
Dynamic Variables
David R. Hanson and Todd A. Proebsting

Microsoft Research
1 Microsoft Way

Redmond, WA 98052

{drh,toddpro}@microsoft.com

ABSTRACT
Most programming languages use static scope rules for
associating uses of identifiers with their declarations. Static scope
helps catch errors at compile time, and it can be implemented
efficiently. Some popular languages—Perl, Tcl, TeX, and
Postscript—offer dynamic scope, because dynamic scope works
well for variables that “customize” the execution environment, for
example. Programmers must simulate dynamic scope to
implement this kind of usage in statically scoped languages. This
paper describes the design and implementation of imperative
language constructs for introducing and referencing dynamically
scoped variables—dynamic variables for short. The design is a
minimalist one, because dynamic variables are best used
sparingly, much like exceptions. The facility does, however, cater
to the typical uses for dynamic scope, and it provides a cleaner
mechanism for so-called thread-local variables. A particularly
simple implementation suffices for languages without exception
handling. For languages with exception handling, a more efficient
implementation builds on existing compiler infrastructure.
Exception handling can be viewed as a control construct with
dynamic scope. Likewise, dynamic variables are a data construct
with dynamic scope.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features—dynamic scope, control structures.

General Terms
Languages.

1. INTRODUCTION
Nearly all modern programming languages use static (or
lexical) scope rules for determining variable bindings.
Static scope can be implemented very efficiently and makes
programs easier to understand. Dynamic scope is usually
associated with “older” languages; notable examples
include Lisp, SNOBOL4, and APL. Despite the prevalence
of static scope, several widely used “newer” languages—
PostScript, Tcl, TeX, and Perl—either use dynamic scope

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
PLDI ’01, June 20-22, 2001, Snowbird, UT.
Copyright 2001 ACM 1-58113-000-0/00/0000…$5.00.

or include features that amount to dynamic scope. For
example, Tcl’s upvar can be used to access local variables
in other active procedures, and Perl supports both static and
dynamic scope on a per-variable basis. Shell environment
variables are another example. Admittedly, these languages
are used mostly in specific application domains, but their
wide use suggests that dynamic scope is a useful facility.

Dynamic scope is particularly useful in applications and
libraries that operate in a customizable “environment.” Full-
featured GUI packages are good examples; they support a
plethora of style and presentation features, which must be
programmed in some way. Even many “ordinary”
applications have some of these characteristics; for
example, compilers often have options that permit clients to
specify target machines, compiler passes, linker options,
etc., and compilers in integrated development environments
typically have more options, because their “clients” are
other programs.

Without dynamic scope, programming these kinds of
features must be done explicitly in terms of the
implementation language. Usually, objects are loaded up
with fields or methods that implement these features, or
methods and functions have zillions of parameters (perhaps
with defaults). Indeed, an argument for optional, keyword-
style formal parameters with defaults is that they cater to
this kind of programming problem. In extreme cases,
programmers move this boatload of fields or parameters
into an object, which is passed as a parameter nearly
everywhere. Methods are called to read, write, save, and
restore these data. This popular approach usually simplifies
the code considerably. It is also tantamount to
implementing a set of variables with dynamic scope.

These unstructured, ad hoc approaches, which are often not
type-safe and perhaps inefficient, can be replaced with
equivalent language constructs that are structured, type-
safe, and efficient. For example, Lewis et al. [6] extended a
statically scoped functional language with “implicit
parameters,” which are dynamically scoped variables, and
syntax for binding them and referencing them.

The remainder of this paper describes new imperative
language constructs for supporting variables with dynamic
scope. Like exception handling, such “dynamic variables”
are best used sparingly, and the particularly simple design

caters to this anticipated usage pattern. The simple
implementation described below is probably sufficient for
most languages, but a more sophisticated—and hence more
efficient—implementation builds on the existing
implementations of exception handling. Consequently,
compilers for modern languages already have most of the
infrastructure necessary for implementing dynamic
variables.

2. DESIGN
Only two statements are necessary to add dynamic variables
to most languages—one that creates and initializes a
dynamic variable and one that binds a local variable to an
instance of a dynamic variable.

