SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 8, 115-129 (1978)

Event Associations in SNOBOL4 for
Program Debugging

DAVID R. HANSON

Department of Computer Science, Yale University, 10 Hillhouse Avenue,
New Haven, Connecticut 06520, U.S.A.

SUMMARY

An event association facility for the SNOBOL4 programming language is described. This
facility permits the execution of a programmer-defined function to be associated with the
occurrence of a specified event. The events with which associations can be made are those
applicable to program debugging. Associations can be made with events such as variable
referencing, statement execution, program interruption, function call and return, and
execution-time errors. By making event associations available at the source-language level,
debugging aids can be written in SNOBOLA4 itself, using the full capabilities of that language.
As illustrated by several examples, this approach facilitates the implementation of simple
yet powerful debugging aids written in the same language as the programs to be debugged.
Event associations provide a mechanism for the unification of the existing SNOBOL4
debugging facilities, and a basis for the addition of other events. The implementation of event
associations is also described.

KEY worns SNOBOL4 Debugging aids Programming languages Variable associations

INTRODUCTION

In a recent paper,' a new facility for the SNOBOL4 programming language® permitting
the execution of a programmer-defined function to be associated with the act of referencing
a variable was described. This language feature enabled such seemingly disjoint facilities
as input and output associations, value tracing and keywords to be described in terms of a
single mechanism. Applications of this mechanism, called variable association, include
datatype coercion, data structure access and manipulation, generators, input and output
processing, program monitoring and program debugging.

Referencing a variable is only one of many events that occur during program execution.
As noted in Reference 1, a natural generalization of variable association is event association,
in which the execution of a defined function is triggered at the occurrence of a specified
event. This paper describes such a generalization of variable associations to include
associations with events that facilitate program debugging.

Although events other than those helpful in program debugging might be considered,
experience with variable associations indicates that the association concept is especially
applicable to program debugging. In addition, better debugging tools probably have the
most practical impact on SNOBOL4 users.

The event associations described in this paper unify variable associations and the
existing debugging aids in SNOBOL4 into one mechanism, and provide a linguistic basis
for the addition of other kinds of events.

0038-6644/78/0208-0115$01.00 Received 1 April 1977
© 1978 by John Wiley & Sons, Ltd. ‘

115

116 DAVID R. HANSON

Existing debugging facilities

SNOBOL4 contains several built-in features that aid in debugging a program. Features
such as tracing and a symbolic dump facility are provided in most implementations of
SNOBOL4. More recent implementations, such as SPITBOL? and SITBOL,*¢ permit
execution-time errors to be intercepted. The symbolic dump facility was extended in
SITBOL to allow dumping of aggregates such as arrays, tables and defined data objects.
All of the debugging facilities provided in SNOBOL4 are an integral part of the source
language. This method gives the programmer a great deal of power with which to write
debugging routines. Some programmers have complained that the debugging tools are
inadequate” but they often overlook the fact that SNOBOL4 functions can be written for
use as debugging aids.

There are several debugging features that are either missing or too costly and burden-
some to implement in the source language. An example is the setting of breakpoints on any
source statement. Tracing the key word &STCOUN'T can be used to cause a defined
function to be called before the execution of every statement, but the artifact is much too
costly to be used in debugging complex programs. Transfers to labels can also be traced in a
similar fashion. This feature provides a limited breakpoint facility but does not permit
execution to be interrupted at an unlabelled statement or if a statement is flowed into.

These drawbacks are not so serious in a batch environment, but they are serious in a
timesharing environment. Few high-level languages provide facilities for interactive
debugging in which the interaction is in terms of the high-level language itself. Notable
exceptions are the DECsystem-10 implementations of Fortran® and Simula.?

Debugging is considered by some to be a less important activity than careful program
preparation using the various structured programming methodologies. Nonetheless,
programmers spend countless hours debugging. This time might be substantiallv reduced
if good debugging tools were more readily available. Good debugging tools are an essential
component of a high-level language system and complement the use of structured pro-
gramming methodologies. Event associations are an attempt to provide a facility that can
be used to write such tools at the source-language level.

The remainder of this paper describes the event association facility, illustrates its use in a
general-purpose interactive debugging program and gives a brief indication of the
implementation techniques employed. Background material concerning the concept of
associations is given in Reference 1. The event association facility is implemented in
SITBOL,* % an implementation of SNOBOL4 for the DECsystem-10.

