void *buf, int nbytes);
int _Nub_store(int space, void *address, void *buf, int nbytes);

to read and write the target’s address spaces. Both functions accept an integral address
space identifier, an address in that space, a pointer to a buffer, and a byte count.
_Nub_fetch copies nbytes from successive locations beginning at address into buf
and returns the number of bytes actually read. _Nub_store copies nbytes from buf
into successive locations at address and returns the number of bytes actually written.
The return value is different than nbytes when, collectively, space, address, and
nbytes specify inaccessible locations.

A target usually has numerous address spaces, but the purpose of each address
space is specific to a compiler, nub, and debugger, and hence operating system. These
spaces need not correspond to actual locations in the target, or even to anything loaded
with target. In Unix environments, for example, targets have spaces for code, data,
symbols, types, and strings, and only the first two spaces are in the target’s address
space; the others are in its executable file. In cdb, all these address spaces are loaded
with the target, but the address space model permits the debugger to be unaware of
this cdb-specific implementation strategy.

Segments, register sets, and stacks are examples of plausible address spaces in other
environments. The form of the nub calls is independent of the environment, but the
data passed back and forth is not, because it depends on the host machine, operating
system, and compilation tools. The only constraint imposed by this model is that these
spaces be accessed by read and write operations.

A particular implementation of the nub interface might serve more than one com-
pilation system or more than one debugger. For example, a Unix nub implementation
that understood Unix-style executable files and symbol-table formats could support
traditional source-level debuggers, like gdb1 and dbx,6 and high-level debuggers, like
Duel.7 But different debugger design goals would often yield different nub implemen-
tations, even on the same architecture. The sections that follow describe cdb and its
nub, which were designed to be as machine independent as possible.

EXAMPLE: CDB

cdb is a simple source-level debugger for C programs compiled by lcc.5 Its command-
line interpreter accepts a small set of one-letter commands that set and remove break-
points, display the values of variables, and walk up and down the runtime stack.
Figure 2 summarizes the cdb commands. cdb’s command repertoire is intentionally
frugal. The user-interface component is the one least affected by the nub, so a sim-
ple, command-line interface suffices here; a programmable, graphical user interface is
under construction.

Figures 3, 4, and 5 list the source code used as a running example in this section
and in the next one. The code implements a word-frequency program, which prints, in
alphabetic order, each word in the standard input and the number of times it occurs.
A word is a letter followed by zero or more letters or digits, and case is ignored. For
example, if the file input contains the text of the previous sentence:



1282 D. R. HANSON AND M. RAGHAVACHARI

b [file:]line[.character ]
set a breakpoint at the specified source coordinate

c continue execution
d [n] move down the call stack 1 frame or n frames
f [n] print everything about the current frame or about frame n
h print this command summary
m [n] move to frame 0 (the top frame) or to frame n
p list the visible variables as p commands
p {[file:]id} print the values of the listed identifiers
q quit cdb and the target
r remove the current breakpoint
r [file:]line[.character ]

remove the breakpoint at the specified source coordinate
u [n] move up the call stack 1 frame or n frames
w display the call stack
!cmd call the shell to execute cmd

[X] denotes an optional X, and {X} denotes zero or more Xs.

Figure 2. Summary of cdb commands.

% a.out <input
2 a
1 and
1 by
1 case
1 digits
1 followed
1 ignored
2 is
1 letter
1 letters
1 more
2 or
1 word
1 zero

Here and in the displays below, slanted typewriter type identifies user input. wf.c
(Figure 3) contains the main program, which reads each word, calls lookup to find it
or insert it in a binary search tree, and increments its count. tprint prints the counts
and the words. lookup.h (Figure 4) defines the type of the nodes in the tree and the
lookup function, and lookup.c (Figure 5) provides space for trees of up to 2000 nodes
and implements the usual recursive node lookup and insertion algorithm.

To use cdb, the user compiles wf.c and lookup.c specifying the debugging option
(-Wo-g4) and runs the resulting executable:

% lcc -Wo-g4 wf.c lookup.c
% a.out <input
cdb>



A MACHINE-INDEPENDENT DEBUGGER 1283

1 #include <stdio.h>
2 #include "lookup.h"
3
4 static int isletter(int c) {
5 if (c >= ’A’ && c <= ’Z’)
6 c += ’a’ - ’A’;
7 if (c >= ’a’ && c <= ’z’)
8 return c;
9 return 0;

