
High-Level Language Facilities for Low-Level Servicest

Christopher W. Fraser
Department of Computer Science, The Universify of Arizona

Tucson, Arizona 85721

David R. Hanson1
Department of Electrical Engineering and Computer Science. Princeron University,

Princeton, New Jersey 08544

Abstract

Ez is a language-based programming environ-
ment that offers the services provided separately by
programming languages and operating systems in
traditional environments. These services are pro-
vided as facilities of a high-level string processing
language with a ‘persistent’ memory in which values
exist indefinitely or until changed. In EZ, strings and
associative tables provide traditional file and direc-
tory services. This paper concentrates on the use of
EZ procedures and their activations, which, like other
values, have indefinite lifetimes, In EZ, the low-level
aspects of procedure execution, such as activation
record creation, references to local variables, and
access to state information, are accessible via high-
level language constructs. As a result, traditiona!ly
distinct services can be provided by a single service in
the EZ environment. Furthermore, such services can
be written in EZ itself. An editor/ debugger that illus-
trates the details of this approach is described.

1. Introduction
EZ 16-81 is a software system that integrates the

traditionally distinct facilities of programming
languages and operating systems into a single system.
This integration is achieved by providing these facili-
ties in a high-level string processing language. The
result of this integration is a system in which all

tl’hia work wan supported by the National Science Foundation
under Grants MCS-8102298, MCS-8302398, and DCR-8320257.

SPcrmancnt address: Department of Computer Science. The
University of Arizona, Tucson, Arizona 85721.
Permission to copy without fee all or part of this material ir granted
provided that the copict arc not made or dirtributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and ita date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, require3 a fee and/or specfic permission.

*1984 ACM 0-8979I-14?-4/85/001/0217 $00.75

interaction is performed using the language facilities
of EZ. Examples of interaction that are traditionally
performed by the operating system or its utilities
include editing, debugging, and filing. Traditional
‘systems* programming is also done in EZ.

EZ facilitates this degree of integration through
several unconventional features. EZ uses late binding
times, execution-time scope rules, a ‘persistent’
memory model in which object8 have infinite life-
times, and a type system that integrates or ‘fuses’ [6]
conventionally distinct types into single types. In
addition, EZ provides high-level data types such as
strings, associative tables, and procedure activations.
Objects that are manipulated by utilities in tradi-
tional operating systems are manipulated by opera-
tors and control structures in EZ. Previous papers
[6,8] have concentrated on the use of EZ strings and
table8 as a file system; this paper concentrates on the
use Of EZ procedure activations.

The version of EZ described here is written in C
and runs under UNIX on a VAX-l l/780, but it is
intended to use EZ as the complete environment on
personal computers. The following sections briefly
describe the language facilities of EZ, its procedure
mechanism, and an editor/debugger written in EZ,

which displays the merits of its facilities.

2, Data and Control
As a programming language, Ez is a high-level

string-processing language derived from SNOBOLA,
SL5 [ill, and Icon [lo]. It has most of the basic
attributes of those languages, such as concise, expres-
sive constructs, run-time flexibility, untyped vari-
ables, heterogeneous structures, and automatic type
conversion. Strings are treated as scalars, and there
are numerous ‘mid-level’ string operations similar to
those in Icon, but pattern matching operations are
not provided. Many of EZ’S features are similar to

217

those in traditional languages and the string-
processing features are similar to those in Icon. The
reference manual [7] contains a complete description
of EZ’S syntax, semantics, built-in values, and usage.

EZ has a ‘persistent’ memory much like an APL
workspace in which values exist until changed.
Unlike systems that access workspaces explicitly [2],
this memory model is implicit in EZ and is a part of
the language, much as in the Gem system 1131. This
is one characteristic that distinguishes EZ from vari-
ous LISP environments, which access traditional
operating system services through functions or other
explicit mechanisms [161. The implementation
assumes responsibility for managing primary and
secondary memory, including garbage collection.’

