SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 12, 367-373 (1982)

Exploiting Machine-Specific Pointer Operations
in Abstract Machines*

CHRISTOPHER W. FRASER AND DAVID R. HANSON

Department of Computer Science. The University of Arizona. Tucson. Arizona 85721, Us.A

SUMMARY

Increasingly powerful machine instructions complicate abstract machine design for portability. Abstract
machine instructions must be “larger” than the target machine instructions that they are to exploit, but
they must not grow so large as to complicate the realization of the abstract machine on real machines.
This paper presents related techniques for low-level yet machine-independent access to tyvpical stack and
string-processing instructions.

KEY WORDS abstract machines instructionsets portability stacks strings

INTRODUCTION

Abstract machine modellingl is widely used in the implementation of portable software.
especially programming languages.z‘3 An “ideal” machine is tailored to a class of computers.
programming languages. or applications. The software is written in the assembly language for
the ideal machine or in high-level languages whose compilers generate code for the ideal
machine. Once the ideal machine is realized on a real machine. typically through macro
expansion or direct translation. all of the associated software is available on that real machine.
Numerous successful language implementations use abstract machine modelling. Early
examples include SNOBOL4™ and BCPL:* more recent examples are MACRO SPITBOL.
Pascal.”® Concurrent Pascal.’ and Edison."

Unfortunately. it is hard to design abstract machines that match a broad range of targets,
and it is easy to let familiarity with a real machine overly influence the design of the abstract
machine. defeating much of its purpose. One of the major difficulties is the level of the abstract
machine. Making it too low-level may complicate the use of target machine instructions that
are at a level higher than the abstract machine instructions. Making it too high-level
complicates the realization of the abstract machine on a target machine. Moveover. the
growing complexity of recent computers complicates choosing the appropriate level.

Although computer instruction sets vary widely. many computers. including most
microprocessors. have stack and pointer instructions. which. although common in concept.
vary in implementation. For example. many machines offer “auto-increment™ instructions.
which dereference a pointer register and increment it in the same instruction. Most auto-
increment instructions adjust the pointer afrer the address calculation (e.g. PDP-11, Motorola
68000. T1 9900). but some adjust the pointer before (e.g. DEC-10). Likewise. many machines
offer instructions that implement the familiar stack operations. On some (e.g. DEC-10) the
stack grows up: on others (e.g. PDP-11) 1t grows down.

*This work was supported by the National Science Foundation under Grant MCS-7802545.

0038-06+4/82/040367-07801.00 Received 10 August 1981
© 1982 by John Wiley & Sons, Ltd. Revised 25 November 1981

368 CHRISTOPHER W. FRASER AND DAVID R. HANSON

These variations complicate abstract machine design because even if the multiple operations
involved are provided. choosing a direction of stack growth or point of pointer adjustment
precludes the use of such features on computers with the opposite orientation. For example.
MINIMAL. the MACRO SPITBOL abstract machine. assumes the stack grows down. This
suits the PDP-11. for instance. but not the DEC-10. As such. the implementation of MACRO
SPITBOL on the DEC-10 does not use the hardware stack instructions.

The remainder of this paper describes the design of abstract machine instructions so that
these features can be used without complicating the realization process.

POINTER INSTRUCTIONS AND SEQUENCE TRAVERSAL

1t is difficult 10 use auto-increment instructions in a machine-independent fashion because pre-
and post-incrementing re(Fuire slightly different algorithms. Consider. for example. the
programming language c'ie p is a pointer variable. the expression ++p increments pand then
vields its value. whereas p++ vields its value and then increments it. The unary operator ="
dereferences a pointer, and the assignment operator "="yields the value assigned. so the null-
bodied loop

while ("d++ = “s++)

copies the string referenced by s onto the string referenced by d and stops when it copies a zero.
If d and s occupy registers. this yields a tight two-instruction loop on the post-increme.m'mg
PDP-11] and a suboptimal five-instruction loop on the pre-incrementing DEC-10. The similar
loop

while ("++d = "++s)

.

yields the optimal three-instruction DEC-10 code but results in a poorer four-instruction
PDP-11 sequence. It also requires a slightly different initialization sequence: s and d must
point just before the first character. not ar it. This change is hard to make automatically. so
most programs suffer on one machine or the other.