10 }
11
12 static int getword(char *buf) {
13 char *s;
14 int c;
15
16 while ((c = getchar()) != -1 && isletter(c) == 0)
17 ;
18 for (s = buf; (c = isletter(c)) != 0; c = getchar())
19 *s++ = c;
20 *s = 0;
21 if (s > buf)
22 return 1;
23 return 0;
24 }
25
26 void tprint(struct node *tree) {
27 if (tree) {
28 tprint(tree->left);
29 printf("%d\t%s\n", tree->count, tree->word);
30 tprint(tree->right);
31 }
32 }
33
34 static struct node *words = NULL;
35
36 int main(int argc, char *argv[]) {
37 char buf[40];
38
39 while (getword(buf))
40 lookup(buf, &words)->count++;
41 tprint(words);
42 return 0;
43 }

Figure 3. Source listing of wf.c.
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1 struct node {
2 int count; /* number of occurrences */
3 struct node *left; /* left subtree */
4 struct node *right; /* right subtree */
5 char *word; /* pointer to the word */
6 };
7 extern struct node *lookup(char *, struct node **);

Figure 4. Source listing of lookup.h.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include "lookup.h"
5
6 static void err(char *s) {
7 printf("? %s\n", s);
8 exit(1);
9 }

10
11 static struct node words[2000];
12 static int next = 0;
13
14 struct node *lookup(char *word, struct node **p) {
15 if (*p) {
16 int cond = strcmp(word, (*p)->word);
17 if (cond < 0)
18 return lookup(word, &(*p)->left);
19 else if (cond > 0)
20 return lookup(word, &(*p)->right);
21 else
22 return *p;
23 }
24 if (next >= sizeof words/sizeof words[0])
25 err("out of node storage");
26 words[next].count = 0;
27 words[next].left = words[next].right = NULL;
28 words[next].word = malloc(strlen(word) + 1);
29 if (words[next].word == NULL)
30 err("out of word storage");
31 strcpy(words[next].word, word);
32 return *p = &words[next++];
33 }

Figure 5. Source listing of lookup.c.



A MACHINE-INDEPENDENT DEBUGGER 1285

As detailed in the next section, the -Wo-g4 option causes lcc to emit cdb-style symbol
tables and to load cdb’s start-up code and nub with the target. The start-up code
passes control to cdb as if there was a breakpoint at the beginning of the target, and
cdb prompts the user for debugger commands. At this point, the user can explore the
target, set breakpoints, etc., and can start the target with a c command.
cdb can set breakpoints on ‘stopping points’,3 which include individual expressions

and the entry and exit points of compound statements. For example, there are seven
stopping points in lines 16–19 of Figure 3’s wf.c as illustrated by the diamonds (♦)
below.

16 while (♦(c = getchar()) != -1 && ♦isletter(c) == 0)
17 ♦;
18 for (♦s = buf; ♦(c = isletter(c)) != 0; ♦c = getchar())
19 ♦*s++ = c;

cdb’s b and r commands accept incomplete source coordinates and use _Nub_src to
enumerate the set of coordinates that match the one specified. If there’s only one such
match, the command accepts that one. If several coordinates match, the command
lists renditions of itself for the matching coordinates and instructions for continuing, so
users rarely have to type more than a line number, and never have to count characters.
For example,

cdb> b 18
Sweep and send one of the following commands:
b wf.c:18.7
b wf.c:18.40
b wf.c:18.16
b lookup.c:18.11

lists the three stopping points in wf.c’s line 18 and the one in lookup.c’s line 18. The
user can use the mouse to sweep and send the desired commands. A more sophisticated
GUI might display the source code and flash possible breakpoints as the mouse got
near them, and the user could set or remove a breakpoint by simply clicking on the
desired stopping point.

Once the user is done exploring the target, the c command continues its execution:

cdb> b 17
Sweep and send one of the following commands:
b wf.c:17.3
b lookup.c:17.7
cdb> b lookup.c:17.7
To remove this breakpoint, sweep and send the command:
r lookup.c:17.7
cdb> c
stopped in lookup at lookup.c:17.7
0 lookup(word=(char *)0Xeffffac0 "word",p=(struct node **)0X81a8)
cdb>

Here, a breakpoint is set on lookup.c’s line 17, which is just before the lookup func-
tion decides which recursive call to make. As shown, when a breakpoint is set, the b
command emits the appropriate r command for removing the breakpoint.
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When execution hits a breakpoint, control is passed back to cdb, which announces
the breakpoint and prints a synopsis of the current function call in the target. As
illustrated above, cdb prints values in source-level terms whenever possible; for ex-
ample, word is a pointer to a string, so both the pointer value (an address) and the
null-terminated string are printed. p’s value is a pointer to a pointer to a struct node,
and only its value can be easily printed.

When a breakpoint occurs, cdb establishes a focus, which denotes a particular stop-
ping point in a specific instance of a particular function. cdb’s commands that list
variables and values use the focus to resolve names. For example, a bare p command
lists the variables visible at the focus. For the breakpoint above, these include lookup’s
locals, its arguments, and all the globals in both lookup.c and wf.c:

cdb> p
p cond
p p
p word
p lookup.c:next
p lookup.c:words
p wf.c:words

The visible variables are printed as p commands so that user can use the mouse to
sweep and send the desired commands.