EZ supports four basic types of values: numerics,
strings, procedures, and tables. Numerics include
integers and reals, which serve their conventional
purposes. Strings are sequences of characters and
have arbitrary length, Tables are heterogeneous
one-dimensional arrays that can be indexed by and
can contain arbitrary values. Procedures are
described below.

Since values persist until changed, assignment of
a string to a variable provides the same facility as
creating a ‘file’ in a traditional operating system.
Substring operations provide ‘random access’ facili-
ties; s[i:j] specifies the substring between character
positions i and j. As in Icon, character positions are
numbered from the left starting at 1 and refer to posi-
tions between characters. Positions may also be
specified relative to the right end of a string starting
at 0 and continuing with negative values toward the
left. For example, the positions in the string HAT are

HAT
t f t t
I 2 3 4

-3 -2 -I 0

Note that the position after the last character may be
specified. Substrings may also be specified by start-
ing position and length, e.g., sIi!ll specifies a sub-
string of length I starting at position i.

Tables provide an associative array facility simi-
lar to that provided by tables in SNOBOL4 and Icon
and by arrays in rwk [II. Tables are created
automatically as necessitated by subscripting.
Tables, like other values, persist until changed and

‘In the current version, UNIX provides environmental sup
port such as terminal i/o and disk services, but in a per-
sonal computer environment, the entire computer and its
peripherals are to bc devoted to supporting the EZ environ-
ment.

thus subsume directories in traditional operating sys-
tems. For example,

paper[“titWl = “High-Level Language...
paper[“authors”l = cwf 11 “\n” 11 drh

creates a table representing this paper and establishes
it as the value of paper. (I I is string concatenation.)
The notation e-id is equivalent to e[“id”], permitting
EZ tables to subsume records in traditional program-
ming languages; the example above is equivalent to

paper.title = “High-Level Language...
paper.authors = cwf I I “\n” II drh

Table indices and values can be of arbitrary types.
For example,

paper[ll.heading = “Introduction”
paperCll.body = “Ez Is a 8oftwareb..
paper[ll.top = paper

creates a table for Section 1 of this paper, and estab-
lishes it as the value associated with index 1 in paper.
In addition, the value associated with top in the table
for Section 1 is the table for the entire paper. Arbi-
trary cyclical structures, such as this example, are
permitted and are, in fact, frequently used in EZ.

Tables are as large as necessary to accommodate
their contents. Entries are removed by the built-in
function remove. For example,

remove(paper[ll, “top”)

removes the value associated with top in the table for
Section 1 constructed above. Tables can be used to
construct a hierarchical ‘file system’, such as that pro-
vided by UNIX.

Expressions usually compute values, but, as in
Icon, some expressions may fail to yield values. The
absence of values is used to drive control structures.
For example, the relational operators return their
right operand only if the relation is satisfied. The
absence of values terminates for and while loops and
determines the flow of if statements. For some
operators, such as assignment, the absence of a value
inhibits the execution of the operation.

EZ strings, tables, operators, and control struc-
tures provide the facilities of files, directories, and file
system utilities found in operating systems. For
example, listing the contents of a table corresponds
to listing the names in a directory. Whereas in most
operating systems, this service is provided by a ‘list
directory’ program, it can be provided in EZ with a
simple loop. For example,

for (I in paper)
8 = 8 1 1 ‘I,” 11 i

sequences through the table given by paper, repeat-

218

edly assigns the indices of the table to i, and con-
catenates the indices onto the end of s.

Automatic conversions between data types obvi-
ate the need for most ‘conversion’ utilities found in
traditional languages and operating systems.
Numeric operators convert their operands to integers
or reals as necessary. Similarly, operands of string
operators are converted to strings as necessary. For
some operators, the operation performed depends on
the type of the operands. For example, the relational
operators perform lexical comparison if both
operands are strings and numeric comparison (with
the appropriate conversions) if either operand is
numeric.