Sequence pointers. a new abstract machine datatype. solve this problem. Sequence pointers
are not so “close” to the hardware as to encode knowledge of whether pre- or post-incrementing
is desired. but they are not so “distant” from the hardware as to be hard to implement on real
machines. There are four operators that manipulate sequence pointers. The abstract machine
instruction

pinit p.s

creates a sequence pointer to s and deposits it in p. On post-incrementing machines. p
references the first element of s. On pre-incrementing machines. it references the first element
befores. The instruction

popen p

“starts” incrementing p. That is. it increments p on pre-incrementing machines. but it does
nothing on post-incrementing machines. Likewise.

pclose p

“completes™ an incrementing operation started by a popen. It increments p on post-

MACHINE SPECIFIC POINTER OPERATIONS 369

ot

incrementing machines. but it does nothing on pre-incrementing machines. The **" addressing

operator dereferences a sequence pointer. For example.
load rl.’p

loads abstract machine register r1 with the character referenced by p. The following program.
which copies data from s to d until it copies a zero. illustrates the use of these features.

pinit ris
pinit re.d
loop: popen r1
load ro,"r
pclose ri
popen r2
store r0,°r2
pclose re

jumpeq r0.0,loop

The popen and pclose instructions permit the increment to be placed in the best location for the
target machine, and even a simple peephole optimizer can combine the increment with the
indirect reference. An operator to abbreviate the open-dereference-close idiom above would
reduce the volume of code and the load on the peephole optimizer. It would not. however.
completely replace the operators above because it is sometimes useful to dereference an opened
pointer in several places before closing it. and to open a pointer in one routine and close it in
another.

High-level languages with built-in string or vector operations like SNOBOL4 already have
features “large™ enough to exploit sequence pointers. In contrast, systems programmming
languages need minor extensions to offer source language operations equivalent to pinit.
popen. and pclose. These extensions may be implemented by the abstract machine or by
source language macros' "2 if machine-dependent macro definitions are tolerable. For at least
some applications, these minor extensions may be justified by their 30-50% speed-up of
common string and vector processing operations.

STACK INSTRUCTIONS AND PROCEDURE INVOCATION

It is difficult to use a target machine’s stack in a machine-independent fashion because calling
sequences and access to parameters and local variables depend on the direction of stack
growth. It is important to use the hardware stack because efficient calling sequences and
efficient access to variables are of utmost importance in high-level language implementations.

In typical implementations of recursive procedures, a “frame pointer™ points at an activation
record. or frame. for the currently executing procedure. Parameters and locals are stored in
this activation record and are accessed via based addressing off the frame pointer. The
procedure invocation and entry sequences allocate and initialize the activation record.
adjusting the frame pointer accordingly. The exit sequence deallocates the record, restoring the
frame pointer to its previous value in the process.t

Assuming that the stack grows up, that sp is the stack pointer, and that fp is the frame
pointer. typical machine-dependent sequences on the DEC-10 are as follows.

tThis approach does not handle nested procedures as in Pascal. which can be handled by dedicating some abstract
machine registers for use as a display (c.f. Reference 14).

370 CHRISTOPHER W. FRASER AND DAVID R. HANSON

calling sequence:

push sp,arg, ; push argument [
push sp.arg, ; push argument 2
push sp.arg, : push argument n
pushj sp,name ; call procedure
decr sp.n ; remove argumenis

eniry sequence:

name: push sp.fp : save the frame pointer
move fp,sp : establish new frame pointer
incr sp,m . allocate space for m locals

exil sequence:

move sp.fp ;. deallocate locals
pop sp.fp ; resiore the frame pointer
POPj sp. . return to caller

The layout of the activation record during execution of a procedure is shown in Figure |.
Parameters are accessed via negative offsets from fp. and locals by positive offsets from fp.1 A
similar layout can be arranged for a stack that grows down.

arguments

return address

fp — previous fp

locals

sp—

Figure 1. Activation Record Layour.

While it is possible to conceal the direction of stack growth within abstract machine
instructions for procedure entry and exit. it is more difficult 10 do so for procedure invocation
and variable accessing. The direction of stack growth dictates both the order in which
arguments are pushed and the offset values used in references to parameters and locals.

The first problem can be resolved by concealing argument transmission within the call
abstract machine instruction much as entry and exit sequences are concealed within procedure
definition instructions. The abstract machine call instruction is

call name. arg, arg, ... arg,

where the arguments may be arbitrary operands. This form has the additional advantage of
permitting the order of evaluation of the arguments to be defined by the language instead of its
implementation.

The second problem—offsets in operands—cannot be solved in a similar manner. Some
arrangement is needed that permits parameters and locals to be referenced in a way that is

+This includes locals declared explicitly in the source program as well as any ‘implicit” locals needed to save
registers or to buffer intermediate computations.

MACHINE SPECIFIC POINTER OPERATIONS 371

independent of stack growth direction. This is typically accomplished through extra operations
for accessing parameters and locals.” It is. however. simpler to use o logical frame pointers.
one for accessing parameters (ap). and one for accessing locals (Ip). As described below. only
one pointer is required in the realization of the abstract machine. but it is useful to describe the
technique using two pointers.

Since ap and Ip are set during procedure entry and exit. this technique amounts to shifting
the dependence on the direction of stack growth from the operands to the entry and exit
instructions. Assuming that parameters and locals are referenced with positive offsets from ap
and lp. respectively. Figure 2 illustrates the frame layout for both directions of stack growth.

stack grows up
ap — argument |

argument n
return address

previous ap

previous Ip
Ip— local |
sp— local m

stack grows down

sp,lp— local !

local m

previous Ip
previous ap
return address

ap— argument |

argument n

Figure 2. Activation Record Lavout for both Stack Growith Directions.