File-scope static variables pose a dilemma. When lookup.c is compiled, its next
and words are visible only in the function lookup. They are not visible in err or in any
function in wf.c. But debugging is fundamentally different than compiling, because
the former focuses on exploring the entire target, not compiling its components. The
user might well stop the target in lookup for the express purpose of checking the
evolution of the tree rooted at wf.c’s words. The user must be able to specify file-
scope statics defined in any module, and must be able to distinguish between those
with identical names, like words, which is defined in both lookup.c and wf.c.
cdb resolves this dilemma by permitting file names to prefix file-scope statics, and

a bare p command prints them that way, too, as illustrated above. Thus,

cdb> p lookup.c:words
lookup.c:words={
[0]={count=1,left=(struct node *)0X0,right=(struct node *)0X0,

word=(char *)0X149a0 "a"}
[1]={count=0,left=(struct node *)0X0,right=(struct node *)0X0,word=(char *)0X0}
[1999]={count=0,left=(struct node *)0X0,right=(struct node *)0X0,word=(char *)0X0}
}

prints lookup.c’s words.
This example also shows how cdb prints arrays and structures. It uses type infor-

mation to print the details of structured values, when possible. For arrays whose size
is known, it prints the first and last elements and all the elements in between, except
that it omits the second and succeeding elements of a run of elements with equal val-
ues, which is illustrated by the omission of elements 2–1998 in the display above. For
structures and unions, it prints the names and values of the fields.

Continuing the target six times reaches a recursive call to lookup for the word
‘letter’:
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cdb> c
stopped in lookup at lookup.c:17.7
0 lookup(word=(char *)0Xf7fffac0 "is",p=(struct node **)0X81a8)
cdb> c
stopped in lookup at lookup.c:17.7
0 lookup(word=(char *)0Xf7fffac0 "is",p=(struct node **)0X8b84)
cdb> c
stopped in lookup at lookup.c:17.7
0 lookup(word=(char *)0Xf7fffac0 "a",p=(struct node **)0X81a8)
cdb> c
stopped in lookup at lookup.c:17.7
0 lookup(word=(char *)0Xf7fffac0 "letter",p=(struct node **)0X81a8)
cdb> c
stopped in lookup at lookup.c:17.7
0 lookup(word=(char *)0Xf7fffac0 "letter",p=(struct node **)0X8b84)
cdb> c
stopped in lookup at lookup.c:17.7
0 lookup(word=(char *)0Xf7fffac0 "letter",p=(struct node **)0X8b90)

The w command displays the entire call stack, and the u and d commands move the
focus up and down the stack:
cdb> w
*0 lookup(word=(char *)0Xf7fffac0 "letter",p=(struct node **)0X8b90)
1 lookup(word=(char *)0Xf7fffac0 "letter",p=(struct node **)0X8b84)
2 lookup(word=(char *)0Xf7fffac0 "letter",p=(struct node **)0X81a8)
3 main(argc=1,argv=(char **)0Xf7fffbac)
cdb> d2
2 lookup(word=(char *)0Xf7fffac0 "letter",p=(struct node **)0X81a8)
cdb> u
1 lookup(word=(char *)0Xf7fffac0 "letter",p=(struct node **)0X8b84)

The w command uses an ‘*’ to identify the focus. The different values of p in the
display above show that the recursive calls are walking down the tree rooted at wf.c’s
words, which is at address 081a816.

The m command moves to a specific frame, or to the top frame, and the f command
prints everything about the frame at the focus or about a specific frame.
cdb> m
0 lookup(word=(char *)0Xf7fffac0 "letter",p=(struct node **)0X8b90)
cdb> f
0 lookup(word=(char *)0Xf7fffac0 "letter",p=(struct node **)0X8b90)

cond=3
cdb> f2
2 lookup(word=(char *)0Xf7fffac0 "letter",p=(struct node **)0X81a8)

cond=11
cdb> f3
3 main(argc=1,argv=(char **)0Xf7fffbac)

buf={"letter"}

The f command output for main shows how cdb prints character arrays. The type of
main’s buf is ‘array of 40 characters;’ cdb assumes buf holds a null-terminated string,
and it prints the string enclosed in braces to denote an array. Contrast this output
with lookup’s word, which has type ‘pointer to character.’
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The breakpoint can be removed with the command ‘r lookup.c:17.7’, as instructed
by the output of the b command above, with the commands ‘r lookup.c:17’ or ‘r
17’, both of which uniquely specify the breakpoint, or with just ‘r’, because a bare
r command removes the current breakpoint. If there were breakpoints on line 17 in
wf.c and on line 17 in lookup.c, an r command with an incomplete coordinate would
elicit the list of alternatives:

cdb> b wf.c:17
To remove this breakpoint, sweep and send the command:
r wf.c:17.3
cdb> r 17
Sweep and send any of the following commands:
r lookup.c:17.7
r wf.c:17.3
cdb> r wf.c:17.3
cdb> r