The set statement instantiates and initializes a dynamic
variable:

set id : T = e in S

The dynamic variable id is instantiated and initialized to the
value of the expression, e, and the statement S is executed.
The id is visible within S and may be read and written
within S. The type of e must be a subtype of T or be
assignable to identifiers of type T. The lifetime and scope of
id is restricted to S; when S terminates, the dynamic
variable is destroyed.

The use statement accesses a dynamic variable introduced
by a set statement:

use id : T in S

The local variable id is bound by reference to a dynamic
variable and the statement S is executed. The scope of the
local introduced by the use statement is restricted to S, and
id may be read and written within S. The local id is bound
to the most recently created dynamic variable idk with the
lexographically identical name and for which Tk is a
subtype of T. In Java terms, id is bound to the first idk such
that “id” = “idk” and idk instanceof T is true. For
example:

set x:T3 = … in
set x:T2 = … in {

…
use x:T1 in { … }
…

}

If T2 and T3 are both subtypes of T1 in these fragments,
the x in the use statement is bound to the x:T2 in the
nested set statement. If an appropriate dynamic variable is
not found, the exception VariableNotFound is raised.
In languages without exceptions, a runtime error occurs.

Types are considered in binding the identifier in a use
statement because doing so is perhaps the only way to
insure that existing code continues to work in a component-

based system. If the lookup was based only on
lexographical names, programmers would have to know the
names of all of the other dynamic variables in a program,
which is impossible when software is constructed from
components. Likewise, if the lookup was based on exact
types, instead of subtypes, existing use statements could
not cope with new code in which the identifiers in set
statements have been extended by declaring them subtypes
of the original types.

A single set statement can contain multiple declarations,
which are evaluated sequentially. That is,

set id1 : T1 = e1, id2 : T2 = e2, …, idn : Tn = en in S

is equivalent to

set id1 : T1 = e1 in
set id2 : T2 = e2 in

set … in
set idn : Tn = en in S

Likewise,

use id1 : T1, id2 : T2, …, idm : Tm in S

is equivalent to

use id1 : T1 in
use id2 : T2 in

use … in
use idm : Tm in S

3. APPLICATIONS
Dynamic variables can replace the plethora of extra
parameters and globals that often appear in, for example,
GUI applications. Dynamic variables cut considerable
verbiage in functions that use a few or none of them,
because only those that are actually used appear in use
statements.

Compiling loops and switch statements in recursive-descent
compilers or in abstract-syntax tree traversals provide
another simple example. Typical implementations associate
a label or other handle with each loop and switch statement,
and these data are used in compiling loop and switch exits,
such as break and continue statements. Parameters for these
data are passed to every recursive function in which the exit
constructs can occur. For example, in lcc [2], every
statement parsing function has three extra parameters, and
most of those functions simply pass these parameters along
to the functions they call. Using dynamic variables for these
data eliminated these parameters and confined the use of
these data to the functions for break and continue
statements, and for case labels.

Dynamic variables were conceived during the design and
implementation of Minicon, a new object-oriented, C++
implementation of the Icon programming language [4].

Minicon is based on Jcon, an interpretative implementation
of Icon written in Java [9]. Icon includes numerous built-in
keywords and functions that access implementation
information. For example, Icon’s string-scanning facilities
uses the keywords &subject and &pos hold the current
string being examined and the position in that string; built-
in functions read and write these values. Likewise,
&input, &output, and &errout give the default files
for the built-in I/O functions.

The initial implementation of Minicon used ad hoc
techniques for accessing keywords and other internal
values. The most prevalent technique passed an
“environment” pointer to those built-in functions that
accessed keywords. Environments held a table of keywords
and a cache of the values of a few frequently accessed
keywords. This approach is essentially an implementation
of dynamic scope. The result wasn’t pretty: There were two
ways to call built-in functions—with and without the
environment pointer—so two data types represented built-
ins. C++ derived classes and virtual functions hid some of
this verbiage, but the clutter made the implementation
harder to understand and to modify and complicated the
interpreter.

These techniques were replaced with dynamic variables,
using macros based on those shown in Appendix B. This
change eliminated excess parameters to many functions and
many lines of code, and thus cleaned up much of the
original mess. Dynamic variables simplified the
implementation and representation of built-in functions by
reducing the number of ways to call them and the number of
data types. The result is, unsurprisingly, easier to
understand and to modify, and the performance cost is
miniscule.