EVENT ASSOCIATIONS

Event associations permit the programmer to intervene, via a defined function, at the
occurrence of certain events during the course of program execution. In most cases, the
defined function, called an association function, is called before the completion of the event.
Failure of the association function can sometimes be used to prevent the completion of the
interrupted event. For example, a variable association causes the association function to
be called before assignments to the associated variable. If the association function fails, the
assignment is not made. There are currently five kinds of event associations:

1. Variable associations, in which the association function is called whenever the
associated variable is referenced.

2. Statement execution associations, in which the association function is called prior to
the execution of the associated statement.

EVENT ASSOCIATIONS IN SNOBOL4 117

3. Program interruption associations, in which the association function is called when the
execution of the program is interrupted by external means.

4. Function call and return associations, in which the association function is called
upon entry or exit of the associated function.

5. Error associations, in which the association function is called upon the occurrence of a
specified execution-time error.

Associations are made by the built-in function CONNECT':
CONNECT(name, type, processdescription)

The name is the object with which the association is made, e.g. variable name, statement,
function name, etc. The fype is a string indicating the specific event for which the
association is to be made. The processdescription is an instance of a programmer-defined
data object with at least three fields. The contents of these fields indicate the association
function and the current state of the association.

More specifically, the defined datatype used for the processdescription can be defined by
the statement

DATA("PROCESS(AFUNCT, ACTIVE, LEVEL)")

The AFUNCT field contains the name of the association function, which may be either a
built-in or defined function. The contents of the ACTIVE field indicates the current
status of all associations made with a particular instance of PROCESS. If the ACTIVE
field contains zero, the association is considered inactive and is ignored whenever the
corresponding event occurs. If the ACTIVE field contains a non-zero integer when the
event occurs, the association function given in the AFUNCT field is invoked. The LEVEL
field is used to indicate the position of an association with respect to existing associations in
the case of multiple associations with the same event. Further details concerning its use
are given in Reference 1.

When an event having an association occurs, the association function is called with three
arguments:

1. The name of the object with which the association is made (the first argument to
CONNECT).

2. An event-dependent value.

3. The process description,

The success or failure of the association function can, in some cases, be used to alter
the course of subsequent execution. When an association function is called, the association
that caused the function to be invoked is deactivated until the function returns. Other
associations with the same event are still active, however. The following sections describe
the use of the association function with each of the five kinds of event associations.

Variable associations

As described in Reference 1, variable associations permit an association function to be
associated with the event of fetching the value of a variable or assigning a value to a variable.
The first argument to CONNECT, name, is the name of the variable with which to make
the association, and the second argument, type, is either "FETCH" or "STORE"
depending for which event the association function should be called.

For a "FETCH'" association, the second argument to the association function is the
current value of the associated variable. If the association function fails, that reference to the
variable fails. If the association function succeeds, the value returned is taken as the value
of that reference to the variable. The value of the variable is not changed, however.

118 DAVID R. HANSON

For a "STORE" association, the second argument to the association function is the
value that is about to be assigned. Assignment is prevented if the association function fails.
If the association function succeeds, the value returned is ultimately assigned to the
variable.

Variable associations permit the implementation, in SNOBOL4, of SNOBOLA4-style
input and output, access tracing, generators and datatype coercion mechanisms. Examples
are given in Reference 1.

Statement execution associations

This kind of association permits an association function to be associated with the event
of statement execution. Statement execution associations are most useful for setting
breakpoints at or tracing the execution of certain source statements. This event is indicated
by using the string "STATEMENT" as the second argument to CONNECT.

The first argument to CONNECT indicates the statement with which to make the
association. This indication is made in a machine-independent fashion by using an object
of datatype CODE, which uniquely identifies a statement regardless of the statement
numbering scheme used. The built-in function

WHERE(label, offset)

fails if the indicated statement does not exist. The offsez may be positive or negative. If the
statement is a valid source statement, WHERE returns an object of datatvpe CODE that
points directly to the statement. This is identical to the kind of value returned by the
built-in function CODE. In addition, since the object is of datatype CODE, a transfer can
be made directly to the statement by using the direct goto in SNOBOL4.2

Prior to the execution of an associated statement, the association function is called with
the statement number as the second argument. Upon return from the association function,
the statement is executed. Success or failure of the association function and the value
returned are ignored.

To illustrate the use of statement execution associations, the following association
function can be used to trace the execution of the statements with which it is associated.

