Reprinted from Proceedings of the 1990 International Conference on Computer Languages, New Orleans, LA, Mar. 1990, 90-97

EZ Processes

David R. Hanson

Makoto Kobayashif

Department of Computer Science
Princeton University
Princeton, NJ 08544 USA

ABSTRACT

EZ is a system that integrates the facilities provided sep-
arately by traditional programming languages and operat-
ing systems. This integration is accomplished by casting
services provided by traditional operating services as EZ
language features. EZ is a high-level string processing lan-
guage with a persistent memory. Traditional file and direc-
tory services are provided by EZ’s strings and associative
tables, and tables are also used for procedure activations.
This paper describes processes in EZ, which are procedure
activations that execute concurrently and share the same,
persistent virtual address space. They are semantically sim-
ilar to ‘threads’ or ‘lightweight processes’ in some operating
systems. Processes are values. They are just associative
tables and have all of the characteristics of other EZ val-
ues, including persistence. Examples of their use and a brief
overview of their implementation are included.

1. Introduction

EZ[1, 2] is a system that integrates the facilities pro-
vided separately by traditional programming languages
and operating systems. This integration is accom-
plished by casting services provided by traditional op-
erating systems as EZ language features. The result is
a system that is intended to be a complete computing
environment that—ultimately—can replace both con-
ventional languages and operating systems.

EZ is a high-level string processing language with
a persistent memory in which values exist indefinitely
or until changed. Traditional file and directory ser-
vices are provided by EZ’s strings and associative tables
[1]. Associative tables are also used for procedure acti-
vations, providing low-level services such as activation
record creation, references to local variables, and access
to state information. This approach permits tradition-
ally separate editing and debugging services both to be
provided by an editor written in EZ that edits EZ val-
ues [2].

The design challenge in EZ is finding the natural
‘linguistic encapsulation’ of operating system facilities.
Earlier work focussed first on encapsulating file system
facilities as strings and tables, then on accessing the
details of sequential execution by casting procedure ac-
tivations as tables. This paper describes the encapsu-
lation of processes in EZ, which permits EZ to provide

1 Present address: IBM Tokyo Research Laboratory, IBM
Japan, 5-19 Sanban-cho, Chiyoda-ku, Tokyo 102, Japan

90

some of the functions of conventional operating systems
at the programming-language level. Sections 2 and 3
briefly describe the EZ language and procedures. Pro-
cesses and I/O are described in §4, the implementation
is sketched in §5, and §6 summarizes experience to date
and current and future work.

2. The Language

EZ is a high-level string processing language that has
its roots in Icon [3] and its predecessors. It has late
binding times and considerable run-time flexibility. For
example, variables can be assigned values of any type,
automatic conversions are performed for most opera-
tions, and structures are heterogeneous.

EZ has four basic types of values: numerics,
strings, procedures, and tables. Numerics (integers and
reals) and strings (of arbitrary length) are scalars, and
tables are heterogeneous, one-dimensional associative
arrays that can be indexed by and can contain arbi-
trary values. Procedures are described below.

Since values persist until changed, assigning strings
to variables is like creating ‘files’ in conventional sys-
tems. Substring access and assignment provide random
access facilities; s[i:j] specifies the substring of s be-
tween character positions i and j. Tables are like direc-
tories in conventional operating systems. For example,
the fragment

paper["title"] = "EZ Processes"
paper ["authors"] = drh || "\n" || mk

creates a table for a paper and assigns it to paper, and
assigns two entries to the new table (double vertical
bars, ||, denote string concatenation). The notation
e.id is equivalent to e["id"] so tables can be used as
records, too. Tables can contain tables; for example, if
references is a table containing entries for a reference
list,

paper.references = references

adds the reference list to paper. Tables can be used to
construct hierarchical directories, as in UNIX, as well
as arbitrary cyclical structures. Except as noted below,
tables expand automatically to accommodate their con-
tents. Entries are removed by the built-in procedure
remove, so remove (paper, "title") removes the entry
for title in the example above.

