
Reprinted from the Proceedings of the Winter USENIX Technical Conference, San Diego, Jan. 1993, pp. 107-117.

DUEL — A Very High-Level Debugging Language

Michael Golan∗ and David R. Hanson
Department of Computer Science, Princeton University

Princeton, NJ 08544

Abstract

Most source-level debuggers accept expressions in
the source language, e.g., C, and can print source-
language values. This approach is usually justified
on grounds that programmers need to know only one
language. But the evaluation of source-language ex-
pressions or even statemetns is poorly suited for mak-
ing non-trivial queries about the program state, e.g.,
“which elements of array x[100] are positive?” Duel
departs from the conventional wisdom: It is a very
high-level language designed specifically for source-
level debugging of C programs. Duel expressions are
a superset of C’s and include “generators,” which are
expressions that can produce zero or more values and
are inspired by Icon, APL, and LISP. For example,
x[..100] >? 0 displays the positive elements of x
and their indices. Duel is implemented on top of gdb
and adds one new command to evaluate Duel expres-
sions and display their results. This paper describes
Duel’s semantics and syntax, gives examples of its
use, and outlines its implementation. Duel is freely
available, and it could be interfaced to other debug-
gers.

Introduction

Interactive source-level debuggers are now a stan-
dard part of nearly every programming environment.
Most provide a rich suite of debugging facilities such
as breakpoints, conditional breakpoints, watchpoints,
stack traversals, etc., and many provide graphical
user interfaces (GUIs) that use mouse actions and
menus to invoke these facilities.

Despite these advances, the basics of debugging
have changed little [8]. The basic debugging method-
ology is still to set breakpoints, run the program un-
til a breakpoint is reached, and explore the program’s

∗Supported in part by NSF Grant CCR92-00790.

state by displaying values of variables and data struc-
tures. GUIs make this exploration less tedious and
more productive, but most are just a veneer over com-
mands that print the values of expressions.

Programmers interact with most source-level de-
buggers in the language of the program being de-
bugged, e.g., C debuggers accept and evaluate C ex-
pressions [9]. This choice is invariably justified on
grounds that the programmer needs to know only one
language, and that even small deviations would make
a debugger unnecessarily hard to use [1, 8].

This paper investigates the contrary view: Pro-
grammers are best served by debugging languages
that are more expressive and flexible than — and
possibly different from — the program’s source lan-
guage. A concrete realization of this view is Duel, a
very high-level language for debugging. Others have
designed new debugger languages based, in part, on
similar premises [7, 11, 12], and some recent work has
focussed on semantic issues [3].

The overall “goal” of debugging is to search the
program state for inconsistencies that manifest them-
selves as bugs. For example, questions like “which
elements of array x are greater than 1?,” “how many
nodes are in tree?,” and “does list L contain two
identical elements in its value fields?” typify the
kinds of questions that can arise during state explo-
ration.

Most debuggers can only print the values of ex-
pressions, which is of little help in answering com-
plex queries. Some debuggers accept source-language
statements or even procedures, but expressing these
kinds of questions in languages such as C is tedious
at best. For example, answering the query “does list
L contain two identical elements in its value fields?”
in C requires non-trivial code:

List *p, *q;
for (p = L; p; p = p->next)

for (q = p; q; q = q->next)
if (p->value == q->value)

printf("%x %x contain %d\n",

p, q, p->value);

This code also illustrates additional complexities,
e.g., managing “debugger variables” (p and q). Also,
printf is a poor way to display the offending values,
so the debugger must provide mechanisms for access-
ing its display functions. Even accessing these func-
tions with special printf format codes forces pro-
grammers to use non-standard facilities when debug-
ging.

Typical debugging queries are complex enough that
experienced programmers write functions whose only
use is to be called from the debugger. While un-
doubtedly useful, this methodology is invariably inad-
equate because programmers cannot anticipate all of
the state exploration functions that might be needed.

Duel allows many state exploration queries to be
expressed concisely, often as “one-liners” without ad-
ditional variables or control constructs. Other ca-
pabilities include concise ways of printing parts of
large data structures. Duel is derived mostly from
C, Icon [6], a very high-level string-processing lan-
guage, and, to a lesser extent, from APL and LISP.
Duel is implemented on top of gdb [13], a traditional
source-level debugger for C.

Design

Duel is an expression-oriented language in which ex-
pressions can return a sequence of values. Operators
permit these sequences to be manipulated in novel
ways to achieve the goal of concise state exploration.
As a simple example, x[0..9] >? 1 yields the el-
ements of x that are greater than 1, and (x,y).a
yields the a field of x and of y. In the first example,
the “..” operator produces the integers 0, 1,. . . , 9.
The C indexing operator is applied to x and each of
those integers, producing the 0th through the 9th el-
ements of array x. The “>?” operator compares its
operands like C’s “>” operator and returns the left
one when the comparison is true. Each of x’s val-
ues is compared with 1, and those greater than 1 are
printed along with their indices.

