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Abstract 

Ez is a language-based programming environ- 
ment that offers the services provided separately by 
programming languages and operating systems in 
traditional environments. These services are pro- 
vided as facilities of a high-level string processing 
language with a ‘persistent’ memory in which values 
exist indefinitely or until changed. In EZ, strings and 
associative tables provide traditional file and direc- 
tory services. This paper concentrates on the use of 
EZ procedures and their activations, which, like other 
values, have indefinite lifetimes, In EZ, the low-level 
aspects of procedure execution, such as activation 
record creation, references to local variables, and 
access to state information, are accessible via high- 
level language constructs. As a result, traditiona!ly 
distinct services can be provided by a single service in 
the EZ environment. Furthermore, such services can 
be written in EZ itself. An editor/ debugger that illus- 
trates the details of this approach is described. 

1. Introduction 
EZ 16-81 is a software system that integrates the 

traditionally distinct facilities of programming 
languages and operating systems into a single system. 
This integration is achieved by providing these facili- 
ties in a high-level string processing language. The 
result of this integration is a system in which all 
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interaction is performed using the language facilities 
of EZ. Examples of interaction that are traditionally 
performed by the operating system or its utilities 
include editing, debugging, and filing. Traditional 
‘systems* programming is also done in EZ. 

EZ facilitates this degree of integration through 
several unconventional features. EZ uses late binding 
times, execution-time scope rules, a ‘persistent’ 
memory model in which object8 have infinite life- 
times, and a type system that integrates or ‘fuses’ [6] 
conventionally distinct types into single types. In 
addition, EZ provides high-level data types such as 
strings, associative tables, and procedure activations. 
Objects that are manipulated by utilities in tradi- 
tional operating systems are manipulated by opera- 
tors and control structures in EZ. Previous papers 
[6,8] have concentrated on the use of EZ strings and 
table8 as a file system; this paper concentrates on the 
use Of EZ procedure activations. 

The version of EZ described here is written in C 
and runs under UNIX on a VAX-l l/780, but it is 
intended to use EZ as the complete environment on 
personal computers. The following sections briefly 
describe the language facilities of EZ, its procedure 
mechanism, and an editor/debugger written in EZ, 

which displays the merits of its facilities. 

2, Data and Control 
As a programming language, Ez is a high-level 

string-processing language derived from SNOBOLA, 
SL5 [ill, and Icon [lo]. It has most of the basic 
attributes of those languages, such as concise, expres- 
sive constructs, run-time flexibility, untyped vari- 
ables, heterogeneous structures, and automatic type 
conversion. Strings are treated as scalars, and there 
are numerous ‘mid-level’ string operations similar to 
those in Icon, but pattern matching operations are 
not provided. Many of EZ’S features are similar to 
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those in traditional languages and the string- 
processing features are similar to those in Icon. The 
reference manual [7] contains a complete description 
of EZ’S syntax, semantics, built-in values, and usage. 

EZ has a ‘persistent’ memory much like an APL 
workspace in which values exist until changed. 
Unlike systems that access workspaces explicitly [2], 
this memory model is implicit in EZ and is a part of 
the language, much as in the Gem system 1131. This 
is one characteristic that distinguishes EZ from vari- 
ous LISP environments, which access traditional 
operating system services through functions or other 
explicit mechanisms [ 161. The implementation 
assumes responsibility for managing primary and 
secondary memory, including garbage collection.’ 

EZ supports four basic types of values: numerics, 
strings, procedures, and tables. Numerics include 
integers and reals, which serve their conventional 
purposes. Strings are sequences of characters and 
have arbitrary length, Tables are heterogeneous 
one-dimensional arrays that can be indexed by and 
can contain arbitrary values. Procedures are 
described below. 

Since values persist until changed, assignment of 
a string to a variable provides the same facility as 
creating a ‘file’ in a traditional operating system. 
Substring operations provide ‘random access’ facili- 
ties; s[i:j] specifies the substring between character 
positions i and j. As in Icon, character positions are 
numbered from the left starting at 1 and refer to posi- 
tions between characters. Positions may also be 
specified relative to the right end of a string starting 
at 0 and continuing with negative values toward the 
left. For example, the positions in the string HAT are 

HAT 
t f t t 
I 2 3 4 

-3 -2 -I 0 

Note that the position after the last character may be 
specified. Substrings may also be specified by start- 
ing position and length, e.g., sIi!ll specifies a sub- 
string of length I starting at position i. 