Expressions usually compute values, but, as in
Icon, some expressions may fail to yield values. For

example, the relational operators return their right
operand only if the relation is satisfied. The absence of
values drives control structures such as if statements
and for and while loops. For example,

sum = 0
for (i =1; 1 <= 10; 1 += 1)
sum += x[i]

computes the sum of x[1] through x[10]. As long as
i is less than or equal to 10, i <= 10 yields 10 and the
loop body is executed. When i becomes 11, i <= 10
fails to yield a value, which terminates the loop. For
some operators, such as assignment, the absence of a
value inhibits the execution of the operation. Thus,
max = max < a updates max only if a is greater than
max.

File system operations are usually provided by
‘utilities’ in conventional operating systems. Such pro-
grams often reduce to simple code fragments in EZ. For
example, the ‘list directory’ utility in UNIX, 1s, lists
the names in a directory, and the EZ equivalent can be
done by

for (i in paper)

S=S||llll||i

which assigns " title authors references" to s.
The for—in loop sequences through the table paper
assigning the value of each ‘index’ (which can be of any
type) to i and executing the loop body.

Automatic conversions between data types obviate
the need for ‘conversion’ functions and utilities found
in conventional languages and operating systems. Nu-
meric operators convert their operands to integers or
reals as necessary. Similarly, operands of string opera-
tors are converted to strings as necessary. For some op-
erators, the operation performed depends on the type
of the operands. For example, the relational operators
perform lexical comparison if both operands are strings
and numeric comparison (with the appropriate conver-
sions) if either operand is numeric.

Conversions between tables and strings are also
provided. Tables are converted to strings by concate-
nating their elements, and strings are converted to ta-
bles by constructing a table with the string associated
with the index 1. Thus, for example, simply typing the
name of a table displays its contents.

3. Procedures

Procedures are values that contain executable code; a
procedure ‘declaration’ amounts to an assignment of the
procedure ‘constant’ to the identifier. The fragment

procedure 1s(t) local i, s = ""
for (i in t)
s =s ||
return s
end

llnlli

91

assigns to 1s a procedure that returns a list of the in-
dices in the table passed as the argument. Conversions
between procedures and strings are performed automat-
ically. Procedures are converted to strings by returning
their source code. Thus, entering “1s” displays its code.
Strings are converted to procedures by compiling them;
in a sense, compilation is an optimization in EZ. Scope
rules depend on tables interrogated by the compiler.
Unlike other systems, these ‘symbol tables’ are EZ ta-
bles, which can be manipulated at the source-language
level. This facility is described in more detail below and
in Reference .high-level facilities..

Procedures can be invoked as usual, for instance,

list = ls(paper)

assigns " title authors references" to list.

In addition, conversion from a procedure to a table,
provided by the built-in function table, yields a table
that is an activation record for the procedure. This
table contains entries for each of the arguments and
locals declared in the procedure and entries describing
the current state of the activation.

Arguments and locals in an activation can be ac-
cessed by indexing the table. For example, after exe-
cuting

d = table(ls)

d.i and d.s access the local variables i and s in that
activation of 1s. Such activations may be invoked like
procedures, so both

d(paper)
and

d.t = paper

a0

begin execution of 1s with paper as its argument.

In addition to the arguments and locals, activations
also have the index Procedure, which contains the pro-
cedure itself, and the index Resumption, which is the
resumption point or ‘location counter’ for the activa-
tion. Resumption points can also be used to access and
alter the execution and the source code for the proce-
dure; details are given in Reference .high-level facilities..

Since activations are just tables, entries can be
added, removed, or changed as desired. For example,
the Procedure entry need not correspond to the pro-
cedure from which the activation was created; it can
be changed to any procedure. Missing local variables
and parameters are created as necessary. It is typical,
for example, for tables to contain both data and activa-
tion information. For example, a procedure to format

a paper can be included as the Procedure entry in the
table paper, described above. Indeed, activations can
be constructed from scratch by constructing the table
from the appropriate pieces as follows:

paper = [
"title": "EZ Processes",
"authors": drh || "\n" || mk,
"body": ...,
"references": references,
"Procedure": formatter
]
The table constructor [i1:e1,... ,i,:€,] constructs a
table with n index-value pairs (i1,€1), ..., (in,€n). As-

suming formatter is a procedure that formats a docu-
ment defined by

procedure formatter(title, authors,
body, references)

end

paper () produces the formatted document.