Duel’s semantics are modeled after Icon’s; Duel’s
syntax, however, is quite different and is described
below. Icon supports generators — expressions that
can produce zero or more values — and goal-directed
evaluation, which seeks the first “successful” result by
trying all possible combinations of values generated
by each subexpression. In contrast, Duel has no goal-
directed evaluation; it produces all of the values of
its generators, except for a few special operators. In
many cases, expression evaluation in Icon and Duel
is similar to evaluation in other languages, e.g., x+y

adds x and y; there is only one possible value for each
operand. The semantics and efficient implementation
of generators are well documented [2, 4, 5].

Icon is only one of several languages that might be
used as a basis for a high-level debugging language.
The use of generators in Duel is more limited than in
Icon, which is a complete, general-purpose, very high-
level language. In addition to its generators, Duel
includes some APL-style reduction operators and op-
erators that expand data structure alá LISP.

Duel is designed primarily to debug C, but source-
language expressions in most imperative languages
could be extended with generators. Most of Duel op-
erators could apply equally well to, e.g., Pascal, PL/I,
FORTRAN, or C++.

Duel’s semantics are more important than its syn-
tax. Duel is used most effectively if its semantics are
well understood, but the following two sections can
be read in either order. Once the basics of generators
are mastered, many of their uses become idiomatic.

Semantics

Duel’s semantics are best described operationally us-
ing a C-like pseudo-language that mirrors the actual
implementation. This pseudo-language omits punc-
tuation, declarations, and error checking in the obvi-
ous ways. Duel users never write in this language; it
is just a descriptive convenience. A similar approach
has been used to describe Icon’s semantics [10].

Duel evaluates an expression by traversing its ab-
stract syntax tree (AST) recursively. All AST nodes
have an op field, which identifies the node’s operand,
and a kids field, which is an a array of pointers to
the operand nodes. Nodes for specific operators have
additional fields, e.g., a node for a constant includes
a constant field that holds the constant itself. The
advantage of this notation is that it is independent
of a specific concrete syntax. ASTs can be specified
by a simple LISP-like notation, e.g., the AST for the
expression a*5 + *b might be

(plus
(multiply (name "a") (constant 5))
(indirect (name "b"))

)

If all expressions returned only one value, eval
would be a standard tree traversal:

Value eval(Node n) {
Value u, v
switch (n->op) {
case CONSTANT:

return n->constant
case NAME:

return fetch(n->name)

case NEGATE, INDIRECT, ...:
u = eval(n->kids[0])
return apply(n->op, u)

case PLUS, MINUS, MULTIPLY, ...:
u = eval(n->kids[0])
v = eval(n->kids[1])
return apply(n->op, u, v)

...
}

}

eval switches on the operator, recursively evalu-
ates the operands, if necessary, and calls apply to
evaluate a specific operator. fetch retrieves the value
of the variable named in the NAME node’s name field.
Value denotes a type that encapsulates all values.

Duel expressions can produce more than one value,
e.g., (1..3)+(5,9) prints 6 10 7 11 8 12. (1..3)
produces 1, 2, and 3, and (5,9) produces each of its
“alternatives,” 5 and 9. The “+” sums all possible
combinations of these values.

This feature complicates only eval, not the code
for each individual operator, i.e., instead of changing
all of the operators to take lists of values, eval man-
ages the multiple values. Each call to eval produces
one of the values. To implement this version of eval,
state information is added to each node, and a distin-
guished value, NOVALUE, signals the end of a sequence
of values. The state field of a node is a non-negative
integer that indicates the progress of the evaluation
of that node. state begins at 0 and is changed to
1 just before the first value is returned to indicate
that subsequent calls to eval for this node will re-
turn additional values. goto statements are used in
the code below to emphasize this flow of control. Af-
ter NOVALUE is returned, the next call to eval re-
evaluates the node. The field value is a temporary
value that must be saved between successive calls to
eval. For example, this version of eval handles con-
stants and most of the binary operators as follows;
the line numbers are for explanatory purposes and
are not part of the code.

Value eval(Node n) {
switch (n->op) {
case CONSTANT:

if (n->state == 0) {
n->state = 1
return n->constant

} else {
n->state = 0
return NOVALUE

}
...

1 case PLUS, MINUS, MULTIPLY, ...:
2 if (n->state == 1) goto bin1
3 bin0: n->state = 0
4 n->value = eval(n->kids[0])
5 if (n->value == NOVALUE)

6 return NOVALUE
7 n->state = 1
8 bin1: u = eval(n->kids[1])
9 if (u == NOVALUE) goto bin0
10 v = apply(n->op, n->value, u)
11 return v

...
}

}

To understand this code, consider the evaluation of
the addition in the expression (1..3)+(5,9), which
has the AST

(plus (to 1 3) (alternate 5 9))

When eval is called with the plus node, control
lands at line 4 above and eval is called with the
(to 1 3) node. This recursive invocation of eval
returns 1, which is saved in the plus node’s value
field. The plus node’s state is reset to 1, and control
ultimately lands at line 8. This second call to eval
on (alternate 5 9) returns 5, apply computes the
sum, 6, which is the return value from the top-level
eval.