Perhaps a more important use of dynamic variables is in
multithreaded applications. Languages and systems that
support threads often provide mechanisms for specifying
per-thread global variables; that is, variables with global
scope and with lifetimes associated with the lifetimes of
individual threads. These facilities usually require
operating-system support. For example, the Microsoft
C/C++ compiler supports “thread-local” global variables by
making the appropriate Windows system calls.
Unfortunately, this facility doesn’t work properly in
libraries that are loaded at runtime—thread-local variables
are not initialized properly [10]. For those libraries,
programmers must call the Windows system calls explicitly.

Dynamic variables are allocated on the stack, so they are
automatically “thread-local,” assuming a thread-safe
implementation. Specifying them in a set statement in the
thread’s initial function makes them available (via use
statements) to all functions called in the same thread, as if
they were global variables.

Lewis et al. [6] provide a compelling survey on how
dynamic scope helps make functional programs more clear
and concise.

4. IMPLEMENTATION TECHNIQUES
For languages without exception handling, a simple,
reasonably efficient, implementation of dynamic variables
can be used. This implementation is also an operational
semantics for the set and use statements. For languages
that must support exception handling, the implementation of
dynamic variables can use much of the existing exception
handling implementation infrastructure.

4.1 Simple Implementation
Conceptually, the set statement creates a set of dynamic
variables and pushes it onto a global stack of such sets.
Reaching the end of the set statement pops the stack. The
use statement searches the sets from the top of the stack
down for each identifier listed in use statement and, if the
identifier is found, stores the address of the dynamic
variable in a local variable of the same name. Within the
use statement, references to dynamic variables are
compiled into the appropriate indirections.

The set statement can be implemented with no heap
allocation overhead, because all of the allocations can be
done at compile time as local variables. The stack of sets is
simply a list of structures defined by the following pseudo-
C code, one for each dynamic variable.

struct dVariable {
struct dVariable *link;
const char *name;
Type *type;
void *address;

} *current = 0;

dVariable instances are linked via the link field, the
name field points to the name of the variable, the type
field points to a type descriptor sufficient for testing the
subtype relation, and the address field holds the address
of the variable. A per-thread global variable, current,
points to the head of the list of dVariables.

The set statement

set id1 : T1 = e1, id2 : T2 = e2, …, idn : Tn = en in S

is translated into the following compiler-generated code.
The set statement declares a local variable for each listed
id, and “pushes” a dVariable onto the current list for
each id. After executing S, the previous value of current
is restored from the link field of the first listed id. In the
code below, typeof (T) returns a pointer to the type
descriptor for T, and compiler-generated names are used
where necessary.

{
T1 id1 = e1;
struct dVariable dVar_id1;
dVar_ id1.name = ″id1″;
dVar_ id1.type = typeof (id1);
dVar_ id1.address = &id1;
dVar_ id1.link = current;
current = &dVar_ id1;
T2 id2 = e2;
struct dVariable dVar_id2;
dVar_ id2.name = ″id2″;
dVar_ id2.type = typeof (id2);
dVar_ id2.address = &id2;
dVar_ id2.link = &dVar_ id1;
current = &dVar_ id2;
…
Tn idn = en;
struct dVariable dVar_idn;
dVar_ idn.name = ″idn″;
dVar_ idn.type = typeof (idn);
dVar_ idn.address = &idn;
dVar_ idn.link = &dVar_idn-1;
current = &dVar_ idn;
S
current = dVar_ id1.link;

}

All the variables declared in the generated code fragment
above are locals, so their storage is allocated as part of the
stack frame. On 32-bit machines, the stack space overhead
is 16n bytes for a set statement with n identifiers, not
counting the string space for the identifier names. The only
runtime overhead is the code for fetching current and its
fields and the assignments to the fields and to current. A
similar technique is used to build the “shadow stack” in the
debugger cdb [5].

The use statement generates a linear search starting at
current. The use statement declares a local variable for
each listed id and searches for the appropriate dynamic
variable instantiated by a set statement. The generated
code below assumes that strings for the identifier names
have been “internalized” so that there is only one copy of
each distinct string. Consequently, two strings are identical
if their addresses are equal. Internalization can be done at
program startup or even at link time. The statement

use id1 : T1, id2 : T2, …, idm : Tm in S

is translated into the following compiler-generated code:

{
T1 *id1 = dSearch(″id1″, typeof (T1));
T2 *id2 = dSearch(″id2″, typeof (T2));
…
Tm *idm = dSearch(″idm″, typeof (Tm));

S
}

where dSearch is:

void *dSearch(const char *name,
Type *type) {

struct dVariable *p = current;
for (; p != 0; p = p->link)

if (p->name == name
&& type is a subtype of p->type)

return p->address;
raise VariableNotFound;

}

By design, the search occurs only once for each identifier at
the entry to the use statement; multiple references to the
idk in S are compiled into simple indirections through the
pointers shown in the generated code above.

