SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 15(12), 1205-1212 (1985)

Compact Recursive-descent Parsing of
Expressions

DAVID R. HANSON

Department of Electrical Engineering and Computer Science, Princeton Untversity, Princeton,
NY 08544 U.S.A.

SUMMARY

Compiler writing tools, such as parser generators, are.commonly used to build new operators.
Nevertheless, constructing compilers by hand remains common. Such compilers are often built
using recursive-descent parsing for most of the language and operator-precedence parsing for
expressions. This paper describes a simple technique for parsing expressions using recursive
descent that avoids the usual proliferation of procedures that occurs when recursive descent is
used to parse expressions. By taking advantage of the similarity of the productions describing
expressions in most languages, the n + 1 procedures usually required to parse expressions with n
precedence levels can be replaced with a table and two procedures.

KEY WORDS Recursive-descent parsing Expression parsing Precedence Compilers

INTRODUCTION

Although most new compilers are written using compiler writing tools, such as LEX"
and YACC,? some continue to be written by hand. Also, manual techniques are likely to
be used for other language processing applications, such as command languages,
program §enerators and preprocessors. Typically, bottom-up parsers, such as
LALR(1),” and top-down parsers, such as LL.(1), are used in conjunction with parser
generators. For parsers constructed by hand, recursive descent is the method of choice
because it is easy to understand and implement, and it is reasonably efficient.> *

Although recursive descent is the primary technique used in hand-constructed
compilers, expressions are often parsed using operator precedence. Recursive descent
requires additional non-terminals in order to encode the various levels of operator
precedence. These non-terminals are unnecessary for operator-precedence parsing, but
constructing a correct precedence table is often as difficult as introducing the correct
non-terminals (see Section 5.3 of Reference 3).

The remainder of this paper describes a simple technique for parsing expressions
using recursive descent without introducing additional non-terminals. The technique
takes advantage of the similarity of the productions for the expression component of
most languages, replacing repetitious code by a simple table ordered according to
precedence.

This technique has been used by other compiler writers, but documentation of its use

* Permanent address: Department of Computer Science, The University of Arizona, Tucson, AZ 85721 USA.

0038-0644/85/121205-08%01.00 Recerved 25 February 1985
© 1985 by John Wiley & Sons, Ltd. Revised 23 April 1985

1206 DAVID R. HANSON

1s rare. A similar technique was used in BCPL and is described in Reference 5. Although
the BCPL technique is technically equivalent to the scheme'described here, there are
two significant differences. First, in the BCPL scheme, the operators and their
precedences and associativities are spread throughout the code instead of being
encapsulated in tables as described below. Thus, to add operators, or to change any of
the operators, the code must be understood and changed accordingly in contrast to
simply modifying table entries. Secondly and perhaps more importantly, the technique
described below is derived from an LL(1) grammar and straightforward recursive-
descent procedures using program and grammar transformations. No equivalent
transformation is given for the BCPL approach, which is presented by giving the
resulting code.

PARSING EXPRESSIONS

Consider expressions defined by the following grammar where terminals are given in
sanserif face.

{expr) — {expr) + {expr) | {expr) * {expr) | ({expr)) | id

In most languages, * has higher precedence than +, so expressions such as id+idxid
are interpreted as id+(id+id). To achieve this interpretation, additional non-terminals are
introduced for each precedence level and the grammar above becomes

{expr} — {expr) + {term) | {term)
{term) — (term) * {factor) | {factor)
{factor) — ({expr)) | id

In order to write the recursive procedures corresponding to these productions, the left
recursion must be removed. Using standard techniques,” additional non-terminals are
introduced and the grammar above becomes

{expr) — {term) {expr’)

{expr’} — + (term) {expr’) | €
{term) — {factor) {term’)
{term’) — * {factor} {term’) | €
{factor) — ({expr)) | id

Using an extended BNF in which optional repetition is indicated by braces,® the
primed productions can be eliminated and the final grammar is

{expr) — (term) {+{term}}
{term) — {factor) { * {factor) }
{factor) — ({expr)) | id

Note, however, that the primed productions were necessary to arrive at this final
graminar.