Duel’s top-level evaluation command “drives” its
expression argument and prints all of its values. So,
eval is called again with the plus node as its ar-
gument. This time, the plus node’s state is 1, so
control lands at line 8, and eval is called recursively
for the next value from the node (alternate 5 9).
This call returns 9, which causes the top-level call to
eval to return 10, which is printed.

Ultimately, the call to eval in line 8 returns
NOVALUE, control passes to line 3, the plus node’s
state is reset to 0, and line 4 calls eval for the
next value from (to 1 3). This call returns 2, the
state is reset to 1 again, and the whole process of
re-evaluating (alternate 5 9) begins anew and pro-
duces 5 again.

This process continues until all of the values from
plus’s first operand have been produced, which oc-
curs when the call to eval in line 4 returns NOVALUE.
Finally, line 6 announces that the entire plus expres-
sion has produced all of its values. If eval is called
again with this plus, the entire evaluation process
starts over because state has been reset to 0.

Each of Duel’s generators has a similar implemen-
tation scheme. This scheme simulates coroutines
(which are similar to, but pre-date, non-preemptive
threads).

Managing the state and value correctly for each
generator according to its semantics is straightfor-
ward, but tedious. The semantics are conveyed
equally well by assuming that eval is a coroutine
in which the values of local variables are saved

across calls, and that the statement yield e re-
turns e and preserves enough information for the
computation to resume after the yield statement.
(alternate e1 e2) produces all of the values of e1
followed by the values of e2. Its detailed implemen-
tation is

case ALTERNATE:
if (n->state == 1) goto alt1
u = eval(n->kids[0])
if (u != NOVALUE)

return u
n->state = 1

alt1: v = eval(n->kids[1])
if (v != NOVALUE)

return v
n->state = 0
return NOVALUE

The simplified code is

case ALTERNATE:
while ((u = eval(n->kids[0])) != NOVALUE)

yield u
while ((v = eval(n->kids[1])) != NOVALUE)

yield v
return NOVALUE

Declarations, explicit comparisons with NOVALUE,
and the final “return NOVALUE” are omitted when
the meaning is clear, e.g.,

case ALTERNATE:
while (u = eval(n->kids[0]))

yield u
while (v = eval(n->kids[1]))

yield v

Most of the unary operators are defined by

case NEGATE, INDIRECT, ...:
while (u = eval(n->kids[0]))

yield apply(n->op, u)

Specific Operators
The generator (to e1 e2) produces the integers from
e1 to e2 inclusive. The semantics of to are defined by

case TO:
while (u = eval(n->kids[0]))

while (v = eval(n->kids[1]))
for (i = u; i <= v; i++)

yield i

As suggested by this code, to’s operands can be
generators, e.g.,

(to (alternate 1 5) (alternate 5 10))

produces

1 2 3 4 5
1 2 3 4 5 6 7 8 9 10
5
5 6 7 8 9 10

Some operators return one or no value. Duel’s com-
parisons produce their first operand if the condition
is true and nothing otherwise, e.g., (ifgt e1 e2) pro-
duces e1 only if e1 is greater than e2. The implemen-
tation is

case IFGT, IFGE, IFLE, IFLT, IFEQ, IFNE:
while (u = eval(n->kids[0]))

while (v = eval(n->kids[1]))
if (w = apply(n->op, u, v))

yield w

These semantics admit generators as operands, so
an expression like

(ifgt
(index (name "x") (to 0 99))
(constant 0)

)

produces the positive elements of the array x[100].
The operators that correspond to the C operators

&& and || can be problematic because, with genera-
tor operands, their semantics are nonintuitive. The
semantics of andand illustrate the problem.

case ANDAND:
while (u = eval(n->kids[0]))

if (u != 0)
while (v = eval(n->kids[1]))

yield v

e1 && e2 produces all of the values of e2 for each
non-zero value produced by e1. When e1 and e2 are
single-value expressions, these semantics are equiva-
lent to C’s.

The operator (if e1 e2 e3) evaluates e1; for each
non-zero value of e1, it produces all of the values of
e2, and for each zero value of e1, it produces all of
the values of e3.

case IF:
while (u = eval(n->kids[0]))

if (u != 0)
while (v = eval(n->kids[1]))

yield v
else

while (v = eval(n->kids[2]))
yield v

A sequence of expressions, (sequence e1 e2) eval-
uates e1 but discards its values, and then produces
the values of e2.

case SEQUENCE:
while (u = eval(n->kids[0]))

;
while (v = eval(n->kids[1]))

yield v

(imply e1 e2) is similar, but produces e2’s values
for each value of e1.

case IMPLY:
while (u = eval(n->kids[0]))

while (v = eval(n->kids[1]))
yield v

Finally, (while e1 e2) produces e2 only if all of the
values of e1 are non-zero:

case WHILE:
for (;;) {

while (u = eval(n->kids[0]))
if (u == 0)

return NOVALUE
while (v = eval(n->kids[1]))

yield v
}

These semantics are equivalent to C’s when e1 is
a single-value expression. Notice that once e2 has
produced all of its values, while starts over again.
For example,

(while (index (name "x") (to 0 99)) ...)

produces “...” as long as all of the elements of x
are non-zero.