4. Processes

Processes in EZ are activations that execute concur-
rently. All processes share the same, persistent virtual
address space. Thus, they are semantically similar to
‘threads’ or ‘lightweight processes’ in some operating
systems [4]. Processes are just tables; they have all of
the normal characteristics of other EZ values, including
persistence, and all table operations apply to processes.
There is no analog of ‘heavyweight processes’ with sep-
arate address spaces as in most operating systems. As
described below, the protection benefits of such pro-
cesses can be obtained by appropriate exploitation of
EZ’s scope rules.

Processes are manipulated explicitly as EZ values
and by a set of built-in procedures.

create(p, args...)

instantiates a new process. It creates a new process,
passes args to the new process, begins its execution,
and returns the process. If p is a table (i.e., a proce-
dure activation) a copy is made and instantiated; if p
is a procedure, table(p) is instantiated. If the process
cannot be instantiated, create does not return a value.
Other values are converted to procedures and instanti-
ated as just described. For example, at startup, the EZ
server (see below) executes

create(procedure ()
while (1) pause()
end)

to instantiate an idle process. The argument is compiled
into an anonymous procedure, an activation is created,
and the activation is instantiated. pause() is a built-in
procedure that causes the calling process to relinquish

92

its processor. EZ uses preemptive scheduling, so pause
is strictly unnecessary, but pause is useful in applica-
tions that involve waiting, such as interactive user in-
terfaces [5, 6].

In the current implementation, EZ is a server. Lo-
cal and remote clients connect to the server much like
the remote login mechanism on UNIX. Once connected,
clients initiate a ‘command interpreter,” which is a sin-
gle process written in EZ. The default is a simple line-
by-line command interpreter process created by the fol-
lowing code.

create(procedure main()
while (1) read() ()
end)

read () returns a line, which is converted to a procedure
(i.e., compiled) and invoked. Alternatives, which mirror
the structure of the UNIX shell, execute each command
as a process:

create(procedure main() local p

while (1)
if (p = create(read()))
join(p)
end)

The built-in procedure join(p) causes the calling pro-
cess to waiting until process p terminates.

As shown, the command interpreter process runs
forever. Terminating and disconnecting a client need
not terminate running processes; they continue running
and the command interpreter continues running when
the client reconnects. Clients can also terminate and kill
all running processes. This is accomplished by explicit
manipulation of the table of processes described below.

More elaborate user interfaces, such as the editor
that edits EZ values [2], permit users to identify code
fragments, perhaps by selecting them on the screen, and
executing the fragments directly or as processes as sug-
gested above. Thus, when these interfaces run as pro-
cesses, they work like the simple one above differing
only in their presentation to the user.

Processes terminate execution by returning or call-
ing the built-in procedure die(). Note that the table
remains and may be used again if it is accessible. In
EZ, accessibility determines the lifetime of data, but
not the lifetime of process execution (a garbage collec-
tor reclaims inaccessible data). For example,

d = create(
procedure nextmove(x, y)

local t = £(x, y)

y =8, y)
Xx =1t

end,

0, 0

creates a process for nextmove that, given a current
position x,y computes a new position (perhaps a time-
consuming computation) and terminates. The next
move is computed by

d = create(d)

because d contains the values of x and y from the first
instantiation.

The built-in procedure kill(p) terminates the ex-
ecution of the process indicated by p, but has no affect
on the accessibility of p.

4.1 The Process Table

Whenever a process is instantiated by create, a record
describing the new process is entered into the table
Processes. Processes is indexed by each process (i.e.,
each table); an entry for a process p is inserted by exe-
cuting the equivalent of the assignment

Processes[p] = record [
priority: O,
process: p,

join: ,

queue:

]

The record constructor builds a table with the indi-
cated fields, which must be identifiers. Fields with omit-
ted values are uninitialized. Such tables are equivalent
to other tables except new entries cannot be added and
existing entries cannot be removed.