COMPACT RECURSIVE-DESCENT PARSING OF EXPRESSIONS 1207

These productions can be used to guide the implementation of the corresponding
procedures. In the following C’ versions of the necessary procedures, lex() returns the
next token, which is usually assigned to the global variable t. Details, such as inserting
identifiers into a symbol table, type-checking, constructing abstract syntax trees and
extensive error processing, have been omitted.

expri) {
term();
while (t== +') {
t = lex();
term();
}
}
term() {
factor();
while {t = = "»') {
t = lex();
factor();
}
t
factor{) {
if (t==")}{
t = lex();
expr();
ifiel=")
error {“missing)”);
else
t = lex{);
else if {t == |D)
1 = lex();
else

error(“unrecognized expression”);

}

In general, for # precedence levels there are # + 1 non-terminals; one for each level
and one for the ‘basis’ case in which further division is impossible. Consequently, there
are n + 1 procedures — one for each non-terminal. If the binary operators are all left
associative, these procedures are very similar. As illustrated by expr and term above, the
only essential differences are the operators expected and the procedure to be called;
procedure £ calls procedure 2 + 1.

This similarity can be exploited to replace procedures 1 to z by a single procedure and
a table of operators ordered according to increasing precedence. Using a two-
dimensional matrix in which each row represents one precedence level, the expr and term
procedures given above can be replaced by the following code. Expression parsing is
initiated by calling expr(0); the expr() in factor must be changed to expr(0).

1208 DAVID R. HANSON

int precedencef3][2] = {

'+, 0,
“ 0,
0,0
%
exprik)
int k;
if (precedencelkl[0] = = 0)
factor();
else {
exprik + 1);
while (isopl(t, k)) {
t = lex{);
exprik + 1);
}
}
1 }
int isop (t, i)
intt, i;
t
int j;
for (j = 0; precedencelillj} |=0;j=j+ 1)
if (t = = precedenceli[j]
return[1];
return (0);
}

The two procedures, expr and factor and the associated table look-up procedure, isop,
can be used for any expression grammar of the form

(expr) — {expr) op {expr) | {factor)
where ops are binary, left-associative operators. Adding additional operators is accom-
plished by expanding precedence; for example, most of the binary operators in C can be

handled with these procedures using the table

int precedencef11][5] = {
OR,0,0,0,0,

COMPACT RECURSIVE-DESCENT PARSING OF EXPRESSIONS 1209

+,'-',0,0,0,
=%, 0,0,
0.0,0,00,
b
where OR, AND, EQ, NE, LE, GE, LSH and RSH are symbolic constants representing the
tokens ||, &&, ==, =, <=, >=, << and >>> respectively. Other table representations

can be used to avoid the wasted space and the linear search in the two-dimensional table,
if necessary. For most applications, however, the additional space and time required are
negligible.

DISCUSSION

Additional information can be stored in the precedence table or in companion tables to
handle different kinds of operators and other tasks that must be performed during
parsing. For example, error reporting and recovery can be incorporated into the
technique by including additional information in the precedence table. A common
approach is to pass sets of ‘follow’ and ‘stopping’ symbols to each parsing procedure for
use in error recovery.® This approach can be implemented by adding these sets to each
row of the precedence table. Similar additions can be made to accomodate other
common error detection and recovery techniques.* ®

Right-associative operators, such as exponentiation and assignment, can be handled
by including an associativity table along with the precedence table. Left-associative
operators give rise to left-recursive productions, such as those for {expr) and (term)
given above. Right-associative operators, on the other hand, give rise to right-recursive
productions. For example, exponentiation can be added to the example grammar by
adding another non-terminal and the association productions:

(term) — (term) * (primary) | {primary)
(primary) — {factor) * {primary) | (factor)

The typical procedure for (primary) is

primary()
{
factor();
while (t == """ {
t = lex();
primary();
t
}

The call to primary in the 6th line corresponds to calling expr(k) instead of expr(k + 1) in
the 10th line of expr. Assuming all operators at each precedence level have the same
associativity, this difference can be encoded in a table in which each entry gives the
associativity of the operators in the corresponding row in the precedence table. Only
expr requires modification, and the additional non-terminals — {primary) in the example

1210 . DAVID R. HANSON

above — are unnecessary. For example, the following implementation handles the
common arithmetic operators. LEFT and RIGHT are symbolic definitions for the constants
1 and O respectively, and elements of associativity are associated with the corresponding
rows in precedence.

int precedence [4][3] = {

+,'=" 0,
E
‘™0, 0,
0,0, 0,
%
int associativity[4] = {LEFT, LEFT, RIGHT, 0};
exprik)
int k;
{
if (precedence [k][0] == 0)
factor();
else {
exprik+1);
while (isoplt, k) {
t = lex(); .
exprlk + associativity[k]);
}
}
}

Slightly more complicated table arrangements can be used to handle languages in which
associativity varies on a per-operator basis.

Unary operators can also be handled using this parsing technique. Fortunately, unary
operators have very high precedence in most programming languages, so they appear in
the (# + 1)st procedure, such as factor in the example above. Otherwise, the operator
tables and expr can be changed so that, upon entry, expr checks for the occurrence of
unary operators at the kth level.