This simple implementation is easily encoded into macros
or function calls that provide most of the benefits of
dynamic variables in existing languages, such as C and
C++. As an example, Appendix B gives macro definitions
for use in C++; these are used in the Minicon
implementation, as detailed above.

More sophisticated search techniques could be used, but
they would undoubtedly require more sophisticated data
structures and thus complicate code generation for both
set and use statements. For example, hashing would
make use statements more efficient at the expense of set
statements. Hashing identifiers can be done at compile time,
so the dVariables could be linked onto the heads of the
appropriate chains with code as simple as shown above,
assuming the size of the hash table is also known at compile
time. At the end of the set statement, however, the
dVariables must be unlinked from the chains in the
reverse order in which they were linked. The compiler
could determine which dVariables were the first ones
linked onto each chain and unlink just those, but the savings
achieved by this extra effort is likely to be small. Appendix
C gives details. Another possible improvement that
maintains the simplicity of the implementation above is to
replace the calls to dSearch with code that searches for
all m identifiers at once. Of course, the asymptotic
complexity of these improvements is no better than the
simpler implementation, but the average case might be
improved, because failing searches are unexpected.

4.2 Novel Implementation
Most modern programming languages include exception-
handling facilities, and typical implementations of these
facilities are quite efficient. The runtime overhead when
exceptions are not raised is small or zero; it’s all in the
generated code and runtime library code that is executed

when an exception occurs, under the assumption that
exceptions are rare [1].

Dynamic variables can enjoy similar efficiencies by
extending the mechanisms that a compiler for a modem
language already implements. Java uses a typical
implementation of exception handling [7]. The Java
compiler emits exception tables, which allow the runtime
system to identify exception-handling code when an
exception occurs. These tables take only space. For
example, given the following Java code, taken from
Reference [7],

void CatchOne() {
try {

tryItOut();
} catch (TestExc e) {

handleExc(e);
}

}

the compiler emits four items into an exception table entry:
the starting and ending locations in the generated code for
the try statement, the location of the exception handler,
which is the call to handleExc in this example, and the
type of the exception, i.e., TestExc above. Armed with
the current location counter and the stack, the runtime
system interprets these tables to find the appropriate
exception handler, unwinding the stack as it goes, and
transfers control to that handler.

Dynamic variables need similar data: the boundaries of a
set statement, and the types, names, and addresses of the
local identifiers. The table entries could thus be defined by:

struct dEntry {
void *from; // start of PC range
void *to; // end of PC range
Type *type; // declared type
const char *name;
int offset; // local’s frame pointer offset

}

The from and to fields give the boundaries of the relevant
part of the set statement. The type and name fields are
the same as the dVariable fields by the same names. The
offset field is the offset from the frame pointer or other
known location in a stack frame to the local variable idk and
is used to compute the runtime address of idk. For the sake

of explanation, the following structure models stack frames.

struct frame {
struct frame *caller;
void *retaddress;
struct dEntry *dTable;
…

}

Given a frame for a function, the caller field points to
the caller’s frame, retaddress holds the return address
in the function’s caller, and dTable points to an array of
dEntry structures that identify the set statements in that
function; this array is terminated with a from value equal
to zero. Addresses of local variables are computed by
adding their offsets to the address of the frame.

In actual implementations, the dTable field would more
likely be computed directly from the location counter
instead of being stored in the frame in order to avoid the
initialization costs. The salient detail is that the appropriate
table can be found given frame pointer and an address in
the corresponding function. Similar comments apply to
finding exception tables.

The set statement is compiled into a sequence of n
assignments and n table entries as shown in Figure 1. As for
exception-handling tables, the entries in the dynamic
variable tables must be ordered so that the location counter
ranges for nested set statements appear first.

dLookup searches the dynamic variable tables in the call
stack for the first variable of a given name and type. The
function _self returns a pointer to the caller’s stack
frame.