DEFINE("STRACE(STMT, STNO, SPROCESS)") :(STRACE.END)
STRACE OUTPUT = “executing statement" STNO

ACTIVE(SPROCESS) = ACTIVE(SPROCESS)—1 :(RETURN)
STRACE.END

The ACTIVE field of the process description is decremented by 1 each time STRACE is
called. Thus the contents of the ACTIVE field serve to limit the amount of trace output

on a per statement basis. To use STRACE, the appropriate process description is
CONNECTed to the desired statement, e.g.

CONNECT(WHERE("LOOP",3), "STATEMENT",
PROCESS("STRACE", 100, 1))

traces the next 100 executions of the third statement following the statement labelled
LOOP.

Program interruption associations

Most timesharing systems provide a means for interrupting a running program. This
capability is useful for stopping looping programs. Some systems, such as the

EVENT ASSOCIATIONS IN SNOBOL4 119

DECsystem-10, also provide a command that enables the interrupted program to continue
from the interruption in its present state, or to continue at some specified address. While
such features are of obvious utility, they are seldom used for program debugging beyond the
assembly language level.

Program interruption is another of the many possible events that may occur during pro-
gram execution, although its occurrence is triggered externally and cannot be determined
from examination of the program. An association can be made with the event of program
interruption by giving the string "INTERRUPTION" as the second argument to
CONNECT. The first argument to CONNECT is ignored, but is passed to the association
function when it is called.

While a statement execution association provides for interstatement control, a program
interruption association allows the program to be interrupted during intrastatement execu~
tion. If the event occurs, the intermost interpreter loop is interrupted in order to call the
association function. This allows intrastatement loops, such as runaway pattern matches,
to be broken. If the association function succeeds, execution is continued from the point
of interruption. If the function fails, the interrupted statement fails. The second argument
to the association function is the statement number of the interrupted statement.

As an example of the usefulness of this kind of association, the following program
fragment defines the function PEEK and associates it with the event of program inter-
ruption. If this fragment is compiled and executed with the program under test, program
execution may be interrupted at any point and arbitrary SNOBOL4 expressions are evalu-
ated in order to examine the current state of the program. When the string "GO" is
entered, or end of file is signalled, PEEK returns, permitting the program to continue from
the point of interruption. The built-in function EVAL evaluates SNOBOL#4 expressions,
and T'TY is input- and output-associated with the terminal.

DEFINE("PEEK(X, STNO, P)EXP") :(PEEK.END)
PEEK TTY = "interrupted at stmt'' STNO
PLOOP EXP =TTY :F(RETURN)
IDENT(EXP, "GO") :S(RETURN)
TTY = EVAL(EXP) :S(PLOOP)
TTY = "failed" :(PLOOP)

PEEK.END A
DATA("PROCESS(AFUNCT,ACTIVE,LEVEL)")
CONNECT(NULL, "INTERRUPTION",

+ PROCESS("PEEK", 1, 1))

Note that this rather simple yet powerful debugging aid needs to be written only once;
its use requires simply prepending it to the program under test. The ability to write
program fragments in the source language encourages the use of libraries containing simple
debugging aids such as PEEK, and facilitates the maintenance of such libraries.

Function call and return associations

Function associations permit an association to be made with the events of function call
and return. Function associations are similar to the use of defined trace functions in the
existing SNOBOL#4 tracing facility. The first argument to CONNECT is the name of
the function with which the association is to be made, and the second argument is "CALL"
or "RETURN" indicating the appropriate event,

120 DAVID R. HANSON

For a function call, the association function is invoked after the arguments have been
passed to the function but before transfer to the entry point of the function. The second
argument to the association function is the number of the statement invoking the function.
The function PEEK, used above as an association function for program interruption,
can also be used as an association function for function call associations, permitting the
program state to be examined when certain functions are called. For example, the statement

CONNECT("PARSE", "CALL", PROCESS("PEEK", 1, 1))

causes PEEK to be invoked on subsequent calls to PARSE. The name of the interrupted
function is given by the value of X, the first argument of PEEK.

The decision to make such an association need not be made prior to program execution.
If PEEK is prepended to the program under test, execution may be interrupted at any
point and call associations with any number of functions can be made by entering the
appropriate CONNECT expression to PEEK. A simple function, such as PEEK, can be
used as the association function for many events and is often sufficient for many debugging
tasks.

Another use of call associations is to localize common preprocessing of arguments in one
function instead of including such processing in each function. This is especially useful to
ensure that a particular argument is of the correct datatype. For example, the following
association function can be used to ensure that the first argument to functions with which
it is associated is an integer. The built-in function ARG(F, I) returns the name of the
Ith argument of F, and CONVERT(X,T) converts X to type T failing if the conversion
cannot be performed.