Once all breakpoints are removed, a c command runs the target to completion.

cdb> c
2 a
1 and
1 by
1 case
1 digits
1 followed
1 ignored
2 is
1 letter
1 letters
1 more
2 or
1 word
1 zero
%

IMPLEMENTATION

cdb and its nub are an instance of the nub interface described above. That interface
says little about system dependence; one implementation could be a debugger that
depends heavily on system-specific symbol tables and breakpoint mechanisms that
depend on the target and its operating system. cdb sits at the other extreme: it is
completely independent of the target architecture and depends only on standard Unix
facilities, such as stock compilers and linkers. It debugs programs compiled with lcc,
but other compilers could easily generate the code and data used by cdb. cdb runs
on the SPARC under SunOS 4.1.3, the MIPS under IRIX 5.3, and the ALPHA under
OSF/1 3.2.
cdb achieves target independence by having lcc emit target-independent symbol

tables and breakpoint ‘hooks’ using techniques similar to those used for lcc’s machine-
independent, expression-level profiling.8 cdb’s symbol tables are initialized instances
of data structures defined in terms of C structures. These tables are emitted as part of
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the target, just like any other initialized data. Breakpoints are supported by emitting
code at each stopping point at compile time. During execution, this code tests if
a breakpoint is set at the stopping point. The initialized data structures and the
breakpoint code are target independent, and they are generated by additions to lcc’s
front end. Technically, the phrase ‘lcc emits . . .,’ which appears often below, should
be the more accurate but verbose ‘the lcc front end builds intermediate code from
which its back end emits . . .’

Injecting debugging code and data at the intermediate-code level is similar in spirit
to injecting debugging code at the source level. Surprisingly, intermediate code is often
easier to generate, because it avoids issues of syntax, name spaces, and temporaries,
for example. More important, it also avoids issues of undefined and implementation-
defined behaviors, which riddle the ANSI/ISO standard for C. The compiler must make
choices when it enters these murky semantic regions anyway, and the intermediate code
reveals its decisions, which the source code hides.

Instrumenting intermediate code or its equivalent to support debugging is common
in interpreted environments9 and for higher-level languages. Heymann10 describes a
100% portable debugger for a high-level language that is compiled into C. In this
case, C code to support runtime debugging is injected during compilation. The issues
described above don’t intrude here, because the compiler controls both the debugging
code and the C code generated for the source high-level program. Similar techniques
could be used in Modula-311 compilers that emit C.
smld12 is a machine-independent debugger for Standard ML,13 and it’s implemented

as part of the Standard ML of New Jersey compiler.14 This compiler uses a tree
intermediate representation based on the lambda calculus, and smld adds debugging
hooks by editing these trees in one or more of SML-NJ’s many passes. This approach
is particularly appealing for ML, because ML is a ‘safe’ language — a buggy program
cannot corrupt itself or the debugging code. Unfortunately, similar assurances cannot
apply to C and cdb, because C is not a safe language.

By the measures established by other debuggers, cdb is tiny, even considering that
cdb’s facilities are meager compared with those of other debuggers. Table I lists cdb’s
components, gives their sizes in nonblank source-code lines, and summarizes their
purposes. All the C code in Table I is completely target independent. cdbld is a small
shell script that runs before the Unix linker; it ties together the symbol tables from
separately compiled modules, as described below. In theory, cdbld might have to be
replaced completely for each environment, because it depends on the target’s linker
and related utilities. For all cdb’s current Unix targets, however, only four lines of
cdbld are target dependent.
stab.c is the addition to lcc’s front end; it emits the symbol tables, the stopping-

point data, and the breakpoint hooks. Most of stab.c emits data; building interme-
diate code for breakpoint hooks and function entries takes fewer than 150 lines. lcc’s
‘event hooks’5 are used to inject this code, so stab.c is a separable addition to the
front end.
nub.c implements the _Nub_* functions described above. There are two ways to

configure cdb, as illustrated in Figure 6. The same nub and cdb code are used in both
configurations. cdb can be loaded with the target in a single process, as depicted by
the left diagram in Figure 6. This configuration is particularly useful on systems that
do not support processes or interprocess communication well. The right diagram in
Figure 6 shows cdb’s default, two-process configuration. The nub is loaded with the
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Table I. Source code for cdb and nub implementations.