Some operators manipulate value sequences instead
of values themselves. For example, (select e1 e2)
produces the elements of e2 given by the integers in
e1. The implementation is described by

case SELECT:
while (v = eval(n->kids[0])) {

n->kids[1]->state = 0
for (i = 0; i < v; i++)

u = eval(n->kids[1])
yield u

}

Notice that e2’s state is reset so that it starts anew
for each value of e1. The actual implementation of
select avoids the re-evaluation of e2 when possible.

Several “reduction” operators reduce a sequence of
values to one value, e.g., (count e) returns the num-
ber of values produced by e, (sum e) sums the values
produced by e and (equality e1 e2) returns 1 if the
values produced by e1 are equal to those produced by
e2 and 0 otherwise.

Duel’s evaluation mechanism also applies to calls to
functions in the target program. If any of the argu-
ments are generators, the function is called repeatedly
for all combinations of values, e.g.,

printf("%d %d, ", (3,4), 5..7)

prints

3 5, 3 6, 3 7, 4 5, 4 6, 4 7,

Aliases
As suggested above, (name "x") fetches the value of
the variable x. x can be a variable in the target pro-
gram or an alias. Aliases are created by (define a e),
which defines a to be an alias for e. If e is an lvalue, so
is a, e.g., after (define b x[5]), changing b changes
x[5]. If e is a generator, a is aliased to each value in
turn and define returns those values.

case DEFINE:
while (u = eval(n->kids[1]) {

alias(n->name, u)
yield u

}

The operator (with e1 e2) evaluates e2 in the
“scope” of e1. When e1 is a structure, “opening the
scope” of e1 makes the fields visible as ordinary iden-
tifiers. Names in e2 refer to the appropriate fields in
e1; for example, if x and y are instances of structures
with a field f,

(with
(alternate (name "x") (name "y"))
(alternate (name "f") (name "g"))

)

generates x.f, \verbx.g—, y.f, and y.g. The se-
mantics of with are defined as follows.

case WITH:
while (u = eval(n->kids[0]) {

push(u)
while (v = eval(n->kids[1])

yield v
pop()

}

The push and pop functions manipulate the name-
resolution stack used by fetch. Also, the special
name “_” in e2 refers to the value of e1.

The with operator is used by other operators to
traverse data structures. (dfs e1 e2) “expands” the
data structure e1 using e2 to indicate the traversal
path as follows. Unvisited nodes are kept in a stack.
At each step, the top of the stack, X , is popped,
the non-null values generated by (with *X e2) are
pushed onto the stack, and dfs yields X . This pro-
cess continues until the stack is empty. In the seman-
tics below, stack and unstack manipulate n’s traver-
sal stack and push and pop manipulate the name-
resolution stack described above.

case DFS:
while (u = eval(n->kids[0]) {

stack(n, u)
while (v = unstack(n)) {

push(v)
while (w = eval(n->kids[1])

stack(n, w)

pop()
yield v

}
}

If head is a pointer to a linked list in which nodes
are linked via next fields,

(dfs (name "head") (name "next"))

generates the elements of the list. Likewise,

(dfs
(name "root")
(alternate (name "left") (name "right"))

)

generates the nodes in a binary tree in preorder.
(The actual implementation stacks the values of e2 in
reverse order so that the nodes are visited in the ex-
pected order.) Other operators do similar expansions
with different orderings, e.g., breadth-first search.

Syntax

Duel uses an extended C-like concrete syntax to spec-
ify the semantics described above. Duel accepts ex-
pressions, compiles them into ASTs, evaluates them,
and prints the resulting values. Expressions include
all of the C operators with the expected semantics ex-
cept for “,”, and C’s scope rules apply. Control struc-
tures, like for, if, etc. are cast as expressions, not
statements, much as in Icon. Finally, there are nu-
merous Duel-specific operators that specify the gen-
erators described above.

In the absence of generators, Duel expressions are
essentially equivalent to a debugger’s “print” com-
mand, e.g.,

gdb> print 1 + (double)3/2
2.500
gdb> duel 1 + (double)3/2
2.500

As this example suggests, Duel is an extended ver-
sion of gdb; the duel command is similar to gdb’s
print command, except that the duel command
drives its expression argument and prints all of its
values, e.g.,

gdb> duel (1,2,5)*4+(10,200)
14 204 18 208 30 220
gdb> duel (3,11)+(5..7)
8 9 10 16 17 18

The comma operator is the concrete syntax for the
alternate operator described in the previous section;
e1,e2 produces all of e1’s values followed by e2’s val-
ues. The operator “..” specifies the to operator;
e1..e2 produces the integers from e1 to e2 inclusive.

Duel treats lvalues and rvalues as in C. For exam-
ple, suppose that hash is defined by the declaration

struct symbol {
char *name;
int scope;
struct symbol *next;

} *hash[1024];

which is a typical representation for symbol tables
in compilers. hash is an array of pointers to lists of
symbol structures, the lists are threaded through the
next fields, and the symbols are in decreasing order
of the scope fields. The command

gdb> duel hash[0..1023]->scope = 0 ;

clears the scope field of the first symbol on each
list. hash[0..1023] produces lvalues; the semantics
of C’s assignment are unchanged. This example pro-
duces no output; the terminating semicolon causes
the expression to be evaluated for side effects only.