Tables provide an associative array facility simi- 
lar to that provided by tables in SNOBOL4 and Icon 
and by arrays in rwk [II. Tables are created 
automatically as necessitated by subscripting. 
Tables, like other values, persist until changed and 

‘In the current version, UNIX provides environmental sup 
port such as terminal i/o and disk services, but in a per- 
sonal computer environment, the entire computer and its 
peripherals are to bc devoted to supporting the EZ environ- 
ment. 

thus subsume directories in traditional operating sys- 
tems. For example, 

paper[“titWl = “High-Level Language... 
paper[“authors”l = cwf 11 “\n” 11 drh 

creates a table representing this paper and establishes 
it as the value of paper. (I I is string concatenation.) 
The notation e-id is equivalent to e[“id”], permitting 
EZ tables to subsume records in traditional program- 
ming languages; the example above is equivalent to 

paper.title = “High-Level Language... 
paper.authors = cwf I I “\n” II drh 

Table indices and values can be of arbitrary types. 
For example, 

paper[ll.heading = “Introduction” 
paperCll.body = “Ez Is a 8oftwareb.. 
paper[ll.top = paper 

creates a table for Section 1 of this paper, and estab- 
lishes it as the value associated with index 1 in paper. 
In addition, the value associated with top in the table 
for Section 1 is the table for the entire paper. Arbi- 
trary cyclical structures, such as this example, are 
permitted and are, in fact, frequently used in EZ. 

Tables are as large as necessary to accommodate 
their contents. Entries are removed by the built-in 
function remove. For example, 

remove(paper[ll, “top”) 

removes the value associated with top in the table for 
Section 1 constructed above. Tables can be used to 
construct a hierarchical ‘file system’, such as that pro- 
vided by UNIX. 

Expressions usually compute values, but, as in 
Icon, some expressions may fail to yield values. The 
absence of values is used to drive control structures. 
For example, the relational operators return their 
right operand only if the relation is satisfied. The 
absence of values terminates for and while loops and 
determines the flow of if statements. For some 
operators, such as assignment, the absence of a value 
inhibits the execution of the operation. 

EZ strings, tables, operators, and control struc- 
tures provide the facilities of files, directories, and file 
system utilities found in operating systems. For 
example, listing the contents of a table corresponds 
to listing the names in a directory. Whereas in most 
operating systems, this service is provided by a ‘list 
directory’ program, it can be provided in EZ with a 
simple loop. For example, 

for (I in paper) 
8 = 8 1 1 ‘I,” 11 i 

sequences through the table given by paper, repeat- 
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edly assigns the indices of the table to i, and con- 
catenates the indices onto the end of s. 

Automatic conversions between data types obvi- 
ate the need for most ‘conversion’ utilities found in 
traditional languages and operating systems. 
Numeric operators convert their operands to integers 
or reals as necessary. Similarly, operands of string 
operators are converted to strings as necessary. For 
some operators, the operation performed depends on 
the type of the operands. For example, the relational 
operators perform lexical comparison if both 
operands are strings and numeric comparison (with 
the appropriate conversions) if either operand is 
numeric. 

Conversions between tables and strings are also 
provided. Tables are converted to strings by con- 
catenating their elements, and strings are converted 
to tables by constructing a table with the string asso- 
ciated with the index 1. Thus, for example, simply 
typing the name of a table displays its contents. 

3. Procedures and Activations 
EZ procedures are data objects that contain exe- 

cutable code. A procedure ‘declaration’ amounts to 
an assignment of the procedure ‘constant’ to the iden- 
tifier. For example, after the execution of 

procedure Is(t) local i, s 
s = “” 
for (i in t) 

s = s 11 “,” 11 I 
return (9[2:0]) 

end 

the value of Is is a procedure that returns a list of the 
indices in a table. 