DEFINE("INTARG(F, STNO, P)") «(INTARG.END)
INTARG S$ARG(F,1) = CONVERT(SARG(F,1), "INTEGER")

+ :3(RETURNXN)
OUTPUT = "bad first argument to'' F
PEEK(F, STNO, P) :(RETURN)
INTARG.END

The call to PEEK permits the argument to be changed before proceeding with the inter-
rupted function. A slightly more general association function that handles any number of
datatypes can be written by including the datatype as an additional field in the process
description. The point is that the full power of SNOBOL4 is available for writing
debugging aids.

For a return association, the association function is called before the arguments and the
function name are restored to their previous values. Thus the first argument to the
association function can be used to obtain the value returned by the function and the final
values of the arguments. In addition, the value of keyword &RTNTYPE indicates the
type of return (RETURN, FRETURN or NRETURN) made by the function.

Error associations

This kind of association permits an association function to be associated with the
occurrence of a specific execution-time error or all such errors. Errors are indicated bv a
number of the form 1000*n+m, where m is a major error number (1-13) indicating the
class of error, and m is a minor error number (1-999) indicating the nature of the error in
detail. (A list of the possible errors is given in Reference 5.) The number of the error with
which an association is to be made is given as the first argument to CONNECT, and the

EVENT ASSOCIATIONS IN SNOBOL4 121

string "ERROR' is given as the second argument. An error number of zero indicates the
association is to be made with all possible errors.

The second argument to the association function is the number of the statement causing
the error. If the association function fails, the offending statement fails and execution
continues. If the association function succeeds, the offending statement is repeated under
the assumption that corrective action was taken by the association function.

Removing event associations
The built-in function
DISCONNECT (name, type, processdescription)
disconnects event associations described by #ype and processdescription from name.

Global contrel of associations

Each association includes a field in the process description that indicates if the association
is active. The keyword &ASSOCIATE controls the activation status of all associations. If
&ASSOCIATE is zero, all associations are considered inactive. The default for
&ASSOCIATE is 1, indicating that the contents of the ACTIVE field of the process
description determines if the association is active.

EXPERIENCE

The inclusion of the event association facility at the source-language level facilitates the
implementation of a wide range of general-purpose debugging aids, or routines that are
customized for a particular set of programs. In almost all cases, event associations permit
these kinds of debugging aids to be written as a separate program and compiled with the
program under test. Once the program is finished, the debugging program is omitted from
subsequent runs. Since the debugging programs are written in SNOBOL4, their sizes are
under the programmer’s control. More importantly, their use does not require modification
of the program under test.

It is difficult to convince programmers to program ‘defensively’ and include debugging
code as a part of their programs. Such advice is often met with resistance because debugging
statements usually must be left in the final version of the program, and are tedious to include
in the development of a program. Event associations permit a separate program to be
written, perhaps only once, that is just as effective as the insertion of debugging statements.

Event associations have been used to write a number of small debugging aids such as
PEEK. One of the more ambitious and useful aids is a general-purpose interactive debugger
similar in spirit to the well known DDT programs for debugging assembly language pro-
grams (cf. Reference 10). This program, called SNODDT, is written in SNOBOL4 and is
compiled with the program to be debugged. Variable associations are used to allow the
programmer to restrict the datatype of any number of variables and intervene whenever
the value of a variable is fetched or a new value stored. Statement execution associations are
used to place breakpoints at any source statements. Function call and return associations are
used to permit intervention at the entry to or exit from a function. A program interruption
association, with SNODDT as the association function, is used so that a running program
can be interrupted at any point. SNODDT is entered by typing an operating system
command that causes the program to continue at a predefined address. SNODDT is also
associated with the occurrence of all errors so that any execution error causes SNODDT
to be called.

122 DAVID R. HANSON

Besides the commands that set up associations, other commands permit the compilation
and execution of SNOBOL4 code, take commands from a file and permit execution to
begin at any statement.