The operator >? specifies the operator ifgt;
e1 >? e2 returns e1 if e1 is greater than e2 and nothing
otherwise. This operator and the similar ones for the
other comparisons can be used with other generators
like “..” to search for specific values. For example,

gdb> duel x[1..4,8,12..50] >? 5 <? 10
x[3] = 7
x[18] = 9
x[47] = 6

searches portions of x for values that are between
5 and 10. Duel’s output includes symbolic expres-
sions that suggest the derivation of the values printed.
Thus, the output from the search shows not only the
desired values, but also pinpoints the elements of x
that hold those values. (The examples at the be-
ginning of this section omitted the symbolic output.)
The command x[1..4,8,12..50] ==? (6..9) is
another formulation of the same search.

Duel also supports the C operators, ==, etc., but
their semantics are as in C, e.g.,

gdb> duel x[1..3] == 7
x[1]==7 = 0
x[2]==7 = 0
x[3]==7 = 1

prints all of the indices and values of x.
The unary expression “..e” is shorthand for

0..e-1 and is useful for indexing arrays. For exam-
ple,

gdb> duel (hash[..1024] !=? 0)->scope >? 5
hash[42]->scope = 7
hash[529]->scope = 8

prints the elements in hash that have a scope value
greater than 5.

This example illustrates the crux of the problem
in designing Duel’s syntax. It must necessarily be
a superset of C, but the wealth of operators quickly
overwhelms the vocabulary that permits a readable
notation for them.

In programming language design, readability is im-
portant because programs are read more than writ-
ten, e.g., in debugging and maintenance. Duel ex-
pressions, however, are ephemeral; they exist only
long enough to be executed once. They are written
once and read at most once. Duel’s syntax is designed
to facilitate, on-the-fly, left-to-right composition, e.g.,
hash[..1024] specifies all of the lists, !=? 0 specifies
those that are non-null, ->scope specifies the scope
fields of just those elements, and >? 5 limits the out-
put to the desired elements. While these kinds of
expressions appear cryptic initially, they become id-
iomatic with use. At the very least, Duel expressions
are more compact than the equivalent C code, e.g.,
the C (and Duel) code for the search just described
is

gdb> duel int i;
for (i = 0; i < 1024; i++)

if (hash[i] != 0)
if (hash[i]->scope > 5)

printf("hash[%d]->scope = %d\n",
i, hash[i]->scope);

‘ Duel declarations, e.g., int i, establishes aliases
to newly allocated target locations.

Duel accepts most of C, and C and Duel expressions
can be intermixed freely. For example, the following
Duel lines all print the same scope fields as the search
of hash described above.

gdb> duel int i; for (i = 0; i < 1024; i++)
if (hash[i] && hash[i]->scope > 5)

hash[i]->scope

gdb> duel int i; for (i = 0; i < 1024; i++)
if (hash[i]) hash[i]->scope >? 5

gdb> duel int i; for (i = 0; i < 1024; i++)
(hash[i] !=? 0)->scope >? 5

As suggested by its semantics, Duel’s if is an ex-
pression, e.g.,

gdb> duel for (i = 0; i < 9; i++)
4 + if (i%3==0) i*5

4+i*5 = 4
4+i*5 = 19
4+i*5 = 34

The appearance of “i” instead of its value in this
example illustrates a potentially unappealing side ef-
fect of Duel’s symbolic display algorithm. The algo-
rithm substitutes the actual value only for generators;

other expressions are displayed as entered. Enclosing
an expression in braces overrides the default display
for that expression and causes its value to be dis-
played, e.g.,

gdb> duel for (i = 0; i < 9; i++)
4 + if (i%3 == 0) {i}*5

4+0*5 = 4
4+3*5 = 19
4+6*5 = 34

The semicolon specifies the sequence operator,
which evaluates but discards its left operand, and re-
turns its right operand, e.g.,

gdb> duel i := 1..3; i + 4
i+4 = 7

imply is specified by =>; e1=>e2 produces e2’s val-
ues for each of e1’s values, e.g.,

gdb> duel i := 1..3 => {i} + 4
1+4 = 5
2+4 = 6
3+4 = 7

The operator a := e defines a to be an alias for e,
which may be either an lvalue or an rvalue, e.g.,

x:= hash[..1024] !=? 0 => y:= x->scope => y = 0

clears the scope fields of the symbols in hash. x is
an alias for each element of hash and y is an alias for
each scope field.