Conversions between tables and strings are also
provided. Tables are converted to strings by con-
catenating their elements, and strings are converted
to tables by constructing a table with the string asso-
ciated with the index 1. Thus, for example, simply
typing the name of a table displays its contents.

3. Procedures and Activations
EZ procedures are data objects that contain exe-

cutable code. A procedure ‘declaration’ amounts to
an assignment of the procedure ‘constant’ to the iden-
tifier. For example, after the execution of

procedure Is(t) local i, s
s = “”
for (i in t)

s = s 11 “,” 11 I
return (9[2:0])

end

the value of Is is a procedure that returns a list of the
indices in a table.

Conversions between procedures and strings are
performed automatically. Procedures are converted
to strings by returning their source code. Simply typ-
ing the name of a procedure, such as Is, therefore,
displays its code. Strings are converted to pro-
cedures by compiling them. Thus,

for (i in work)
work[ilO

executes the values in the table work, compiling those
values that are not procedures. In a sense, compila-
tion is simply an optimization in Ez.

Scope rules, which dictate the interpretation of
free identifiers, depend on the contents of tables
interrogated by the compiler. Unlike most other sys-
tems, these ‘symbol tables’ are EZ tables, which can
be manipulated at the source-language level. As
exemplified in Is, above, identifiers may be declared

local and their use is restricted to the associated pro-
cedure in the traditional manner. An interpretation
of free identifiers is sought by searching the table that
is the current value of the variable root for an index
value lexically equal to the identifier. Thus, the
assignment

message = “I’ll return soon”

is equivalent to

root[“message”l = “I’ll return soon”

If the identifier is not found in root, the compiIer
searches the chain of tables given by root[“..“],
root[“..“l[“..“l, and so on until the identifier is found
or a table without a “..‘I entry or whose “..” entry is
not a table is encountered. If this search fails to
locate the identifier, it is entered in root.

This interpretation of identifiers is under com-
plete control of the user. By changing the value of
root and altering the path given by the “..” entries,
rules such as the inheritance rules in Smalltalk [9],
the ‘search lists’ in UNIX, and the information-hiding
aspects of modules and own variables can be
obtained. For example,

root = [“previous”:rootl

uses a table constructor in which index-value pairs
are given as indexmalue to assign a new table to root
that associates the previous value of root with the
entry previous. The absence of a “..” entry forces
free identifiers to be associated with the new table.
The subsequent input

s 0 =
previous.random = procedure (n)

s = (~12621 + 21131)%10000
return (s+n/10000 + 1)

end

defines a procedure that generates a sequence of
pseudo-random numbers in the range 1 to n using the
linear congruence method. The procedure is made
accessible by placing it in the original table, but the
table containing the state variable s is inaccessible
except for the references within random. Other vari-
ations, such as saving the table containing a so that it
can be changed, are also possible. The assignment

root = previous

resets root to its original value.
Procedures may be invoked as in traditional

languages, e.g. Is(root). In addition, conversion
from a procedure to a table, provided by the built-in
function table, yields a table that is an activation
record for the procedure. This table contains entries
for each of the parameters and locals declared in the

219

procedure and entries describing the current state of
the activation. Tables created in this manner can be
used as coroutines and exist until they are inaccessi-
ble.

For example,

procedure decode(cmd. keymap)
local c, 8, t

s= I,,,

for (t = keymap; c = cmd[llll; t = tCc1) (
s=s 11 c
cmd = cmd[2:01
if (type(M) = “procedure”) (