SNODDT commands are of the general form

arg;; arg,; ...; arg,Scommand

Arguments can be separated by either semicolons as shown or can be entered on separate
lines. The SNODDT command is the one or two characters that follow the S. SNODDT
commands can be given in either upper or lower case but arguments are taken in the case
typed. Errors in typing a command are signalled by ?? typed after the command. The
following commands are representative of the SNODDT repertoire.
"The ability to compile and execute SNOBOL4 source code during execution is especially
useful for debugging. The command
exp$X
executes the SNOBOL4 expression given by exp and types the result. For example,
A =B+C{5)8X
performs the indicated addition and assignment, and types the value assigned to A. Since
a single identifier constitutes a simple expression, a command such as
FOOsX
causes the current value of FOO to be typed.
The command
code$SK
passes the arguments to the SNOBOL4 CODE function for compilation. All arguments
are passed to the CODE function so that multiline input is possible. For example, to define
a new function F that returns the square of random number in the interval {0, 100} one
can enter
F F = RANDOM(100)
F = F«F (RETURN)SK
DEFINE('"F()'")$X
Notice the use of the K command to compile the function code then the subsequent use
of the X command to execute the DEFINE function thereby defining the new function.
Transfer to an arbitrary statement is accomplished by the command
label; offsetSG
The offset is optional and can be either positive or negative. If the command is given with
no arguments, a jump to RETURN is made. This is the command that is used to begin
initial execution of the program under test. Under normal circumstances, the user exits
from SNODDT after an interruption of program execution by using the P command
described below. If the G command is used, the function SNODDT() never returns and a
portion of the system stack is lost. Since the loss of stack space is usually acceptable during
debugging, the G command can be used to restart the program at any desired point.
Accesses to variables may be intercepted by using the F and S commands. These com-
mands cause a variable association to be made with the indicated variable using SNODDT
as the association function. The command
name; exp; tagSF
causes subsequent fetches of the value of the variable name to be interrupted by a call to
SNODDT. The arguments exp and fag are optional. Conditional interruption can be

EVENT ASSOCIATIONS IN SNOBOL4 123

defined using the exp argument, which is a SNOBOL4 expression. At every fetch of the
indicated variable, exp is evaluated. The program is interrupted only if exp succeeds. For
example, suppose one wishes to monitor every fetch of variable LINENO. The command

LINENOS$F

accomplishes the desired result. A message is issued whenever the value of LINENO is
fetched. After several program interruptions, assume that fetches to LINENO are to be
monitored only if the value of YY is less than zero. This can be done by entering

LINENO; LT(YY, 0)$F
The tag argument is used to construct the message issued at program interruption. This
argument normally is not needed but can be used to include other information that may

help identify the variable. For example, suppose PTR is used to point to the last element
of a list. The command

PTR;; List pointer PTR$F
would result in a message something like

Stmt 230, List pointer PTR fetched, value = NODE #7

whenever the value of PTR was fetched.
Assignments to a variable can be intercepted by SNODDT via the command

name; exp; tag§S

The arguments exp and Zag are optional and have the same use as in the F command. The
S command can be used to monitor stray assignments to any variable. The act of assignment
is trapped not only for the assignment operator but also for conditional and immediate
value assignment during pattern matching.

After the program is interrupted by a call to SNODDT, it can be continued by the
command

$P

The P command simply causes a return from SNODDT and the program proceeds from
the point of interruption.
Dynamic datatype checking is initiated by the T command. The command

name; type; tag$T

restricts the values assigned to name to those of datatype zype. SNODDT is entered when-
ever an attempt is made to assign a value of a different type to name. Type may be a
programmer-defined data-type or built~in datatype such as INTEGER. Lower case types
are not equivalent to upper case types, i.e. INTEGER is different than integer. The tag
argument has the same use as in the F and S commands. A common error in SNOBOL4 is
attempting to access the field of a value that is not a defined data object.” If a defined
datatype NODE has been defined with two fields VALUE and LINK, and the value of
PTR is expected to be a NODE, the command '

PTR; NODE$T

would cause the program to be interrupted at any attempt to assign PTR a value of a
different type. The P command is used to resume execution after an interruption caused
by a type conflict and the assignment is performed. The value assigned can be changed to a
value of the correct type during interaction with SNODDT.

124 DAVID R. HANSON

The associations made by the F, S and T commands can be removed by commands such as
name§0F
The command
label; offset; exp; tag3B
sets a breakpoint at the source statement described by label and offset. This command uses
a statement execution association. Any number of breakpoints can be set, limited only by
the available memory. The arguments exp and tag are used as described above. Suppose
the structure of a program is one main processing loop beginning at the statement labelled

LOOGP, and that the program consists of many sections each terminated by a jump back
to LOOP:

LOOP
:(LOOP)
(LOOP)
(LOOP)
END

A useful way to monitor the execution of a program with this kind of structure is to place a
breakpoint on the statement labelled LOOP and include the conditional expression
TTY() as the exp argument. The built-in function TTY() succeeds if a line has been typed
by the user and fails otherwise. Thus, the SNODDT command
LOOP; 0; TTY()$B

places a breakpoint on the statement labelled LOOP that causes program interruption only
if the user types a SNODDT command. Execution is continued after a breakpoint inter-
ruption by the P command.