The operators “.” and -> specify Duel’s with oper-
ator; as in C, “.” applies to structures and -> applies
to pointers to structures. In both e1.e2 and e1->e2,
e2 is evaluated within the scope of e1. For example,
alternation can specify several fields of a structure:

gdb> duel hash[1,9]->(scope,name)
hash[1]->scope = 3
hash[1]->name = "x"
hash[9]->scope = 2
hash[9]->name = "abc"

The “.” and -> operators are quite general, e.g.,

x:= hash[..1024] !=? 0 =>
x->(if (scope > 5) name)

prints the name field of the elements in hash that
have a scope greater than 5. References to “_” refer
to with’s operand, which helps eliminate temporaries
like x in the example above; for instance, the example
above can be done by

hash[..1024]->(if (_ && scope > 5) name)

Using “_” instead of an alias often produces more
informative output. For example

gdb> duel y:= x[..10] => if (y < 0 || y > 100) y
y = -9
y = 120

gdb> duel x[..10].if (_ < 0 || _ > 100) _
x[3] = -9
x[8] = 120

The first command uses an alias for each element
of x and prints those elements that are less than 0
or greater than 100. The output displays the name
of the alias, not the elements of x. The “_” stands
for the value itself, an element of x in this example,
so the output of the second command displays the
specific elements of x that are generated. The same
effect can be achieved with aliases but requires an-
other temporary:

y:= x[j := ..10] => if (y < 0 || y > 100) x[{j}]

The operator --> specifies the dfs node described
in the previous section. e1-->e2 produces the values
from the data structure given by e1 using e2 to spec-
ify the traversal. For example, if head points to a
linked list of structures threaded through next fields,
head-->next produces the elements of the list, i.e.,
it produces head, head->next, head->next->next,
etc., until a NULL pointer or an invalid pointer termi-
nates the sequence. So,

gdb> duel hash[0]-->next->scope
hash[0]->scope = 4
hash[0]->next->scope = 3
hash[0]->next->next->scope = 2
hash[0]->next->next->next->scope = 1

prints the scope fields of the list emanating from
hash[0]. Specifying hash[..1024] would print the
scope fields for all of the symbols in the table.

The expression

L-->next->(value ==? next-->next->value)

answers the Introduction’s query about list L
containing identical elements in its value fields.
L-->next generates each element in L, the value field
of which is compared to the value fields of each of
the succeeding elements generated by next-->next.
Compare this compact expression with the C code
given in the Introduction. The longer C code hides
a bug: the initialization of the inner for loop should
be q = p->next.

Suppose a binary tree is composed of nodes in
which each node includes an integer key and left
and right fields that point to the subtrees, and that
root is the head of the binary tree specified in pre-
order as (9, (3 (4) (5)), (12)). The keys in the
entire tree are printed by

gdb> duel root-->(left,right)->key

root->key = 9
root->left->key = 3
root->left->right->key = 5
root->left->left->key = 4
root->right->key = 12

and the path to the node holding 5 is printed by

gdb> duel root-->(if (key < 5) left
else if (key > 5) right)->key

root->key = 9
root->left->key = 3
root->left->right->key = 5

Another, more complex, example is

gdb> duel hash[..1024]-->next->
if (next) scope <? next->scope

hash[287]-->next[[8]]->scope = 5

hash[..1024]-->nextproduces all of the nodes on
all of the lists in hash. The if expression returns a
scope field only if it is less that the scope field of the
next element on the list. Thus, this command verifies
that the symbols in each list are sorted in decreasing
order of scope, as expected. This output displays the
error. The symbolic display algorithm automatically
prints occurrences of ->a->a as -->a[[2]], etc.

The select operator is specified by e1[[e2]] and
produces the values from e1 as specified by the values
in e2. For example,

gdb> duel ((1..9)*(1..9))[[52,74]]
6*8 = 48
9*3 = 27
gdb> duel head-->next->value[[3,5]]
head-->next[[3]]->value = 33
head-->next[[5]]->value = 29

The reduction operators help summarize the con-
tents of data structures, e.g., count is specified by
#/e and counts the number of values produced by e:

gdb> duel #/(root-->(left,right)->key)
5

The operator unary e#n produces the values of e
and arranges for n to be an alias for the index of each
value in e. Thus, if L is the list mentioned in the
Introduction and its 4th and 9th nodes each contain
27 the following command displays the duplication.

gdb> duel L-->next#i->value ==?
L-->next#j->value =>

if (i < j)
L-->next[[i,j]]->value

L-->next[[4]]->value = 27
L-->next[[9]]->value = 27

The expression e@n produces the values of e until
e.n is non-zero. For example, is s is a pointer to

a character, s[0..999]@(_==’\0’) produces s[0],
s[1], . . .up to but not including the terminating null
character. Also, n can be a constant, in which case
the expression produces the values of e up to the
first one that equals n. “e..” generates an essen-
tially infinite sequence of integers beginning at e, so
argv[0..]@0 generates the strings in argv.

Implementation

Duel is designed to be implemented as an add-on to
existing debuggers. Currently, it is interfaced only to
gdb, but Duel is not derived in any way from gdb.
Duel works wherever gdb does and can be used with
emacs and other debugger front ends.

Duel’s yacc-based parser and the hand-written
lexer accept a Duel expression and compile it into
an abstract syntax tree. The nodes in the AST cor-
respond to the primitive operators described above.