Conversions between procedures and strings are 
performed automatically. Procedures are converted 
to strings by returning their source code. Simply typ- 
ing the name of a procedure, such as Is, therefore, 
displays its code. Strings are converted to pro- 
cedures by compiling them. Thus, 

for (i in work) 
work[ilO 

executes the values in the table work, compiling those 
values that are not procedures. In a sense, compila- 
tion is simply an optimization in Ez. 

Scope rules, which dictate the interpretation of 
free identifiers, depend on the contents of tables 
interrogated by the compiler. Unlike most other sys- 
tems, these ‘symbol tables’ are EZ tables, which can 
be manipulated at the source-language level. As 
exemplified in Is, above, identifiers may be declared 

local and their use is restricted to the associated pro- 
cedure in the traditional manner. An interpretation 
of free identifiers is sought by searching the table that 
is the current value of the variable root for an index 
value lexically equal to the identifier. Thus, the 
assignment 

message = “I’ll return soon” 

is equivalent to 

root[“message”l = “I’ll return soon” 

If the identifier is not found in root, the compiIer 
searches the chain of tables given by root[“..“], 
root[“..“l[“..“l, and so on until the identifier is found 
or a table without a “..‘I entry or whose “..” entry is 
not a table is encountered. If this search fails to 
locate the identifier, it is entered in root. 

This interpretation of identifiers is under com- 
plete control of the user. By changing the value of 
root and altering the path given by the “..” entries, 
rules such as the inheritance rules in Smalltalk [9], 
the ‘search lists’ in UNIX, and the information-hiding 
aspects of modules and own variables can be 
obtained. For example, 

root = [“previous”:rootl 

uses a table constructor in which index-value pairs 
are given as indexmalue to assign a new table to root 
that associates the previous value of root with the 
entry previous. The absence of a “..” entry forces 
free identifiers to be associated with the new table. 
The subsequent input 

s 0 = 
previous.random = procedure (n) 

s = (~12621 + 21131)%10000 
return (s+n/10000 + 1) 

end 

defines a procedure that generates a sequence of 
pseudo-random numbers in the range 1 to n using the 
linear congruence method. The procedure is made 
accessible by placing it in the original table, but the 
table containing the state variable s is inaccessible 
except for the references within random. Other vari- 
ations, such as saving the table containing a so that it 
can be changed, are also possible. The assignment 

root = previous 

resets root to its original value. 
Procedures may be invoked as in traditional 

languages, e.g. Is(root). In addition, conversion 
from a procedure to a table, provided by the built-in 
function table, yields a table that is an activation 
record for the procedure. This table contains entries 
for each of the parameters and locals declared in the 
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procedure and entries describing the current state of 
the activation. Tables created in this manner can be 
used as coroutines and exist until they are inaccessi- 
ble. 

For example, 

procedure decode(cmd. keymap) 
local c, 8, t 

s= I,,, 

for (t = keymap; c = cmd[llll; t = tCc1) ( 
s=s 11 c 
cmd = cmd[2:01 
if (type(M) = “procedure”) ( 

W(s) 
return (1) 
I 

else if (type(t[cl) - “table”) 
return 

1 
end 

defines a procedure to traverse a set of nested EZ 

tables using the characters in cmd as indices until an 
entry containing a procedure is found. The expres- 
sion 

d = table(decode) 

assigns to d a table representing an activation record 
for decode. d contains entries for “cmd”, “keymap”, 
I, I, ,I I, s, c, and “t”, each uninitalized. ‘Invoking’ d 
begins execution of decode. Arguments can be ini- 
tialized by position, e.g., 

d(nextcmd, zl9map) 

or by explicit assignment, e.g., 

d.cmd = nextcmd 
d.keymap = zigmap 
d0 

Execution continues until decode returns. Upon 
return, the entries in d are the values of the parame- 
ters and locals upon return. For example, if 

d(“abcd”, zlQmap) 

led to the integer 24 instead of a table or procedure in 
the tree beginning with zlemap, 

if (d(nextcmd, zl9map)) 
. . . 

else 
error = “unbound sequence c” 11 

d.s [I d.cmd II 
“) yields ” II d.t[d.cl 

assigns 

unbound sequence <abed> yields 24 

to error. 