The value of the priority field gives the execu-
tion priority of the process in the usual manner (except
that all processes are guaranteed some execution time
to prevent starvation). The priority of process p can be
changed by simply changing Processes[p] .priority.
By default, all processes are given the same priority.
‘System’ processes are assigned other priorities; the idle
process is given a low priority while command inter-
preters are given a high priority. The process field is
the process itself. The join field is a list of processes
(threaded through the queue fields of the records de-
scribed above) waiting for this process to terminate.

The process table can be manipulated like any
other table. For example,

create(procedure ()
local old = 0, new

while (1) {
new = size(Processes)
if (new "= old)
write("process count = ",
old = new)
pause ()
}
end)

instantiates a process that reports changes in the num-
ber of processes; size is a built-in procedure that re-

93

turns the size of its operand, e.g., the number of entries
in a table, the length of a string, etc.

Most operating systems have a ‘process status’ util-
ity that gives information on the currently running pro-
cesses; ps in UNIX is an example. The following pro-
cedure provides a similar facility in EZ.

procedure ps() local p
for (p in Processes)
write(p.Procedure, "\n")
end

ps O prints the source code for the initial procedure in
each process.

4.2 Synchronization

Semaphores are used for low-level process synchroniza-
tion. Higher-level synchronization mechanisms, such as
events and message passing, can be implemented in EZ
with semaphores.

P(s) and V(s) are the usual atomic P and V opera-
tions on a general semaphore s. A semaphore is a table
with an appropriately initialized count entry. Processes
waiting on s are linked together via the queue fields
mentioned above; this list emanates from the queue
field of s, which is created if necessary.

Mutual exclusion can be implemented as usual:

mutex = record [count: 1, queue:]

procedure update()
P(mutex); { access resource }; V(mutex)
end

Any table can be used as a semaphore; a count field
with a value of 0 is added if necessary. For example,

printer = create(procedure server()
local head = 0, tail = 0,
mutex = ["count": 1]
while (1) {
P(printer)

print (printer[head += 1])
remove (printer, head)

}
end)

creates a simple print server process and assigns it to
printer. printer is a table that serves three pur-
poses. First, it’s the activation record for procedure
server. Second, it’s a semaphore that controls the
producer-consumer relationship between the single pro-
cess printer and its multiple clients. Since there’s
no count field in printer, one is added at the first
P(printer) (or V(printer)) with the value 0, which
causes printer to wait for something to print. (This
implicit creation of a count field can be avoided by

declaring a local variable count.) Third, printer
is also the print queue; printer[head+1] through
printer[tail] contain the values to be printed. head
and tail are simply incremented; aside from integer
overflow, there is no need to keep them within specific
bounds.

mutex is a semaphore that synchronizes access to
the tail of the queue, i.e., printer[tail]. Such syn-
chronization is necessary because, while printer is the
single consumer, there are many producers. As shown
above, printer blocks on printer until a client exe-
cutes a V(printer). Clients call 1pr, which appends a
value to the queue, using mutex gain exclusive access,
and then issues a V on printer:

procedure 1lpr(s)
P(printer.mutex)
printer[printer.tail += 1] = s
V(printer.mutex)
V(printer)

end

Although not recommended, semaphore count values
and queues can be changed explicitly; they are just table
entries.

4.3 Encapsulating I/0

EZ has no I/O primitives; procedures, like read and
write used the examples above, do I/O by commu-
nicating with built-in processes connected to devices.
These built-in processes use semaphores to synchronize
producer-consumer interactions in the usual manner.
Other fields are included depending on the specific de-
vice. (Of course, there are no ‘disk files’ as in con-
ventional systems, per se, since EZ strings and tables
provide equivalent facilities.)