Evaluation is implemented by duel_eval, which
is the actual function corresponding to the ab-
stract function eval use to describe the semantics.
duel_eval’s code for most of the operators is equiv-
alent to the pseudo-code that describes their seman-
tics.
duel_eval and its associated functions are about

400 lines of C. Related functions, which manipulate
search stacks, aliases, etc., are another 300 lines, and
the operator application functions, including Value
manipulations, consist of about another 1200 lines.
The graph-expansion operators, e.g., -->, are imple-
mented as described above, but the current imple-
mentation does not handle cycles.

As for other very high-level languages, type check-
ing must be done during evaluation, not during com-
pilation. For example, in (x,y).a, x and y can each
have any structure type with a field named a. Con-
sequently, the ASTs are decorated with symbolic val-
ues, like a, instead of pointers to symbol-table entries
as in most compilers.

While evaluation-time type checking is flexible, it
costs time. For example, most of the time in evaluat-
ing 1..100+i goes to the 100 lookups of i. The cur-
rent implementation of duel_eval is flexible to allow
experiments with different semantics and syntax, but
more efficient implementations of generators are pos-
sible [14]. The evaluation time for most Duel expres-
sions is negligible. For example, x[..10000] >? 0
compiles and executes in about 5 seconds on a DEC-
Station 5000. A faster implementation would be re-
quired if Duel expressions were used in watchpoints
and conditional breakpoints. For many Duel ex-
pressions, run-time type checking and symbol lookup

could be done at compile time using type-inference
techniques.

The “values” produced during evaluation have a
type, an actual value, and a symbolic value. The ac-
tual value is a value of a primitive C type or an lvalue,
which is a pointer to target data. The symbolic value
is a symbolic expression (i.e., a legal Duel expression)
that indicates how the value was computed. The sym-
bolic value of a variable is its name; for most binary
operators ×, the symbolic value is a× b where a and
b are the symbolic values of the operands. Some op-
erators have symbolic values that relate better to the
computation at hand, e.g., a..b’s symbolic value is
the current iteration value. Symbolic values assist in
the display of results as well as errors: The offending
operand’s symbolic value is printed, e.g., the expres-
sion ptr[..99]->val might produce

Illegal memory reference in x of x->y:
ptr[48] = lvalue 0x16820.

The symbolic value of an expression is computed at
the same time that the expression is evaluated, e.g.,
in x[1+2] the strings "1+2" and "x" are combined to
produce "x[1+2]" at the same time that the lvalue
&x+3 is computed. In most cases, the computation of
the symbolic value is more expensive than comput-
ing the result. Furthermore, many of the symbolic
computations are unnecessary, because they are never
printed, e.g., in x[..1000] !=? 0, the symbolic ex-
pression x[i] is computed 1000 times, even though it
might be printed only once. This kind of overhead is
noticeable in complex queries and would need to be
eliminated if such queries were used in watchpoints
and conditional breakpoints.

Duel’s interface to a debugger is a two-way interface
and is intentionally narrow to simplify connecting it
to a debugger. Duel duplicates some debugger capa-
bilities in order to reduce its dependence on specific
debuggers. For example, Duel contains its own type
and value representations and its own implementa-
tion of the C operators.

The only new gdb command, duel expr, accepts a
Duel expression and passes it as a string to Duel’s
single entry point. The only modification to gdb was
the change to one line to allow # in commands (#
starts a comment in gdb; Duel uses ##). A single
module contains the interface code between Duel and
gdb. This module is about 400 lines of C broken down
as follows.

30 duel command
100 converting between gdb and Duel types
100 symbol-table functions
70 accessing the target’s address space

100 miscellaneous

Duel calls functions to allocate memory, read and
write the target’s data space, and to determine the
types and addresses of target symbols. It does not
call any gdb functions.

Duel’s debugger interface consists of the following
functions.

duel_get_target_bytes
duel_put_target_bytes:

copies n bytes to/from a target address.
duel_alloc_target_space:

allocates n bytes in the target space.
duel_call_target_func:

calls a function in the target.
duel_get_target_variable:

returns value/type information for a symbol.
duel_get_target_typedef/struct/union/enum:

returns type information for a symbol.

Except for type and value conversions, most of these
functions simply call gdb equivalents. Only a few
other miscellaneous functions are needed, e.g., to find
the number of active frames, to retrieve bit fields in
a machine-dependent way, etc.

Duel has been “ported” only from gdb 4.2 to
gdb 4.6 on both SUN and DEC workstations. It has
also been tested as a stand-alone program under MS-
DOS. The change in gdb versions required modifica-
tions to only 4 lines of code in the interface module
because internal gdb structures changed.

Discussion

Initial experience with Duel suggests that its gener-
ators are an effective way to explore program state.
Once the initial implementation was working, it was
used to probe both itself and gdb. This exploration
not only uncovered bugs, but helped to understand
the inner workings of gdb, which was necessary for
designing and implementing the Duel–debugger in-
terface.