{
T1 id1 = e1;

start1: T2 id2 = e2;
…

startn-1: Tn idn = en;
startn: S
end:
}

from to type name offset
start1 end T1 ″id1″ offset1

start2 end T2 ″id2″ offset2

…
startn end Tn ″idn″ offsetn

0

Figure 1. Generated code and table for the set statement.

void *dLookup(const char *name,
Type *type) {

struct frame *fp = _self()->caller;
void *pc = _self()->retaddress;
for (; fp != 0; pc = fp->retaddress,

fp = fp->caller)
if (fp->dTable != 0) {

struct dEntry *p = fp->dTable;
for (; p->from != 0; p++)

if (pc >= p->from && pc < p->to
&& p->name == name
&& type is a subtype of p->type)

return (char *)fp + p->offset;
}

raise VariableNotFound;
}

The use statement is compiled into code that is nearly
identical to the code shown in previous subsection, except
that dSearch is replaced by dLookup:

{
T1 *id1 = dLookup(″id1″, typeof (T1));
T2 *id2 = dLookup(″id2″, typeof (T2));
…
Tm *idm = dLookup(″idm″, typeof (Tm));
S

}

Implementing dynamic variables is actually simpler than
implementing exception handling, because there are no
control-flow or stack unwinding issues, which simplifies
optimizations and debugging.

5. DISCUSSION
Much prejudice against dynamic scoping can be traced
back to early LISP systems, which suffered from slow
implementations and the “downward funarg problem” [11].
As we’ve shown, dynamic variables need not be slow, and
the funarg problem is not at issue, because it affects only
languages with closures.

Lewis et al. [6] give a compelling description of the
benefits of dynamic scoping in a functional language. They
do so by implementing dynamic variables as implicit
parameters, which can be inferred from the underlying
code. To infer implicit parameters, they rely on lexically
distinguishing implicit parameters from ordinary identifiers.
Our work differs from theirs in several ways. We propose
alternative implementation strategies to provide implicit
parameters. Our scheme does not rely on any inference
mechanism to determine where dynamic variables might be
needed. While their scheme nicely reflects their functional-
language infrastructure, our scheme’s dynamic variable
binding mechanism reflects the common exception-
handling facilities found in object-oriented languages. After
the use of implicit parameters improved samples of code,
they assert, “The resulting code is of a conciseness that is

difficult to achieve when working in C or C++” (page 115).
We agree completely, which is why we propose our
dynamic scoping extensions for exactly that class of
languages.

Lewis et al. [6] avoid the thorny issue of failing searches by
doing whole-program analysis to detect missing dynamic
variables at compile time. While this approach is strictly
more robust than ours, and it is certainly possible to use in
an imperative language, it is impractical for component-
based software where the entire program is not available—
and cannot ever be known.

The set and use statements are—intentionally—a
minimal facility. They are ideal for the relatively infrequent
use of dynamic variables, which, like exceptions, are best
used in small doses. Reasonable improvements and
enhancements are easy to imagine, but it is difficult to test
their ultimate value. For example, separate variables seem
superfluous when there’s already a suitable local. Thus

set id in S

could abbreviate the idiom

id: T; …; set id: T = id in S

Likewise, name conflicts might plague use statements,
particularly in component-based software. Specifying an
alias could solve this problem:

use id : T as id´ in S

Within S, the dynamic variable id would be accessed as id´
in order to avoid conflicts with other uses of id in the
context in which the use statement appears. This extension
is similar to the way Modula-3 provides aliases for
imported interfaces [8].

Finally, object-oriented languages usually include
predicates for testing types, e.g., Java’s instanceof,
which suggests that a similar predicate for testing the
existence of dynamic variables might be useful, e.g.,
isdynamic(id, T) would return true if id is a dynamic
variable of type T or a subtype of T and false otherwise.

Dealing with failing searches in use statements is perhaps
the weak point of our design. Such failures are bound to
occur, and robust software components must anticipate and
cope with them.