Lines File Purpose

31 cdbld linking script, per target

565 stab.c symbol table and breakpoint code emitter
249 nub.c the nub
191 client.c debugger side of the two-process nub
202 server.c target side of the two-process nub

794 cdb.c cdb’s user interface and command processor
80 symtab.c symbol table and type management
15 symstub.c symtab stubs for single-process debugger

target and communicates with cdb with remote procedure calls (RPCs). server.c and
client.c implement the minimal RPCs needed for this communication. Nothing in
this communication depends on the design of cdb or of the nub in any essential way;
these modules could be replaced entirely by a standard, architectural neutral RPC
package.
cdb.c and symtab.c are the debugger itself. cdb.c is the command interpreter,

and symtab.c caches symbol tables to reduce RPC traffic. When cdb is loaded with
the target, symstub.c replaces symtab.c because the latter is superfluous in that
configuration.

Symbol Tables

Symbol tables are just initialized data structures, and thus their form is machine
independent. cdb reads a symbol table by calling _Nub_fetch with an address space
identifier that specifies the symbol table. The symbol table for each separately compiled
module is defined by a module structure:

target

cdb.c
symstub.c

nub.c

target

nub.c

server.c

cdb.c

symtab.c

client.c

RPC channel

Figure 6. One-process (left) and two-process (right) cdb configurations.
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struct module {
union scoordinate *coordinates;
char **files;
struct ssymbol *link;

};

coordinates points to an array of scoordinate structures, one for each stopping
point in the module, files points to a null-terminated array of pointers to strings that
name the source files comprising the module, and link points to a dummy symbol-
table entry called the link, which is used to connect the symbol tables from separately
compiled modules that make up the program. scoordinate structures, which give the
stopping points in the module, are described below.

Symbol-table entries are emitted for each identifier in the module as initialized
instances of symbol structures:

struct ssymbol {
int offset;
void *address;
char *name;
char *file;
unsigned char scope;
unsigned char sclass;
struct stype *type;
struct ssymbol *uplink;

};

The values of the name, file, scope, and sclass fields give the identifier’s name,
the name of the file in which the identifier is defined, and small integers that denote
its scope and storage class. For a local or a parameter, the offset field holds its
machine-independent frame offset; for a global or a static, the address field holds its
address.

For locals and parameters, the uplink field points to a symbol in the enclosing local
or outer parameter scope, if there is one; otherwise, it points to the link symbol. For
globals and file-scope statics, the uplink field points to a symbol for another file-scope
identifier, or it’s null. The link’s uplink field points to the last file-scope symbol. The
entire symbol table for a module is thus an inverted tree threaded through the uplink
fields. Figure 7 shows the symbol tables for wf.c on the left and for lookup.c on the
right. The shaded boxes are the link symbols. The visible identifiers at any point P
in the code are given by the path up the tree from the last identifier declared in the
compound statement containing P . For example, cond is the only identifier declared
in the compound statement surrounding line 17 in lookup.c, so the identifiers visible
at this point are

cond
p word
next words err lookup node

where identifiers in the same scope are list on the same lines. node is the structure tag
defined in lookup.h.∗

∗ Symbol-table entries for the identifiers defined in stdio.h and stdlib.h that are used in lookup.c are also
emitted and should be listed here, but they’re omitted to avoid clutter.
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s word p

cond

next words err

nodelookup

c buf tree argc argv

bufs c

words main tprint getword

nodelookupisletter

Figure 7. Symbol tables for wf.c (left) and lookup.c (right).

The symbol tables shown in Figure 7 are for separately compiled modules. When
modules are linked to form a program, the file-scope symbols from all modules must
be combined into a single list that’s visible from every function in every module. This
list is threaded through the uplink fields so that the symbol-table search can proceed
as described above. The purpose of the link symbols shown in Figure 7 is to point
to this list. When several files are linked for debugging with cdb, cdbld (the linking
script listed in Table I) generates an initialized array of pointers to module structures,
one for each file, terminated with a null pointer. For example, cdbld generates

extern struct module __module__V309159f22d5b;
extern struct module __module__V309159f12d59;
struct module *_Nub_modules[] = {

&__module__V309159f22d5b,
&__module__V309159f12d59,
0

};

when it links the object code for wf.c and lookup.c. As shown, lcc generates global
names for the module structures. The nub start-up code uses _Nub_modules to rear-
range the file-scope symbols into a single list and sets the uplink field in every link
structure to point the first symbol on this list. Figure 8 shows the resulting symbol
table for wf.c and lookup.c; the heavy dashed arrows identify the modified uplink
fields.
cdb rearranges the symbol table at program start up because this approach is in-

dependent of the target’s linker and executable file format. The same effect, however,
could be accomplished at link time by a linker that knew about the symbol-table for-
mat. This alternative is system dependent, but it would eliminate the _Nub_modules
array and its initialization file, and it would reduce start-up overhead.