W(s)
return (1)
I

else if (type(t[cl) - “table”)
return

1
end

defines a procedure to traverse a set of nested EZ

tables using the characters in cmd as indices until an
entry containing a procedure is found. The expres-
sion

d = table(decode)

assigns to d a table representing an activation record
for decode. d contains entries for “cmd”, “keymap”,
I, I, ,I I, s, c, and “t”, each uninitalized. ‘Invoking’ d
begins execution of decode. Arguments can be ini-
tialized by position, e.g.,

d(nextcmd, zl9map)

or by explicit assignment, e.g.,

d.cmd = nextcmd
d.keymap = zigmap
d0

Execution continues until decode returns. Upon
return, the entries in d are the values of the parame-
ters and locals upon return. For example, if

d(“abcd”, zlQmap)

led to the integer 24 instead of a table or procedure in
the tree beginning with zlemap,

if (d(nextcmd, zl9map))
. . .

else
error = “unbound sequence c” 11

d.s [I d.cmd II
“) yields ” II d.t[d.cl

assigns

unbound sequence <abed> yields 24

to error.

In addition to entries for the parameters and
locals, the value associated with the index “Pro-
cedure” is the procedure itself, and the value associ-
ated with the index “Resumption” is the resumption
point or ‘location counter’ for the activation.
Resumption points correspond to executable expres-
sions or statements in the procedure body. Resump-
tion points are numbered sequentially following the
lexical order of the statements and expressions. For
example, the resumption points for decode, given as
superscripts, are as follows.

procedure decode(cmd, keymap)
local c, 8, t

1
2

8" w,,

3’0; rt = keymap; ‘c = cmd[llll; ‘t = t[cl) (
=s 11 c

‘:rnd = cmd[2:01
@if <Otyp*(t[cl) = “procedure”) {

;;tCcl(s)
return 13(1)

el{s141f (‘6#m(tlcl) - “table”)
return

18
I

Resumption points on statements other than expres-
sions are used for debugging purposes, as described
below.

Activations can be resumed at any point by
changing the value of the “Resumption” entry.
Assigning an integer to “Resumption” causes execu-
tion to he resumed at the corresponding resumption
point upon the next invocation. For example,

d.Resumptlon = 1
d (“abed”)

restarts the activation of decode with a new value for
the first argument.

Subscripting a procedure with an integer yields
the source code for the corresponding resumption
point. For example, decode[fl returns the string

s=sllc

Substringing a procedure yields the source code for
the resumption point whose code most closely sur-
rounds the substring specified; i.e., a normal sub-
string specification is ‘widened’ to the boundaries of
the nearest resumption point. For example,

220

decode[find(“type”, decode)!11

returns the string

type(t[c]) = “procedure”

find(sl,s2) is a built-in procedure that returns the
leftmost position in s2 where sl occurs as a substring.

The source code for resumption points can be
changed at any time, and subsequent resumptions of
activations refer to the new source code. For exam-
ple,

decoder1 11 = “if (-tlcl(s)) return”

changes decode to

procedure decode(cmd, keymap)
local
. . .

if

. . .
end

c, s, t

WpeUEd) = “procedure”) [
if (-t[c](s)) return
return (1)
I

and renumbers the resumption points accordingly.
Subsequent resumption of d, for example, uses the
new code. Such changes are, of course, typically
accomplished with an editor, as described below.

Activations are just tables and persist until
changed; entries can be added, removed, or changed
as desired. For example, the Procedure entry need
not correspond to the procedure from which the
activation was created; it can be changed to any pro-
cedure. Missing local variables and parameters are
created as necessary during execution.

Treating activations and tables as a single type
induces a different programming style that
emphasizes activations over procedures. It is typical,
for example, for tables to contain both data and
activation information. For example, keymap in
decode could be used as the activation instead of the
argument:

zlQmap.keymap = zlQmep
zlQmap.Procedure = decode
zlQmap.Resumptlon = 1

includes the necessary entries to use zfQmap as the
activation instead of an argument to an activation.
Subsequently, expressions such as

zl Qmap(“abcd”)

accomplish command decoding. Including a format-
ting procedure as the Procedure entry in paper,
described above, is another example.