In addition to entries for the parameters and 
locals, the value associated with the index “Pro- 
cedure” is the procedure itself, and the value associ- 
ated with the index “Resumption” is the resumption 
point or ‘location counter’ for the activation. 
Resumption points correspond to executable expres- 
sions or statements in the procedure body. Resump- 
tion points are numbered sequentially following the 
lexical order of the statements and expressions. For 
example, the resumption points for decode, given as 
superscripts, are as follows. 

procedure decode(cmd, keymap) 
local c, 8, t 

1 
2 

8" w,, 

3’0; rt = keymap; ‘c = cmd[llll; ‘t = t[cl) ( 
=s 11 c 

‘:rnd = cmd[2:01 
@if <Otyp*(t[cl) = “procedure”) { 

;;tCcl(s) 
return 13(1) 

el{s141f (‘6#m(tlcl) - “table”) 
return 

18 
I 

Resumption points on statements other than expres- 
sions are used for debugging purposes, as described 
below. 

Activations can be resumed at any point by 
changing the value of the “Resumption” entry. 
Assigning an integer to “Resumption” causes execu- 
tion to he resumed at the corresponding resumption 
point upon the next invocation. For example, 

d.Resumptlon = 1 
d (“abed”) 

restarts the activation of decode with a new value for 
the first argument. 

Subscripting a procedure with an integer yields 
the source code for the corresponding resumption 
point. For example, decode[fl returns the string 

s=sllc 

Substringing a procedure yields the source code for 
the resumption point whose code most closely sur- 
rounds the substring specified; i.e., a normal sub- 
string specification is ‘widened’ to the boundaries of 
the nearest resumption point. For example, 
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decode[find(“type”, decode)!11 

returns the string 

type(t[c]) = “procedure” 

find(sl,s2) is a built-in procedure that returns the 
leftmost position in s2 where sl occurs as a substring. 

The source code for resumption points can be 
changed at any time, and subsequent resumptions of 
activations refer to the new source code. For exam- 
ple, 

decoder1 11 = “if (-tlcl(s)) return” 

changes decode to 

procedure decode(cmd, keymap) 
local 
. . . 

if 

. . . 
end 

c, s, t 

WpeUEd) = “procedure”) [ 
if (-t[c](s)) return 
return (1) 
I 

and renumbers the resumption points accordingly. 
Subsequent resumption of d, for example, uses the 
new code. Such changes are, of course, typically 
accomplished with an editor, as described below. 

Activations are just tables and persist until 
changed; entries can be added, removed, or changed 
as desired. For example, the Procedure entry need 
not correspond to the procedure from which the 
activation was created; it can be changed to any pro- 
cedure. Missing local variables and parameters are 
created as necessary during execution. 

Treating activations and tables as a single type 
induces a different programming style that 
emphasizes activations over procedures. It is typical, 
for example, for tables to contain both data and 
activation information. For example, keymap in 
decode could be used as the activation instead of the 
argument: 

zlQmap.keymap = zlQmep 
zlQmap.Procedure = decode 
zlQmap.Resumptlon = 1 

includes the necessary entries to use zfQmap as the 
activation instead of an argument to an activation. 
Subsequently, expressions such as 

zl Qmap(“abcd”) 

accomplish command decoding. Including a format- 
ting procedure as the Procedure entry in paper, 
described above, is another example. 

As these examples suggest, activations can be 
constructed from scratch directly in EZ. For 
instance, 

random = I 
,I #, . s .o, 
“Procedure” : procedure (n) local 8 

s = (~*I2621 + 21131)%10000 
return (srn/lMJOO + 1) 

end, 
“Resumption” : 1 
1 

builds an activation for the random number genera- 
tor described above. Each resumption of the genera- 
tor, e.g., random(lOO), returns the next random 
number in the sequence. Note that s is hidden as a 
local variable in this version of random; in the previ- 
ous version, s was hidden in another table using the 
scope rules. 

