ERRATA: “Printing Common Words”, Communications
of the ACM 30, 7 (July 1987), 594-599. (Also appears as
Printing Common Words, Tech. Report 86-18, Dept. of
Computer Science, The Univ. of Arizona, Tucson, May
1986.)

Several readers found an error in the common words pro-
gram presented in the “Literate Programming” column
and others have suggested improvements.

The error, pointed out by Michael Shook and others,
is in allocating list in printwords: it’s potentially too
small. The original intention was to allocate N entries
in list, where IV is the number of words in the input.
However, only total entries are allocated, and total is
the number of unique words in the input. If total is less
than the maximum word frequency, 1ist is indexed er-
roneously. This situation probably occurs infrequently
since total is usually much larger than the maximum
frequency for most “normal” inputs. The input hello
hello demonstrates the problem and causes common to
fail.

The error can be fixed by making total count the
number of words in the input, which can be done by
moving the statement total++ from addword into the loop
that calls addword in main. A better solution, however, is
to eliminate total and make 1ist just large enough to
accommodate the largest frequency of occurrence, which
can be done in printwords by making a pass over the
hash table to compute the largest frequency. This ver-
sion of printwords is

printwords (k)
int k;
{
int i, max;
struct word *wp, **list, *q;

max = 0;
for (i = 0; i <= HASHSIZE; i++)
for (wp = hashtable[i]; wp; wp = wp->next)
if (wp->count > max)
max = wp->count;
list = (struct word *x) alloc(max + 1, sizeof wp);
for (i = 0; i <= HASHSIZE; i++)
for (wp = hashtable[il; wp; wp = q) {
q = wp->next;
wp->next = list[wp->count];
list[wp->count] = wp;
}
for (i = max; i >= 0 && k > 0; i--)
if ((wp = list[i]) && k-- > 0)
for ( ; wp; wp = wp->next)
printf("/%d %s\n", wp->count, wp->word);

Hans Boehm of Rice University noted that using
the sum of the character codes as a hash function is a
poor choice. By the definition of “word” given in the



program, there are only 52 distinct character codes. So,
for example, all words of length five get hashed into a
range of only 5 % 52 = 260 hash codes and words of
length ten get hashed into a range of 10 * 52 = 520.
Thus, most of the hash table is empty and collisions are
likely, which explains in part the large number of calls to
strcmp. While I knew about the potentially poor perfor-
mance of the hash function, I didn’t change it because
common seemed to perform adequately.

I measured the lengths of the hash chains using the
test file described in the paper as input. In the following
table, the right-hand column is the chain length and the
left column is the number of chains of that length.

1 16

3 15

5 14
12 13
13 12
21 11
22 10
37 9
33 8
58 7
%) 6
83 )
94 4
148 3
176 2
335 1
3000 0

The 3000 empty slots and long chains confirm Boehm’s
predictions.

Boehm suggested shifting the sum left one bit after
each addition, e.g.,

h = 0;

s = buf;

for (len = 0; *s; len++)
h = (h<<1l) + *s++;

Using this hash function gives a better distribution for
the test input, but there are still many empty slots:

2 10

5 9

3 8
18 7
45 6
98 )
189 4
213 3
455 2
1

0



Finally, Joe Warren of Rice suggested mapping the char-
acter codes into random numbers and summing the ran-
dom numbers. The hash function is

h = 0;

s = buf;

for (len = 0; *s; len++)
h += scatter[*s++];

where scatter is initialized with the first 128 values re-
turned by the C library function random. Boehm tested
this function with a 4K table on a dictionary and found
only 13 empty slots. This is very close to the expected
value, which Boehm computed as 10.4 for the given dic-
tionary, a 4K hash table, and assuming a uniform dis-
tribution of hash values. Using this function on the test
input for common gave the following distribution.

1

3

18
62
242
769
1522
1479

SN W Lo 3

This version of common (including printwords above)
runs 8 to 9 percent faster than the published version.