As these examples suggest, activations can be
constructed from scratch directly in EZ. For
instance,

random = I
,I #, . s .o,
“Procedure” : procedure (n) local 8

s = (~*I2621 + 21131)%10000
return (srn/lMJOO + 1)

end,
“Resumption” : 1
1

builds an activation for the random number genera-
tor described above. Each resumption of the genera-
tor, e.g., random(lOO), returns the next random
number in the sequence. Note that s is hidden as a
local variable in this version of random; in the previ-
ous version, s was hidden in another table using the
scope rules.

4. An EZ Editor/Debugger

Just as EZ’S built-in operations generalize tradi-
tional operations, EZ’S editor generalizes traditional
editing functions. In particular, since activations are
just EZ tables, the editor is automatically a debugger
as well.

The editor looks like a conventional screen editor
[lSl based on the Irons model [12]. It displays a
screen of text and updates it after each command so
that what you see is what you get. Hitting cursor
keys moves a cursor around the screen, and hitting
printable characters replaces the character at the cur-
sor with the input character. A few special function
or control keys insert and delete text, move the focus,
etc. The editor’s command dispatcher served as an
example in the previous section. Ultimately, menus
and a mouse should replace the control and cursor
keys required by the development system.

Where conventional editors edit only text files,
the Ez screen editor edits all Et values. Ez’s type
integration and automatic conversions allow t:lc edi-
tor to accomplish this goal by managing only two
types, strings and tables. Both types share one user
interface. A data-independent front end manages the
display and translates the user’s commands into calls
on a small set of primitive editing routines that actu-
ally manipulate the data. When invoked, the front
end examines its argument and selects the string or
table interface accordingly. These routines print,
change, insert, and delete one line in a string or one
entry in a table. This technique adapts to edit a wide
range of types CA, and it also allows tailoring of the
editor to sub-abstractions (e.g., relational databases

221

represented as tables of tables).
The editor treats numbers, strings, and pro-

cedures much as a conventional editor treats text
files, performing conversions to strings as necessary.
At the end of the editing session, it converts the
edited value back to the type of the original value.

The editor treats tables by allowing the user to
edit the table’s keys as though they were text. It
displays an image of the keys, and it changes them to
reflect the user’s changes to the screen. For example,
when editing a table for an activation of random, the
editor displays its keys

Procedure
Resumption
n
s

Now, for example, changing the last line will change
the name of random’s seed variable 8.

An ‘enter’ command recursively invokes the edi-
tor on the value associated with the key on the line
holding the cursor. For example, invoking the enter
command on the line holding s above edits its associ-
ated value, namely the value of the seed. That is, the
value of s is displayed, and it may be changed by sim-
ply overstriking it. Because tables subsume conven-
tional file system directories, the enter command
allows users to walk ‘directories’; because tables sub-
sume activations, the enter command subsumes trad-
itional debugger commands to examine variables as
well.

Breakpoints are also implemented as special cases
of editing. For example, invoking the enter com-
mand on the line holding Procedure above edits its
associated value, namely the source code, which can
now be edited as a string. For example, inserting

edit(random)

before random’s assignment to s changes random to

procedure (n) local s
edit(random)
s = (se12621 + 21131)%10000
return (s~n/10000 + 1)

end

The edited code calls the editor/debugger on each
reentry and passes the activation of random to edit
for examination and modification. Thus the inser-
tion of this line effectively sets a breakpoint. The
breakpoint command merely abbreviates editor com-
mands for such an insertion. Breakpoints are deleted
by deleting the inserted text.

Activations can be executed ‘incrementally’ by
executing the code at a single resumption point.