The command

{abel; offsetS0B
removes the breakpoint from the indicated statement.

Function call and return associations are made by the commands

name; exp; tag$C

name; exp; tag3R
which cause SNODDT to be called at the entry and exit from the defined function indicated
by name, respectively. The use of exp and #ag is as described above, the P command is used
to continue execution, and commands such as

name§0C
are used to remove the associations.

The facilities of SNODDT can be augmented by other associations during program
execution. Additional routines and association functions that are customized for specific
programs need to include only those features not provided by SNODDT. To encourage
this sort of activity, the command

filename3Y
reads the indicated file containing SNODDT commands and executes these commands.
The contents of filename can include function definitions (using the K command) and make

EVENT ASSOCIATIONS IN SNOBOL4 125

associations that are designed for a specific program. Thus, SNODDT provides a basis
for a library of debugging aids for SNOBOL4 programs, all of which are written in
SNOBOLA4.

IMPLEMENTATION

As mentioned in Reference 1, a facility such as the event association facility is omitted from
most languages because efficient implementation techniques are difficult to discover.
This is unfortunate; well designed debugging facilities are likely to be used just as much,
if not more, than the other features in a language. Such facilities are an integral part of a
language and their implementation deserves the extra effort required. One advantage of
providing debugging facilities as a part of the source language is that their implementation
may be considerably simplified by using existing components of the system. This is the
case with the event association facility, which required only an additional 200 decimal
words of memory (less than 3 per cent of the system), and made use of many existing
facilities.

The most important aspect of the implementation of debugging facilities is that they must
have a negligible impact when not in use or in programs that do not use them. This
objective was met in the implementation of event associations by ensuring that no more than
a single instruction was added in order to test for the existence of an association. Details
concerning the implementation of each of the five kinds of associations are given in the
following sections.

Variable associations

The implementation of variable associations is described in Reference 1, and is based on
the ‘trapped variable’ used internally in SITBOL.* The value of the associated variable is
replaced by a trapped variable that points to a so-called trapping block containing the real
value, a pointer to the process description and several other system items. Values are stored
and retrieved by a single system procedure that checks for trapped variables and calls the
appropriate trapping procedure. For variable associations, the trapping procedure saves
the state of the SNOBOL4 virtual machine and calls the association function with the
appropriate arguments. The success or failure of the association function is passed back to
the function that invoked the assignment or fetch procedure for further action.

Thus, the overhead for variable associations is the one instruction that checks for the
existence of a trapped variable. Note that this overhead is independent of the number of
variable associations made.

Statement execution associations

Statement execution associations are made by modifying the compiled code for the
affected statement. This modification is done when the association is made and is ‘undone’
when the association is removed. As a result, there is no overhead for statement associations
unless they are used, and there is no residual overhead after an association is removed.

Compiled code in SITBOL is a Polish suffix form of the source statement with additional
interpreter functions that perform operations such as statement initialization and gotos.
The code for several statements is housed in a CBLOK, the code block.* Each statement
begins with a statement header as depicted in Figure 1. The CHEAD field contains the
address of the interpreter function that initiates statement execution. The CSTNO field
contains the source statement number. The CNEXT and CLAST fields contain the offsets
from the head of the CBLOK to the next and last statement header respectively. The

126 DAVID R. HANSON

ADDR CBLOK n
LCLINK address of previous CBLOK
NCLINK address of next CBLOK
1 . 4
n length of CBLOK
ADDR +k CHEAD
CSTNO CFGOTO
CLAST CNEXT
CRULE

Figure 1. Code block and statement layout

CFGOTO field contains the offset of the position in the CBLOK where control should be
resumed upon statement failure. The actual compiled code for the source statement begins
at CRULE. A typical CBLOK contains about ten source statements. Code blocks are
chained together to form a doubly-linked list. Thus the internal representation of the
SNOBOL#4 source program is a doubly-linked list of CBLOKs each of which contains the
Polish suffix code for several statements.

The compiled code is comprised of interpreter function addresses, SNOBOL4 source
language function addresses and operand addresses. The function of the interpreter is to loop
through the code pushing operands onto the system stack and calling functions as they are
encountered. With the exception of some interpreter functions, arguments to functions are
passed on the stack, removed by the functions and results placed on the stack.