Catching the VariableNotFound exception and
isdynamic are the only mechanisms in the present design
for dealing with missing dynamic variables. For example,
suppose a code generator is to emit its output to the
Stream given by the value of the dynamic variable
output. If output isn’t defined, the output should go to
the default stream, stdout. Writing this code with either
isdynamic or a try-catch statement is awkward:

if (isdynamic(output, Stream))
use output: Stream in S

else {
output: Stream = stdout;
S

}

or

try {
use output: Stream in S

} catch (VariableNotFound) {
output: Stream = stdout;
S

}

It is, of course, possible to avoid the duplication of S by
using additional variables, but the result remains awkward
at best. The more important issue is whether or not to
instantiate output as a dynamic variable when the search
fails. The code fragments above do not; the following
fragment does:

try {
use output: Stream in S

} catch (VariableNotFound) {
set output: Stream = stdout in S

}

Missing dynamic variables may occur frequently enough to
warrant syntactic support. One possibility is to extend the
use statement with a default expression:

use id : T = default in S

If id is found, default is ignored and S is executed;
otherwise, id is initialized to default and S is executed.
There two possible implementations of this form of use
corresponding to the alternatives described above:

try {
use id : T in S

} catch (VariableNotFound) {
id : T = default;
S

}

or

try {
use id : T in S

} catch (VariableNotFound) {
set id : T = default in S

}

The second alternative has the surprising effect of making a
use statement behave as a set statement when the search
fails. And both alternatives complicate considerably the

implementations described in Section 4. Much more
experience with dynamic variables would help solidify a
final design.

Judging by the significant new languages introduced in the
past decade, the programming language community has
embraced exception handling as a mandatory language
feature, because it helps build reliable and adaptable
software. It is curious that only a control construct based on
dynamic “scope” has found wide acceptance. Dynamic
variables are a data construct with similar semantics, and, if
incorporated into modern languages, the might prove to be
a similarly important language facility.

6. REFERENCES
[1] Chase, D. R. Implementation of exception handling, Part I.

The Journal of C Language Translation 5 (4), 229–40. June
1994.

[2] Fraser, C. W. and D. R. Hanson. A Retargetable C Compiler:
Design and Implementation. Menlo Park, Calif.: Addison-
Wesley. 1995.

[3] Gosling, J., B. Joy, G. Steele, and G. Bracha. The Java
Language Specification (second edition). Boston: Addison-
Wesley. 2000.

[4] Griswold, R. E. and M. T. Griswold. The Icon Programming
Language (third edition). San Jose, Calif.: Peer-to-Peer
Communications. 1997. www.cs.arizona.edu/icon/.

[5] Hanson, D. R. and M. Raghavachari. A machine-independent
debugger. Software—Practice and Experience 26 (11),
1277–99. Nov. 1996.
www.research.microsoft.com/~drh/pubs/cdb.pdf.

[6] Lewis, J. R., M. B. Shields, E. Meijer, and J. Launchbury.
Implicit parameters: dynamic scoping with static types.
Conference Record of the 27th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages,
Boston, 108–18. Jan., 2000.
www.acm.org/pubs/articles/proceedings/plan/325694/p108-
lewis/p108-lewis.pdf.

[7] Lindholm, T. and F. Yellin. The Java Virtual Machine
Specification (second edition). Palo Alto, Calif.: Addison-
Wesley. 1999.

[8] Nelson, G. Systems Programming with Modula-3.
Englewood Cliffs, N.J.: Prentice-Hall. 1991.
www.research.compaq.com/SRC/m3defn/html/m3.html.

[9] Proebsting, T. A. and G. M. Townsend. A new
implementation of the Icon language. Software—Practice
and Experience 30 (8), 925–72. July 2000.
www.cs.arizona.edu/icon/jcon/impl.pdf.

[10] Richter, J. Advanced Windows (third edition). Redmond,
Wash.: Microsoft Press. 1997.

[11] Scott, M. L. Programming Language Pragmatics. San
Francisco: Morgan Kaufmann. 2000

APPENDIX A: SYNTAX SPECIFICATION
statement:

set def { , def } in statement
use ref { , ref } in statement

def: identifier : type = expression

ref: identifier : type

APPENDIX B: C++ MACROS
Listed below are macros that use the simple implementation technique to provide dynamic variables of pointers to class types
in C++. Typical usage is:

BEGIN_SET SET(id1, e1); …; SET(idn, en); S END_SET;

BEGIN_USE USE(id1, T1); …; USE(idm, Tm); S END_USE;