Incremental execution is implemented by editing the
activation record. The user selects a portion of the
code fragment to be executed, say from position i to
position j, which is widened to resumption point
boundaries. The substring is extracted, the code is
executed, and the resulting value is displayed. To use
the proper environment (e.g., the proper variables),
the incremental execution command reuses the
activation that is being edited, but with a new pro-
cedure that consists of just the code for the single
resumption point from the original procedure. This
is accomplished by a procedure containing the fol-
lowing EZ code.

savP = x.Procedure
savR = x.Resumption
x.Procedure = x.Procedure[l:jl
x.Resumption = 1

x0

x is the editor’s single parameter, which holds the
datum being edited, here the activation record being
scrutinized. After saving the current procedure and
resumption point, x’s procedure is changed to just the
code for the resumption point. This new procedure is
executed by resetting the resumption point to the
beginning and invoking the activation. After execut-
ing the code for the single resumption point, the
activation returns, and the editor restores the original
procedure and resumption point:

x.Procedure = savP
x.Resumption = savR

By positioning the cursor, the user can execute arbi-
trary portions of a procedure in an arbitrary order
and see the effects. Since debugging is simply editing
in EZ, errors can be detected and corrected, and
correct execution resumed without resorting to the
‘debug-edit-compile-debug’ cycle of traditional pro-
gramming environments.

Incremental execution is similar to the ‘single-
stepping’ mode provided by traditional debuggers.
For example, in many cases, using

x.Resumption += savR

in place of the last line of code above advances the
resumption point of the original procedure past the
code just executed. The code for setting breakpoints
and for incremental execution is specific to activation
records, but they are the only parts of the editor with
this property.

Because tables subsume conventional file system
directories, the editor subsumes traditional file sys-
tem commands to list directories and to remove,
create, and rename files. Because tables subsume
activations, the editor subsumes traditional

222

debuggers as well. It also subsumes ‘sub-editors’
within such utilities. For example, under conven-
tional systems, setting a breakpoint and changing a
variable in the dcbuggee require quite different com-
mands, but under EZ, they are both done with the sin-
gle generalized editor. The user learns to navigate
structures as much as to operate commands. Where,
for example, the UNIX manual describes many more
commands than structures, the emerging EZ manual
describes fewer commands and more structures.
Since structures are described declaratively where
commands are described procedurally, this may yield
a simpler system,

The editor is to become Ez’s primary user inter-
face. The current fetch-execute loop may be used
only to bootstrap up the editor. The use of an editor
as the main user interface has been proposed before
[4, 13, 171, but it has yet to be fully exploited [15].

5. Discussion
EZ’s design seeks to provide high-level facilities by

simplifying and generalizing traditionally low-level
facilities and encapsulating them in language con-
structs. The resulting facilities are simple and flexi-
ble; using tables as activations is an example. EZ’S

‘open’ approach and ability to modify activations at
the source-language level are in contrast to the
‘closed’ approaches of previous coroutine facilities
[14], in which activations are manipulated with a few
specific constructs and their internals are inaccessi-
ble.

One of the design goals of EZiS to provide the ser-
vices of a modern operating system, such as those
provided by the UNIX system calls (viz. $2 of Ref.
19). Asynchronous processes are an important omis-
sion from the list of such services. Current work is
directed toward using activations as processes, per-
mitting them to be resumed asynchronously. Like-
wise, it is intended to use activations to respond to
interrupts and other asynchronous events.

The full potential of resumption points needs
further exploration and perhaps refinement. For
example, setting resumption points using knowledge
of the source code is somewhat primitive. Higher
level functions for ‘scanning’ the source code, much
as the string scanning functions scan strings, is a pos-
sible alternative. This kind of capability also sug-
gests the use of other high-level operations, such as
pattern matching and database functions, on objects
such as activations and procedures. Manipulating
resumption points to handle exceptions and error
conditions is also a possibility.

Efficient implementation of the EZ procedure
mechanism is another area for further work. The
current implementation is straightforward; little
attempt is made to execute procedure activations
efficiently and to avoid unnecessary conversions.
Using lazy evaluation and multiple representations
for objects, such as is done in recent implementations
of Smalltalk [3, 181, are areas of current implementa-
tion work.