Each statement can be uniquely represented by the address of the code block housing it
and the offset to the CHEAD field of the statement. A descriptor of this form is of datatype
CODE and is precisely what is returned by the built-in CODE function. For example, the
statement shown in Figure 1 is represented by the descriptor illustrated in Figure 2. The
WHERE function returns an object of this type.

CbT ADDR address of CBLOK

k offset to CHEAD field

Figure 2. A descriptor for datatype CODE

EVENT ASSOCIATIONS IN SNOBOL4 127

Usually the CHEAD field of a statement contains the address of the interpreter function
to begin a statement, BGST. When an association is made with a statement, the CHEAD
field is modified to point to the breakpoint interpreter function, BRKPNT. If all
associations are removed, BGST is reinstated in the CHEAD field. Only statements that
have associations incur the overhead of the breakpoint interpreter function.

The process descriptions for statement associations are stored in an internal table indexed
by the code descriptor for the associated statement. This table, called the breakpoint table,
is allocated only if statement associations are actually used. Each entry contains a list of
trapping blocks describing the associations with that statement. The trapping blocks are
the same types used for variable associations and contain a pointer to the process description.
The BRKPNT interpreter function locates the approriate entry in the breakpoint table,
checks to see if the association is active and calls the association function. After the
execution of the association function, the breakpoint function calls BGST, the begin
statement function, and normal execution proceeds.

The breakpoint table is an instance of the SNOBOL4 built-in datatype 'TABLE, and the
existing table-handling routines are used for lookup and insertion. This is a case where an
existing part of the system was used, and greatly simplified the implementation of statement
execution associations.

Program interruption associations

The implementation of program interruption associations proved to be the most sensitive.
This is because of the requirement for program interruption during intrastatement loops.
This requirement rules out a test that is performed between statements; a test must be
made within the central interpreter loop.

In designing the implementation, three methods were considered. One method is to
simply test a flag during every cycle through the interpreter loop. This would consist of the
instruction sequence

SKIPE INTFLG ; is interrupt flag set ?
JRST INTCMD ; yes, perform event association
JRST I.BUMP ; no, proceed in interpreter loop

The additional overhead is the cost of the SKIPE instruction. On the K110 central processor,
this is 1-37 us.'* Unfortunately this must be executed even if the program is not making use
of the event association facility. Since this appears in the intermost interpreter loop, the
cost was judged to be too high.

A second method is to use indirect addressing in the single instruction

JRST @ADDR

and modify the contents of ADDR to be either LBUMP or INTCMD, the address of the
event association processor. The cost of the indirection is an additional 1-02 us on the
KI10; too costly for an intermost loop.

The DEC-10 has an instruction, XCT E, that executes the instruction at address E.
It also has the advantage of being one of the fastest instructions on the KI110—0-34 s in
addition to the instruction executed. Thus the method chosen was to use the instruction

XCT ADDR

where the contents of ADDR is either
JRST IBUMP
to continue the interpreter loop or

JRST INTCMD

128 DAVID R. HANSON

to process the event association. This method adds a minimal amount of additional
processing time to programs that do not use the facility. (A similar method is used to
implement breakpoints in a Fortran debugging system.?)

When the user interrupts the program and enters the appropriate operating system
command, the contents of ADDR are changed to

JRST INTCMD

When the XCT instruction is reached, the event processor is called. It saves the state of the
virtual machine and calls the association function. Upon successful return, the state is
restored, the contents of ADDR are changed to the instruction

JRST IBUMP

and execution continues. If the association function fails, the state is restored but the event
processor causes the interrupted statement to fail.

Function call and return associations

Function associations are implemented by checking for an association at the time of call
and return. This check consists of a single instruction. If a function has a call or return
association, the association function is called at the appropriate time.

Error associations

Because errors are expected to occur infrequently, the efficiency of error associations is not
crucial. When an error association is made, an entry is inserted into the error association
table. Like the breakpoint table, this table is allocated only if error associations are used,
and is a SNOBOL4 TABLE.

When an error occurs, the error number is used to index the table, the proper association
(if present) is retrieved, and the association function is called. If there is no entry for the
error number, a zero index is used to locate associations that should be invoked for all
errors.