An ssymbol’s type field points to an stype structure that describes the identifier’s
type. These structures also initialized data structures defined in terms of C structures.
They are compact encodings of lcc’s internal representation for types, which is es-
sentially a prefix rendition of the abstract syntax tree for a type declaration.5 For
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c buf tree argc argv

bufs c

words main tprint getword

nodelookupisletter

s word p

cond

next words err

nodelookup

Figure 8. Symbol tables for wf.c and lookup.c after linking.

example, Figure 9 shows all the stype structures involved in representing the node
structure defined in Figure 4. In the stype structure for struct node, the 60 is the
size of this stype structure, ‘S’ is a type code for a structure type, 16 is the size of
instances of this structure type, and the next field points to the tag, which is the string
node. The triples that follow give, for each field, its name, its type, and its offset in

"count"

0

"left"

4

"right"

8

"word"

12

16

"node"

60 S

4

8 I

4

12 P

4

12 P

1

8 C

struct node

int

struct node*

char* char

Figure 9. Types for struct node.
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bytes.∗ The other stype structures have similar interpretations.
cdb traverses stype structures as it prints values. The type codes determine how a

value is printed and how it should be traversed, if it’s an aggregate type or a pointer
type. cdb follows pointers for some noncircular types; for example, it prints the pointer
value and the null-terminated string for a char*, and it prints the pointer and its
integer referent for an int*.
cdb uses _Nub_fetch to fetch values from the target’s address space, including

pointers. _Nub_fetch’s return value identifies invalid addresses; the size of all val-
ues is known, so when _Nub_fetch returns fewer bytes than requested, the address is
invalid. Symbol-table entries, types, and strings are all constant data, and they are
cached lazily by cdb’s symtab.c module. _Nub_fetch is called only the first time these
data are referenced; subsequent references use the cached copies.

Breakpoints

The coordinates field of the module structure points to an array of one-word
scoordinate structures:

union scoordinate {
int i;
struct { unsigned int y:16,x:10,index:5,flag:1; } le;
struct { unsigned int flag:1,index:5,x:10,y:16; } be;

};

The le and be fields are used on, respectively, little endians and big endians, and
lcc, the nub, and cdb determine the endianness dynamically and use the correct field.
The x and y fields hold a character position and line number, and the index field
holds the index for the file name in the array of file names pointed to by the module’s
files field. The coordinates arrays are used to implement _Nub_src and the nub’s
breakpoint functions.

The flag field is one when a breakpoint is set at the corresponding stopping point.
For each stopping point, lcc emits code that’s equivalent to

(module.coordinates[n].i < 0 && _Nub_bp(n, tail), e)

where n is the index of the stopping point and e is the expression at that stopping
point. scoordinate is defined carefully so that the flag field is the sign bit.

tail is a pointer to the ssymbol structure corresponding to the innermost symbol
visible at the stopping point. The tail value supplies the symbol-table context for that
breakpoint; these are the values stored in the context fields of _Nub_state_Ts. For
example, the lone stopping point on line 24 in lookup.c is the 14th one in that module,
so that line is compiled as if it were written as

if ((__module__V309159f22d5b.coordinates[14].i < 0
&& _Nub_bp(14, &L36), next >= sizeof words/sizeof words[0]))

where L36 is the ssymbol structure for lookup’s p.
To set a breakpoint, _Nub_set simply lights the flag bit in the appropriate coor-

dinate and saves the address of the debugger’s breakpoint callback function. When
∗ For bit fields, the offset encodes the offset and field size in bits.
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lookup
p=0X8690

0

down  links

up  links

_Nub_tos

lookup
p=0X81a8

2
lookup

p=0X8b84
1 main 3

Figure 10. Call stack for wf.c and lookup.c with 4 shadow frames (shaded).

the test module.coordinates[n].i < 0 succeeds, _Nub_bp is called, which in turn
stops the target and invokes the callback. cdb’s callback, for example, announces the
breakpoint, prints a synopsis of the current frame, and accepts commands. When the
debugger’s callback returns, _Nub_bp returns, and execution continues. _Nub_remove
clears the flag bit.

Stack Frames

cdb can know nothing about stack frames because almost everything about them
depends on the target. It must, however, access frames in order to fetch the values
of locals and parameters. The nub must implement _Nub_frame, and it must supply
_Nub_state_T values with target-independent fp fields that cdb can interpret mean-
ingfully.