Likewise, semantic processing and code generation tasks can also be included in expr,
and the associated operator-specific information can be added to the tables. For
example, it is common to call operator-specific semantic routines when a subexpression
is recognized and to propagate the results of these routines to be enclosing expressions
by passing the results in a semantic record.? Such routines can be obtained from tables
similar to associativity, for example, or by tables indexed by operator. The following
version of expr illustrates this approach. The results of semantic routines are propagated
by passing pointers to node structures, and the routines are obtained from the array
semantics in which each entry corresponds to a row in precedence. For example, the
following table contains routine names for the operators in the above version of
precedence.

struct node *(*semantics[4])() = { &addop, &mulop, &expop, 0}

COMPACT RECURSIVE-DESCENT PARSING OF EXPRESSIONS 1211

This declaration declares and initializes an array of pointers to functions that return
pointers to nodes. nodes are also created, initialized and returned by factor.

struct node *expr(k)

int k;
{
struct node *p, *factor(};
int op;
if {precedencelk][0] = = 0)
p = factor();
else {
p = exprik + 1);
while isop (t, k) {
op =t;
t = lex(};
p = {*semantics(k))(op, p, exprlk + associativitylk]);
t
}
return (p);

}

*semantics[k] is the semantic processing function for operators at level k and is invoked
to perform operator-specific semantic processing, such as type checking, and, perhaps,
to emit code. For the simple case in which the semantics amounts to building an abstract
syntax tree of an expression as it is parsed, *semantics(k] can be replaced by a function
that constructs a node for the operator op with the given operands. Other table
arrangements in which functions are associated with individual operators can be used in
more complicated situations.t

In most cases, using parser generators and related compiler writing tools is preferable
to hand construction. In the absence of such tools, however, the technique described
here facilitates the construction of a recursive-descent parser for expressions that is
compact and easy to understand, write and modify. This technique has been used
successfully in compilers for the Y? and £Z'° programming languages and for a subset of
C. As these compilers demonstrate, this technique permits the effort to devise the
appropriate grammar to be done once; the resulting code can be instantiated repeatedly.

ACKNOWLEDGEMENT

This work was supported in part by the U.S. National Science Foundation under Grant
MCS-8302398.

1 In such situations, experienced C programmers tend to encapsulate all of the information for cach operator into a
structure and combine precedence, associativity and semantics into a single table of structures and provide the necessary
look-up functions.

1212) DAVID R. HANSON

U b [\

~J .Q\

REFERENCES

. M. E. Lesk, ‘LEX — a lexical analyzer generator’, Computing Science Tech. Rep. 39, Bell Laboratories,

Murray Hill, NJ, 1975.

. 8. C. Johnson, “YACC — vet another compiler compiler’, Computing Science Tech. Rep. 32, Bell

Laboratories, Murray Hill, NJ, July 1975.

.-A. V. Aho and]. D. Ullman, Principles of Compiler Design, Addison Wesley, Reading, Al3, 1977.

A.J. T. Davie and R. Morrison, Recursive Descent Compiling, Wiley, New York, NY, 1981.

M. Richards and C. Whitby-Strevens, BCPL — The Language and Iis Compiler, Cambridge University
Press, Cambridge, 1979.

N. Wirth, Algorithms + Data Structure = Programs, Prentice Hall, Englewood Cliffs, NJ, 1976.

- B. W. Kernighan and D. M. Ritchie, The C Progrannning Language, Prentice Hall, Englewood Cliffs,

NJ, 1978.

D. A. Turner, ‘Error diagnosis and recovery in one-pass compilers’, Inf. Proc. Letters, 6, (4) 113-115
(1977).

D. R. Hanson, “The Y programming language’, SIGPLAN Notices, 16, (2) 59-68 (1981).

. C. W. Fraser and D. R. Hanson, ‘A high-level programming and command language’, Proc. SIGPLAN

83 Symp. on Programming Language Issues in Software Systems, San Francisco, CA, June 1983, PP-
212-219.

ERRATA: David R. Hanson, ‘Compact Recursive-descent Parsing of Expressions’, Sofiware—
Practice & Experience, 15, 12 (Dec. 1985), 1205-1212.

There are several minor errors in this paper due to printer's errors.

The if statement in lines 6—7 of the function isop on p. 1208 is missing a right parenthesis and
the expression in the return statement contains a syntax error. The complete statement should
read
if (t == precedence[i][]j])
return (1);

The while loop in lines 1014 of expr on p. 1211 is missing a left parenthesis and references
the array semantics incorrectly; the complete loop should read

while (isop(t, k)) {

op = t;
t = lex();
P = (*semantics[k]) (op, p, expr(k + associativity[k]));

}