4. An EZ Editor/Debugger 

Just as EZ’S built-in operations generalize tradi- 
tional operations, EZ’S editor generalizes traditional 
editing functions. In particular, since activations are 
just EZ tables, the editor is automatically a debugger 
as well. 

The editor looks like a conventional screen editor 
[lSl based on the Irons model [12]. It displays a 
screen of text and updates it after each command so 
that what you see is what you get. Hitting cursor 
keys moves a cursor around the screen, and hitting 
printable characters replaces the character at the cur- 
sor with the input character. A few special function 
or control keys insert and delete text, move the focus, 
etc. The editor’s command dispatcher served as an 
example in the previous section. Ultimately, menus 
and a mouse should replace the control and cursor 
keys required by the development system. 

Where conventional editors edit only text files, 
the Ez screen editor edits all Et values. Ez’s type 
integration and automatic conversions allow t:lc edi- 
tor to accomplish this goal by managing only two 
types, strings and tables. Both types share one user 
interface. A data-independent front end manages the 
display and translates the user’s commands into calls 
on a small set of primitive editing routines that actu- 
ally manipulate the data. When invoked, the front 
end examines its argument and selects the string or 
table interface accordingly. These routines print, 
change, insert, and delete one line in a string or one 
entry in a table. This technique adapts to edit a wide 
range of types CA, and it also allows tailoring of the 
editor to sub-abstractions (e.g., relational databases 
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represented as tables of tables). 
The editor treats numbers, strings, and pro- 

cedures much as a conventional editor treats text 
files, performing conversions to strings as necessary. 
At the end of the editing session, it converts the 
edited value back to the type of the original value. 

The editor treats tables by allowing the user to 
edit the table’s keys as though they were text. It 
displays an image of the keys, and it changes them to 
reflect the user’s changes to the screen. For example, 
when editing a table for an activation of random, the 
editor displays its keys 

Procedure 
Resumption 
n 
s 

Now, for example, changing the last line will change 
the name of random’s seed variable 8. 

An ‘enter’ command recursively invokes the edi- 
tor on the value associated with the key on the line 
holding the cursor. For example, invoking the enter 
command on the line holding s above edits its associ- 
ated value, namely the value of the seed. That is, the 
value of s is displayed, and it may be changed by sim- 
ply overstriking it. Because tables subsume conven- 
tional file system directories, the enter command 
allows users to walk ‘directories’; because tables sub- 
sume activations, the enter command subsumes trad- 
itional debugger commands to examine variables as 
well. 

Breakpoints are also implemented as special cases 
of editing. For example, invoking the enter com- 
mand on the line holding Procedure above edits its 
associated value, namely the source code, which can 
now be edited as a string. For example, inserting 

edit(random) 

before random’s assignment to s changes random to 

procedure (n) local s 
edit(random) 
s = (se12621 + 21131)%10000 
return (s~n/10000 + 1) 

end 

The edited code calls the editor/debugger on each 
reentry and passes the activation of random to edit 
for examination and modification. Thus the inser- 
tion of this line effectively sets a breakpoint. The 
breakpoint command merely abbreviates editor com- 
mands for such an insertion. Breakpoints are deleted 
by deleting the inserted text. 

Activations can be executed ‘incrementally’ by 
executing the code at a single resumption point. 

Incremental execution is implemented by editing the 
activation record. The user selects a portion of the 
code fragment to be executed, say from position i to 
position j, which is widened to resumption point 
boundaries. The substring is extracted, the code is 
executed, and the resulting value is displayed. To use 
the proper environment (e.g., the proper variables), 
the incremental execution command reuses the 
activation that is being edited, but with a new pro- 
cedure that consists of just the code for the single 
resumption point from the original procedure. This 
is accomplished by a procedure containing the fol- 
lowing EZ code. 