The nub collaborates with additional function entry and exit code to maintain a
‘shadow stack’ embedded in the normal call stack. Shadow frames are created and
initialized at function entry and disappear at function exit. _Nub_frame traverses the
shadow stack, and the fp fields in state values are the addresses of shadow frames.
Figure 10 shows the call stack when the target stops at line 17 in lookup.c during the
third nested call to lookup. The shaded boxes are the shadow frames, and the stack
grows to the left. The shadow stack is a doubly linked list of frames defined by

struct sframe {
struct sframe *up, *down;
char *func;
struct module *module;
struct ssymbol *tail;
int ip;

};

The up and down fields form the list, the func field points to the name of the function,
the module field points to the module structure for the file in which the function
appears, and tail and ip are filled in just before calls, as described below.
lcc creates the shadow frame for each function by simply simulating the declaration

of a local variable with type struct sframe — there is no separate allocation. It
initializes the down, func, and module fields by emitting the appropriate assignments
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at function entry, and there’s nothing to do at function exit. For example, it emits the
following assignments at the entry to lookup; tos is the generated local.

struct sframe tos;
tos.down = _Nub_tos;
tos.func = "lookup";
tos.module = &__module__V309159f22d5b;
_Nub_tos = &tos;
(ssymbol structure for p).offset = (char*)&p - (char *)&tos;
(ssymbol structure for word).offset = (char*)word - (char *)&tos;

The last two assignments set the offset fields in the ssymbols for p and word to the
number of bytes between the shadow frame and each variable. cdb does the inverse
computation to compute the addresses for locals and parameters, so the relative loca-
tions of the variables and their shadow frame don’t matter. Indeed, it doesn’t matter to
cdb whether or not this computation actually yields an address, because cdb uses the
result only to pass to _Nub_fetch. Similar assignments are emitted at the beginning
of each nested compound statement, when necessary.

Computing these offsets at function entry illustrates the measures that must be taken
in order to be target independent, even when a target-dependent approach would be
considerably easier. These offsets are constants, and they could be supplied easily by
the back end, which would noticeably simplify the nub and stab.c, but there’s no
facility in lcc’s code-generation interface to supply these data. A similar situation
occurs in ldb: it needs to determine which variables are assigned to registers and
the target-dependent names for those registers. In this case, lcc’s code-generation
interface was extended with two short functions that return the necessary data.

For every call expression e, lcc emits

(tos.ip = n, tos.tail = tail, temp = e, _Nub_tos = &tos, temp)

where n is the index of the stopping point that immediately precedes e, tail is the cor-
responding symbol-table entry, as described above, and temp is a compiler-generated
temporary. The two assignments before e complete the caller’s shadow frame so that
_Nub_frame can traverse the stack and compute appropriate _Nub_state_T values as
it goes. _Nub_frame also sets the up fields in shadow frames when — and if — it moves
down the stack.

The assignment to _Nub_tos after the call ‘pops’ the callee’s shadow frame off the
shadow stack. The more obvious way to pop this frame is to generate

return (temp = e, _Nub_tos = tos.down, temp)

for every return e, but this approach does not handle calls to standard C’s setjmp
and longjmp correctly. Suppose function A calls setjmp and then calls B, which makes
the corresponding call to longjmp. If _Nub_tos were reset only in return statements,
it would still point to B’s shadow frame after control returns to A, because the return
was done internally by longjmp instead of by the code shown above for return state-
ments. Resetting _Nub_tos after calls handles setjmp and longjmp correctly. Another
approach is to supply nub-specific versions of setjmp and longjmp that know about
the shadow stack.
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Table II. Sizes in kilobytes of lcc executables with and without debugging data.

Code Initialized Uninitialized
segment data data lcc variant

360 KB 32 20 no debugging data
496 32 20 SunOS-specific debugging data

1,584 592 21 cdb debugging data and code

Overhead

cdb is almost completely machine independent, but this independence costs roughly
a factor of 3–4 in both space and time. Table II lists the sizes in kilobytes of the code,
initialized data, and uninitialized data segments for three variants of lcc version 3.5.
lcc can generate system-specific symbol-table data on some platforms, and the second
variant listed in Table II emits SunOS ‘stabs’ debugging data.

As the following breakdown reveals, strings and ssymbol and stype structures ac-
count for most of the initialized data space in cdb-style debugging data.

300,400 bytes file names and identifiers
291,900 ssymbol structures
204,276 stype structures
76,292 scoordinate structures

348 module structures
344 pointers to file names

The table below gives the execution time in seconds for each of the variants listed in
Table II to compile lcc’s 10,000+ lines of code. These measurements were performed
on a SPARC 5 running SunOS 4.1.3.