Note that the arguments to a procedure must be pushed in the correct order by the call
instruction. Calling. entry. and exit sequences corresponding to Figure 2 for a procedure with
n arguments and m locals for the DEC-10 are as follows. The second column gives code for a
hypothetical DEC-10 in which the stack grows down.

372 CHRISTOPHER W. FRASER AND DAVID R. HANSON

stack grows up stack grows down
calling sequence:

push sp.arg, push sp.arg,

push sp.arg, push sp.arg,

pushj sp.name pushj sp,name

decr sp.n incr sp.n

enry sequence:

push sp,ap push sp,ap
push sp.lp push sp.lp
movei ap,-n-2(sp) movei ap.3(sp)
incr sp,m decr spm
movei Ip,-m+1(sp) movei Ip,0(sp)

exit sequence:

movei sp,-1(Ip) movei sp.m(ip)
pop sp.lp pop sp.lp
pop sp.ap pop sp.ap
popj sp, popj sp,

It is possible to dispense with either ap or Ip because the difference between them depends
only on n, m. and /. the space occupied by linkage information. all of which are constants. For
example. for the layouts shown in Figure 2. if the stack grows up. Ipis ap+n+/; if it grows down.
it is ap-m-/. Thus. the translator can implement one of ap or Ip and convert references to the
other into offsets in terms of the chosen pointer. For instance. if Ip i$ chosen on a machine
whose stack grows down, references of the form x(ap) are converted to x+m+/(Ip) during
translation. In this way, parameters and locals may be accessed using simple indexing off of a
single register. achieving in a machine-independent fashion the simplicity and efficiency of
typical machine-dependent subroutine mechanisms.

DISCUSSION

The techniques described in the two sections above are related more closely than it may appear.
Both techniques exploit increasingly common auto-increment and auto-decrement addressing.
Accordingly. both techniques are increasingly likely to prove useful on the same class of target
machines.

Many recent architectures imitate the PDP-11's post-increment and pre-decrement. These
operations are presented as general addressing operations. but they are perhaps most used
when looping over strings and vectors, and when manipulating stacks. They suit programs that
increment pointers after dereferencing them, and they suit stacks that grow down. because.
with this direction. simple indirection through the stack pointer accesses the item atop the
stack. However. when the hardware instead offers a pre-increment and a post-decrement.
pointer incrementation time and stack growth direction must be switched simultancously. The
techniques of the previous sections handle this reversal for two of the most common uses of
auto-incrementing and auto-decrementing.

MACHINE SPECIFIC POINTER OPERATIONS 373

REFERENCES

M. C. Newey. P. C. Poole and W. M. Waite. ‘Abstract machine modelling to produce portable
software—a review and evaluation'. Software— Practice and Experience. 2. 107-136 (1972).

S. S. Coleman. P. C. Poole and W. M. Waite. 'The mobile programming system: Janus’. Software—
Practice and Experience. 4. 5-23 (1974).

P. Kornerup. B. B. Kristensen and O. L. Madsen. ‘Interpretation and code generation based on
intermediate languages’. Software— Practice and Experience. 10. 635-658 (1980).

R. E. Griswold. The Macro Implementation of SNOBOL4: A Case Study in Machine-Independen:
Sofrware Development, W. H. Freeman. San Francisco. 1972.

M. Richards. "The portability of the BCPL compiler'. Sofiware— Practice and Experience. 1. 135-146
(1971).

R. B. K. Dewar and A. P. McCann. ‘"MACRO SPITBOL—a SNOBOL4 compiler’. Software—
Practice and Experience, 7.95-113 (1977).

B. K. Haddon and W. M. Waite. "Experience with the universal intermediate language Janus’.
Software— Practice and Experience. 8. 601-616 (1978).

K. V. Nori. U. Ammann, K. Jensen, H. H. Nageli and C. H. Jacobi. ‘Pascal-P implementation notes’,
in Pascal—The Language and its Implementation. D. W. Barron (ed.). Wiley-Interscience.
Chichester. UK. 1981, 125-170.

P. Brinch Hansen. The Architecture of Concurrent Programs. Prentice-Hall. Englewood Cliffs. New
Jersey. 1977.

P. Brinch Hansen. "Edison—a multiprocessor language’. Software— Practice and Experience. 11,
325-361.(1981).

B. W. Kernighan and DD. M. Ritchie. The C Programming Language. Prentice Hall. Englewood
Cliffs. New Jersey. 1978.

W. A. Wulf. D. B. Russell and A. N. Habermann. 'BLISS: a language for systems programming’.
Communications of the ACM. 14, 780-790 (1971).

. N. Wirth, "The design of a PASCAL compiler’. Sofiware— Practice and Experience. 1. 309-333

(1971).
A. V. Ahoand J. D. Ullman, Principles of Compiler Design. Addison-Wesley. Reading. Mass.. 1977.