savP = x.Procedure 
savR = x.Resumption 
x.Procedure = x.Procedure[l:jl 
x.Resumption = 1 

x0 

x is the editor’s single parameter, which holds the 
datum being edited, here the activation record being 
scrutinized. After saving the current procedure and 
resumption point, x’s procedure is changed to just the 
code for the resumption point. This new procedure is 
executed by resetting the resumption point to the 
beginning and invoking the activation. After execut- 
ing the code for the single resumption point, the 
activation returns, and the editor restores the original 
procedure and resumption point: 

x.Procedure = savP 
x.Resumption = savR 

By positioning the cursor, the user can execute arbi- 
trary portions of a procedure in an arbitrary order 
and see the effects. Since debugging is simply editing 
in EZ, errors can be detected and corrected, and 
correct execution resumed without resorting to the 
‘debug-edit-compile-debug’ cycle of traditional pro- 
gramming environments. 

Incremental execution is similar to the ‘single- 
stepping’ mode provided by traditional debuggers. 
For example, in many cases, using 

x.Resumption += savR 

in place of the last line of code above advances the 
resumption point of the original procedure past the 
code just executed. The code for setting breakpoints 
and for incremental execution is specific to activation 
records, but they are the only parts of the editor with 
this property. 

Because tables subsume conventional file system 
directories, the editor subsumes traditional file sys- 
tem commands to list directories and to remove, 
create, and rename files. Because tables subsume 
activations, the editor subsumes traditional 
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debuggers as well. It also subsumes ‘sub-editors’ 
within such utilities. For example, under conven- 
tional systems, setting a breakpoint and changing a 
variable in the dcbuggee require quite different com- 
mands, but under EZ, they are both done with the sin- 
gle generalized editor. The user learns to navigate 
structures as much as to operate commands. Where, 
for example, the UNIX manual describes many more 
commands than structures, the emerging EZ manual 
describes fewer commands and more structures. 
Since structures are described declaratively where 
commands are described procedurally, this may yield 
a simpler system, 

The editor is to become Ez’s primary user inter- 
face. The current fetch-execute loop may be used 
only to bootstrap up the editor. The use of an editor 
as the main user interface has been proposed before 
[4, 13, 171, but it has yet to be fully exploited [15]. 

5. Discussion 
EZ’s design seeks to provide high-level facilities by 

simplifying and generalizing traditionally low-level 
facilities and encapsulating them in language con- 
structs. The resulting facilities are simple and flexi- 
ble; using tables as activations is an example. EZ’S 

‘open’ approach and ability to modify activations at 
the source-language level are in contrast to the 
‘closed’ approaches of previous coroutine facilities 
[14], in which activations are manipulated with a few 
specific constructs and their internals are inaccessi- 
ble. 

One of the design goals of EZiS to provide the ser- 
vices of a modern operating system, such as those 
provided by the UNIX system calls (viz. $2 of Ref. 
19). Asynchronous processes are an important omis- 
sion from the list of such services. Current work is 
directed toward using activations as processes, per- 
mitting them to be resumed asynchronously. Like- 
wise, it is intended to use activations to respond to 
interrupts and other asynchronous events. 

The full potential of resumption points needs 
further exploration and perhaps refinement. For 
example, setting resumption points using knowledge 
of the source code is somewhat primitive. Higher 
level functions for ‘scanning’ the source code, much 
as the string scanning functions scan strings, is a pos- 
sible alternative. This kind of capability also sug- 
gests the use of other high-level operations, such as 
pattern matching and database functions, on objects 
such as activations and procedures. Manipulating 
resumption points to handle exceptions and error 
conditions is also a possibility. 

Efficient implementation of the EZ procedure 
mechanism is another area for further work. The 
current implementation is straightforward; little 
attempt is made to execute procedure activations 
efficiently and to avoid unnecessary conversions. 
Using lazy evaluation and multiple representations 
for objects, such as is done in recent implementations 
of Smalltalk [3, 181, are areas of current implementa- 
tion work. 

The central challenge in EZ is finding the natural 
linguistic encapsulation of system services. The 
encapsulation of primary and secondary memory as 
strings and tables is more obvious than similar 
encapsulations for interactive devices, such as key- 
boards and displays, or higher-level representations 
such as windows and processes. Treating procedure 
activations as data, accessible as data, provides a 
possible encapsulation for such services. 
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