The central challenge in EZ is finding the natural
linguistic encapsulation of system services. The
encapsulation of primary and secondary memory as
strings and tables is more obvious than similar
encapsulations for interactive devices, such as key-
boards and displays, or higher-level representations
such as windows and processes. Treating procedure
activations as data, accessible as data, provides a
possible encapsulation for such services.

References

1.

2.

3.

4.

5.

6.

7.

8.

A. V. Aho. B. W. Kernighan and P. J.
Weinberger, Awk-A Pattern Scanning and
Processing Language, Software---Practice %
Experience 9,4 (Apr. 1979), 267-279.
M. Atkinson, K. Chisholm, P. Cockshott and
R. Marshall, Algorithms for a Persistent Heap,
Software-Practice & Experience 13, 3 (Mar.
1983), 259-271.
L. P. Deutsch, Efficient Implementation of the
Smalltalk- System, Conf Rec. I Ith ACM
Symp. on Prin. of Programming Languages,
Salt Lake City, UT, Jan. 1984,297-302.
J. R. Ellis, N. Mishkin, M. van Leunen and S.
R. Wood, Tools: An Environment for
Timeshared Computing and Programming,
Software-Practice & Experience 13, 10 (Oct.
1983), 873-892.
C. W. Fraser, A Generalized Text Editor,
Comm. ACM 23,3 (Mar. 1980). 1X-158.
C. W. Fraser and D. R. Hanson, A High-Level
Programming and Command Language, Proc.
of the SIGPLA N ‘83 Symp. on Programming
Language Issues in Software Systems, San
Francisco, CA, June 1983,212-219.
C. W. Fraser and D. R. Hanson, The EZ

Reference Manual, Tech. Rep. 84-1, Dept. of
Computer Science, The Univ. of Arizona,
Tucson, AZ, Jan. 1984.
C. W. Fraser and D. R. Hanson, Integrating
Operating Systems and Languages, Tech. Rep.
84-2, Dept. of Computer Science, T’he Univ. of
Arizona, Tucson, AZ, Jan. 1984.

223

9. A. Goldberg, D. Robson and D. H. H. Ingalls,
Smalltalk-80: The Language and its
Implementation, Addison Wesley, Reading,
MA, 1983,

10. R. E. Griswold and M. T. Griswold, The [con
Programming Language, Prentice Hall,
Englewood Cliffs, NJ, 1983.

11, D. R. Hanson and R, E. Griswold, The SL5
Procedure Mechanism, Comm. ACM 21, 5
(May 1978), 392400.

12. E. T. irons and F. M. Djorup, A CRT Editing
System, Comm. ACM 25,l (Jan. 1972), 16-20.

13. E. T. Irons, Software for a Graphics Editing
Machine, Proc. of the Fifrh Texas Co& on
Computing Systems, Austin, TX, Oct. 1976,
13-19.

14. C. D. Marlin, Coroutines: A Programming
Methodology, -A Language Design, and An
Implementation, Springer Verlag, Berlin, 1980.

15. N. Meyrowitz and A. van Dam, Interactive
Editing Systems: Part II, Computing Surveys
143 (Sep. 1982), 353-415.

16. E. Sandewall, Programming in the Interactive
Environment: The Lisp Experience,
Computing Surveys IO, 1 (Mar. 1978), 35-71.

17. J. Scofield, Editing as a Paradigm for User
Interaction-A Thesis Proposal, Tech. Rep.
81-l l-01, Dept. of Computer Science, Univ. of
Washington, Seattle, WA, Nov. 1981.

18. N. Suzuki and M. Terada, Creating Efficient
Systems for Object-Oriented Languages, Conf:
Rec. 11th ACM Symp. on Prin. of
Programming Languages, Salt Lake City, UT,
Jan. 1984,290-296.

19. UNIX Programmer’s Manual, Volume 1,
Computer Science Div., Dept. of Electrical
Engineering and Computer Science, Univ. of
California, Berkeley, CA, Seventh Edition,
Virtual VAX-l 1 Version, June 198 1.

224