As expected, Duel’s syntax remains a potential hur-
dle. Understanding the semantics independently of
the syntax helps, but programmers must interact with
the debugger at some syntactic level, so Duel’s syntax
continues to evolve. Alternatives are also under con-
sideration. For example, some database query lan-
guages use a visual programming approach to com-
posing queries. Duel might benefit from a similar
approach, especially if it maintained a history so that
common, program-specific queries could be made by
simply pointing and clicking. Allowing such history
lists to be edited might also help.

Currently, Duel expressions can refer only to pro-
gram variables. For example, displaying the local x in

all of the currently active stack frames for the func-
tion that declares x is tedious to do with most de-
buggers. Mechanisms for exploring such “unnamed”
portions of the program state would be useful and
are under investigation. Duel would also be useful
in other traditional debugging facilities, e.g., watch-
points and conditional breakpoints.

Duel’s linguistic framework might apply to other
programming environment facilities that rely on pro-
gram state exploration. Assertions, for example,
make claims about the state at various points in a pro-
gram. Complex assertions, e.g., “x[0] through x[n]
are positive,” often need non-trivial code to compute
the assertion outcome. Annotating programs with
assertions written in a Duel-like language might sim-
plify making these kinds of assertions and encourage
their use.

Availability

Duel is public-domain software. It is available for
anonymous ftp from ftp.cs.princeton.edu in the
directory pub/duel.

References
[1] B. Beander. VAX DEBUG: An interactive, sym-

bolic, multilingual debugger. Proceedings of the
SIGSOFT/SIGPLAN Software Engineering Sympo-
sium on High-Level Debugging, SIGPLAN Notices,
18(8):173–179, Aug. 1983.

[2] T. A. Budd. An implementation of generators in
C. Journal of Computer Languages, 7(2):69–82, Mar.
1982.

[3] R. H. Crawford, R. A. Olsson, W. W. Ho, and C. E.
Wee. Semantic issues in the design of languages
for debugging. In Proceedings of the International
Conference on Computer Languages, pages 252–261,
Oakland, CA, Apr. 1992.

[4] R. E. Griswold. The evaluation of expressions in Icon.
ACM Transactions on Programming Languages and
Systems, 4(4):563–584, Oct. 1982.

[5] R. E. Griswold and M. T. Griswold. The Implemen-
tation of the Icon Programming Language. Princeton
University Press, Princeton, NJ, 1986.

[6] R. E. Griswold and M. T. Griswold. The Icon
Programming Language. Prentice Hall, Englewood
Cliffs, NJ, second edition, 1990.

[7] M. S. Johnson. The design of a high-level, language
independent symbolic debugging system. In Proceed-
ings of the ACM Annual Conference, pages 315–322,
Seattle, WA, Oct. 1977.

[8] M. S. Johnson. The Design and Implementation of
a Run-Time Analysis and Interactive Debugging En-
vironment. PhD thesis, The University of British
Columbia, Aug. 1978.

[9] M. A. Linton. The evolution of Dbx. In Proceedings
of the Summer USENIX Technical Conference, pages
211–220, Anaheim, CA, June 1990.

[10] J. O’Bagy and R. E. Griswold. A recursive inter-
preter for the Icon programming language. Pro-
ceedings of the SIGPLAN’87 Symposium on Inter-
preters and Interpretive Techniques, SIGPLAN No-
tices, 22(7):138–149, July 1987.

[11] R. A. Olsson, R. H. Crawford, and W. W. Ho. Dalek:
A GNU, improved programmable debugger. In Pro-
ceedings of the Summer USENIX Technical Confer-
ence, pages 221–231, Anaheim, CA, June 1990.

[12] R. A. Olsson, R. H. Crawford, W. W. Ho, and C. E.
Wee. Sequential debugging at a high level of abstrac-
tion. IEEE Software, 8(3):27–35, May 1991.

[13] R. M. Stallman and R. H. Pesch. Using GDB: A
guide to the GNU source-level debugger, GDB ver-
sion 4.0. Technical report, Free Software Foundation,
Cambridge, MA, 1991.

[14] K. Walker and R. E. Griswold. An optimizing com-
piler for the icon programming language. Software—
Practice & Experience, 22(8):637–657, Aug. 1992.

Michael Golan is a graduate student in the PhD pro-
gram in Computer Science at Princeton University.
His research interests include programming environ-
ments and software engineering. He can be reached
via US mail at Dept. of Computer Science, Princeton
University, 35 Olden St., Princeton, NJ 08544 and via
electronic mail at mg@cs.princeton.edu.

David R. Hanson received his PhD in Computer Sci-
ence from the University of Arizona in 1976. He
has held faculty positions at Yale and the Univer-
sity of Arizona and was Dept. Head at Arizona from
1981–86. His visiting appointments include the Uni-
versity of Utah, the Institute for Defense Analyses,
Adobe Systems, and Digital’s Systems Research Cen-
ter. In 1986, he joined Princeton University, where
he is currently Professor of Computer Science. He
was co-editor of Software—Practice & Experience
from 1980–88 and continues to serve on its editorial
board. He can be reached via US mail at Dept. of
Computer Science, Princeton University, 35 Olden
St., Princeton, NJ 08544 and via electronic mail at
drh@cs.princeton.edu.