21.9 secs. no debugging data
36.3 SunOS-specific debugging data
93.0 cdb debugging data and code

DISCUSSION

Expression evaluation is the obvious omission from cdb’s command repertoire. Adding
expression evaluation would not effect the nub code, because, as experience with ldb
shows, expression evaluation is perhaps one of the easiest debugger components to
isolate. To evaluate an expression, ldb sends the source code and symbol-table context
data to its ‘expression server,’ and the server returns an intermediate representation
for the expression, which ldb interprets. ldb must do the interpretation because it has
access to the target’s variables. The expression server is an instance of lcc, modified
so that it accepts just expressions. The attraction of this approach is that the compiler
does double duty. A similar approach could be used with cdb.

There are viable and perhaps superior alternatives to expression evaluation. The
type information associated with a value helps suggest where the user might want to
go next. For example, after displaying a pointer to an array of pointers to structures,
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the user will likely follow the pointers in the elements to display some of the struc-
tures. The Pi debugger,15 which did not support expression evaluation, used a similar
approach to explore data structures incrementally by pointing and clicking, which is
much faster than typing expressions. A prototype of this kind of interface for cdb is
under construction.

Duel7 exemplifies the other extreme. It supports expression evaluation, but in a sep-
arate, very high-level language designed for debugging. The main activity in debugging
is exploring the state of a program, which is quite different from writing the program
in the first place. State exploration queries can be expressed concisely in Duel, often
as one-liners, and there are similarly concise ways to display only parts of large data
structures. cdb could support this approach, too.

Single stepping is the other important omission from cdb, and including it is more
problematic. An obvious approach is to set all the breakpoints, keeping tracking of
which ones were set explicitly by the programmer, but this approach is too inefficient
for even programs of moderate size, like lcc. The compiler can compute the set of suc-
cessors to any stopping point, because it has the program’s flow graph. Single stepping
could be implemented more efficiently by setting breakpoints at just these successors,
continuing the target, and removing the breakpoints when the target stops again. This
approach is viable, but its overhead may still be too high, and it would require addi-
tional information about each stopping point, which takes space. A more attractive,
but untested, approach is to extend the nub interface to support single stepping di-
rectly, because it could use target-specific mechanisms to do so. The disadvantage of
this scheme is that it complicates the nub, which costs space, time, and makes it more
difficult to port.

Many system-specific debuggers also support debugging at the machine level, and a
few debuggers permit code to be patched on the fly, thus avoiding an edit-compile-link
cycle. These capabilities are, of course, beyond the reach of cdb and similar machine-
independent debuggers.

For cdb’s nub, the symbol table and the nub’s data structures, like the array
_Nub_modules and the shadow stack, are part of the target’s address space. This
choice makes cdb and the nub target independent, but exposes these data to corrup-
tion, because a buggy C program can write anywhere in memory. Safe languages, like
Modula-3, don’t have this problem.

Some of this data, like files, strings, and types, are not vulnerable because they
are placed in read-only segments along with other constants. Symbol-table entries are
writable only because their offset fields are computed during execution, which could
be avoided as described in the previous section. Coordinates are writable only because
their flag bits identify breakpoints; these bits could be located elsewhere, and the
coordinates themselves placed in read-only memory. In practice, corruption is rarely a
problem, but on systems that support user-level page protection primitives,16 the nub
could protect the pages that hold its data and symbol-table data whenever control
returned to the target. A low-tech variant of this scheme is for the debugger to keep
critical nub data while the target has control, and pass it back to the nub when the
debugger gets control, perhaps using fingerprints to avoid unnecessary copying.

In traditional system-specific debuggers, the symbol table is usually stored in the
executable file or related file, and it’s usually not loaded with the target program and
thus doesn’t consume space. The nub interface doesn’t insist on loading the symbol
table with the target, and other, more system-dependent implementations could use
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the traditional approach. For example, we’re now building an implementation of the
nub that reads SPARC-specific symbol tables from executable files and translates them
on-the-fly to cdb’s target-independent format. The goal is to replace just nub.c (and
perhaps server.c and client.c) and to use cdb.c unchanged.

Whatever approach is used for the symbol table, defining the symbol table as initial-
ized data seems much simpler than the tortured descriptions of most system-dependent
symbol-table formats. This technique could be applied more widely if symbol tables
were defined as separate segments that were linked but not loaded.17

cdb illustrates the primary advantage of using a nub: embedding even a small piece
of code in the target greatly simplifies the debugger. This approach undoubtedly has
applications beyond just debugging; for example, Sosič18 describes a general interface
for ‘program directing,’ which supports performance monitoring, tracing, and dynamic
loading as well as debugging. Its implementation includes nub-like code that is loaded
with the target and that communicates with a client ‘director,’ such as a performance
monitor. cdb’s nub is linked with the target program, but it could be embedded in the
target by other means; plausible alternatives include editing the target’s executable
file19 and mapping the nub into the target’s address space dynamically. These and
similar alternatives with late binding times merit further investigation.
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