Where the Tk are pointers to class types; dynamic casts are used to test subtypes. In USE(id, T), if id is not found, id is set to
0. In the code below, Atom::New internalizes strings at program startup; i.e., it returns a pointer to the unique copy of its
argument string. This code is available at: ftp://ftp.research.microsoft.com/Users/drh/dynamic.h and
ftp://ftp.research.microsoft.com/Users/drh/dynamic.cpp.

class dVariable {
public:

const char *name;
void *value;
class dVariable *link;
dVariable(const char *name, void *value, class dVariable *link) :

name(name), value(value), link(link) {}
};

class dEnvironment {
private:

class dEnvironment *prev;
public:

static class dEnvironment *current;
class dVariable *vars;
dEnvironment() : vars(current->vars), prev(current) { current = this; }
~dEnvironment() { current = prev; }

};

#define BEGIN_SET do { class dEnvironment _dEnv;

#define SET(id,e) \
static const char *_name_##id = Atom::New(#id); \
class dVariable _dvar_##id(_name_##id,e,dEnvironment::current->vars); \
dEnvironment::current->vars = &_dvar_##id

#define END_SET } while (0)

#define BEGIN_USE do {

#define USE(id,T) \
T id = 0; \
do { \

const char *_name = Atom::New(#id); \
class dVariable *_p = dEnvironment::current->vars; \
for (; _p; _p = _p->link) \

if (_p->name == _name \
&& (id = dynamic_cast<T>(static_cast<T>(_p->value)))) \

break; \
} while (0)

#define END_USE } while (0)

This implementation is slightly different than the one described in Section 4.1. As depicted in Figure 2 below, current
points to a dEnvironment, which has prev and vars fields. The prev field holds the previous value of current, and
the vars field points to the list of dVariable instances. current is initialized to 0. The BEGIN_SET macro pushes a
new dEnvironment instance onto the list headed by current. The SET macro declares a local variable for id, and pushes
a dVariable onto the current->vars list. Using dEnvironments makes it possible to remove all of the
dVariables created in BEGIN_SET … END_SET with the single assignment current = prev in the
dEnvironment destructor.

dEnvironment dVariable

dVariable.link

dEnvironment.vars

... ...

dEnvironment.prev current

Figure 2. Shadow stack of dEnvironment and dVariable structures.

APPENDIX C: HASH-TABLE IMPLEMENTATION
The hash-table implementation described at the end of Section 4.1 involves only a few changes to the simple implementation.
A single, per-thread global holds the hash table:

struct dVariable *dVars[HASHSIZE];

The set statement links new dVariable instances onto the appropriate hash chain. H(″id″) denotes the hash value for id,
and the hashing and modulus shown below are computed at compile time. The dVariables are unlinked after executing S.

{
T1 id1 = e1;
struct dVariable dVar_id1;
dVar_ id1.name = ″id1″;
dVar_ id1.type = typeof (id1);
dVar_ id1.address = &id1;
dVar_ id1.link = dVars[H(″id1″) mod HASHSIZE];
dVars[H(″id1″) mod HASHSIZE] = &dVar_ id1;
…
Tn idn = en;
struct dVariable dVar_idn;
dVar_ idn.name = ″idn″;
dVar_ idn.type = typeof (idn);
dVar_ idn.address = &idn;
dVar_ idn.link = dVars[H(″idn″) mod HASHSIZE];
dVars[H(″idn″) mod HASHSIZE] = &dVar_ idn;
S
dVars[H(″idn″) mod HASHSIZE] = dVar_ idn.link;
…
dVars[H(″id1″) mod HASHSIZE] = dVar_ id1.link;

}

Some of the assignments following S can be omitted by unlinking only those dVariables that were the first ones linked
onto each hash chain. That is, the assignment for idk is dead and can be omitted if it is known that the link field refers to idj

where j < k.

The use statement calls a revision of dSearch that searches just the appropriate hash chain:

{
T1 *id1 = dSearch(″id1″, typeof (T1), H(″id1″) mod HASHSIZE);
…
Tm *idm = dSearch(″idm″, typeof (Tm), H(″idm″) mod HASHSIZE);
S

}

void *dSearch(const char *name, Type *type, int index) {
struct dVariable *p;
for (p = dVars[index]; p != 0; p = p->link)

if (p->name == name && type is a subtype of p->type)
return p->address;

raise VariableNotFound;
}