CONCLUSIONS

Program debugging systems are usually implemented in one of two wayvs. One method
is to require modification of the program under test to activate various debugging aids.
This is the approach most often used in debugging compilers in which additional debugging
statements are introduced into the source program. Another method is to modify or monitor
the running program with another program that provides the debugging aids. The second
method is considered the better of the two since the modification of the text of the program
under test may introduce other bugs. A disadvantage of the second method is that the
debugging language is often quite different from the source language thereby requiring
the user to learn two languages in order to debug a program.

The event association facility can be viewed as a contribution to either method. The
programmer can modify the source text of the program under test to monitor the execution
of the program. Only enough debugging code to solve the specific problems encountered
needs to be added, and the additions are in the same language as the program to be debugged.

On the other hand, a completely separate program, such as SNODDT, can be written
and loaded with the program under test to provide monitoring and debugging aids. The
text of the original program does not need to be modified in order to use a program such as
SNODDT. SNODDT is a rather elaborate example of a debugging routine. As illustrated

EVENT ASSOCIATIONS IN SNOBOL4 129

by PEEK, however, the most useful features can be provided by simple debugging
routines. This capability is a consequence of making event associations available at the
source-language level. This approach is similar to that taken in other diagnostic facilities
for SNOBOLA4.12

Event associations are machine-independent concepts and are applicable to other high-
level languages. Practical use indicates that the most dynamic features of event associations,
such as the ability to change the association function, are rarely used. Thus, in languages
with earlier binding times than SNOBOL4, event associations could be made during
compilation.

One problem with event associations is their non-uniformity. It is not sufficient to
describe the general mechanism and simply enumerate the set of events with which
associations can be made; each event requires a separate explanation of the arguments
passed to the association function, what is done with the value returned, etc. This problem
has been partially resolved in the SL5 programming language.!® Armed with the experience
gained from using event associations in SNOBOL4, a similar facility was designed for SL5.
That facility, in which association functions are called filters,* is based on variable associ-
ations, and all events are cast in those terms. As a result, filters are more general than
variable associations. For example, filters are used to describe argument binding in terms
of SL5 itself. Current research is directed toward developing the filter approach used in
SLS5 into a uniform event association mechanism.

ACKNOWLEDGEMENTS

A debugging program written by Frederick C. Druseikis, which uses the existing SNOBOL4
facilities, provided the basis for SNODDT. The command format of SNODDT was
inspired by the DECSystem-10 version of DDT.

REFERENCES

1. D. R. Hanson, ‘Variable associations in SNOBOLA4’, Software—Practice and Experience, 6, 245-254
(1976).
2. R. E. Griswold, J. F. Poage and 1. P. Polonsky, The SNOBOL4 Programming Language, 2nd ed.,
Prentice-Hall Inc., Englewood Cliffs, N.]., 1971.
3. R. B. K. Dewar, ‘SPITBOL version 2.0’, SNOBQOL4 Project Document S4D23, Illinois Institute
of Technology, Chicago (1971).
4. J. F. Gimpel, ‘A design for SNOBOL4 for the PDP-10’°, SNOBOL4 Project Document S4D29b,
Bell Laboratories, Homdel, N.J. (1973).
5. J. F. Gimpel, ‘SITBOL version 3.0’, SNOBOL4 Project Document S4D30b, Bell Laboratories,
Holmdel, N.J. (1973).
6. J. F. Gimpel, ‘Some highlights of the SITBOL language extensions to SNOBOL4’, SIGPLAN
Notices, 9, 11-20 (1974).
7. R. Dunn, ‘SNOBOLA4 as a language for bootstrapping a compiler’, SIGPLAN Notices,8,28-32 (1973).
8. Digital Equipment Corporation, ‘Fortran-10 language manual’, Publication DEC-10-LFORA-B-D,
2nd ed., Maynard, Mass. (1974).
9. S. Arnberg et al., ‘DECsystem-10 Simula language handbook Part II’, Report C8399-M3(ES5),
Swedish National Defense Research Institute, Stockholm (1974).
10. Digital Equipment Corporation, ‘DDT—dynamic debugging technique’, Publcation DEC-10-
UDDTA-A-D, Maynard, Mass. (1975).
11. Digital Equipment Corporation, ‘System reference manual’, Publication DEC-10-HGAE-D,
3rd ed., Maynard, Mass. (1974).
12. R. E. Griswold, ‘A portable diagnostic facility for SNOBOL4’, Software—~Practice and Experience,
6, 93-104 (1975).
13. R. E. Griswold and D. R. Hanson, ‘An overview of SL5’, SIGPLAN Notices to appear (1978).
14. D. R, Hanson, ‘Filters in SL5’, Comput. ¥. 12, 40-50 (1977).

9