For example, the value of Input is a built-in process
that continually reads lines from the client’s terminal.
Input is initialized by the internal equivalent of

Input = create(
procedure(filename)
local line, empty, full
empty = record [count: 1, queue:]
full = record [count: 0, queue:]
while (1) {
P(empty)
doio
V(full)
}
end,
"terminal"

)

where doio represents the internal code that performs
the actual input operations. When this process runs,
doio reads the next line from the terminal and assigns
it to 1line, and the process signals using V that the line
is available. It then waits for a consumer to retrieve the

94

line. Actual implementations for other devices might
read more than a single line with a single I/O operation
and buffer the excess.

read gets the next line by synchronizing appropri-
ately and accessing Input.line:

procedure read()
local line
P(Input.full)
line = Input.line
V(Input.empty)
return line

end

Terminal output is similar; the value of Output is
a built-in process that writes the value of Output.line
to the terminal.

Other I/0 devices are accommodated by changing
the details and fields of the process to suit the device.
A mouse, for example, can be represented by a process
with fields that encode the possible mouse events.

Uses of EZ ‘I/O processes’ thus far have been rel-
atively simple. More ambitious applications, such as
building a window system (based on NeWS or X win-
dows) for EZ, are underway.

4.4 Protection

EZ provides memory protection for its processes with
its scope rules, which can be used to create a ‘protected’
environment for a process.

Scope rules, which dictate the interpretation of free
identifiers, depend on the contents of tables interrogated
by the compiler. Unlike most other systems, these ‘sym-
bol tables’ are EZ tables and can thus be manipulated
by EZ code. As suggested above, use of identifiers de-
clared local is restricted to the associated procedure in
the usual manner. An interpretation of free identifiers
is made by searching the table that is the current value
of the variable root for an index value lexically equal
to the identifier. Each process has its own root. Thus,
the assignment

message = "I’1l return soon"
is equivalent to
root.message = "I’1ll return soon"
If the identifier is not found in root, the compiler

searches the chain of tables given by

root[".."]
root [u . ||] [u . n]
I'OOt[" . ||] [u . n] [n .. ||]

until the identifier is found or a table without a ".."
entry or whose ".." entry is not a table is encountered.

If this search fails to locate the identifier, it is entered
in root.

By changing the value of root and altering the path
given by the ".." entries, rules such as the inheritance
rules in Smalltalk [7], the ‘search lists’ in UNIX, and
the protection benefits of separate address spaces can
be obtained. When a new client connects to the EZ
server, it executes the following initialization code.

for (i in root[".."])
root[i] = root[".."][i]

root.System = root[".."]

remove (root, "..", "i")

This code makes a copy of the system root table, which
contains the builtin values and values maintained by
the server (e.g., Processes), arranges for System to re-
fer to the system root table, and then removes the ".."
and i entries. Doing so prevents subsequent processes
from changing system-wide values or unintentionally in-
ferring with other clients. System provides an alterna-
tive path to the root table, however, for those appli-
cations with a legitimate need to manipulate system
tables. Clients wishing total isolation from the server
and other clients can execute

remove (root, "System")

5. Implementation

The current version of EZ is derived from the earlier im-
plementation and is written in ANSI C [8] and runs un-
der UNIX. The implementation consist of about 7,000
lines of C and a several hundred lines of EZ. The EZ
code consists of the procedures described above as well
as other utility and start-up procedures.

EZ source code is compiled into code for a virtual
machine that mirrors the primitive operations in the
language. The implementation details are similar to
those in other very high-level languages, like Icon [9];
additional details are given in Reference 2.

The persistent virtual address space resides on sec-
ondary storage and is allocated in units of logical pages.
To accommodate small values efficiently, logical pages
are 512 bytes regardless of the physical page size of the
host. All values, including tables representing activa-
tions and processes, are allocated in the virtual address
space. The few necessary ‘internal’ structures, such as
an internal pointer to the process table, are also allo-
cated in the virtual address space.

Software caching provides access to the virtual
address space. Value representations are designed to
increase reference locality, which helps a large cache
(= 1000 logical pages) minimize paging. Simply flush-
ing the cache saves the system state.

The server multiplexes a single interpreter among
the running EZ processes initiated by the clients.
This implementation is similar to implementations of

95

‘lightweight’ processes in UNIX [10, 11] and in other
operating systems [4]. Execution of virtual machine in-
structions and of most built-in procedures is atomic.
Context switching is limited to a few built-in proce-
dures that deal with processes (e.g., join, pause, die)
and I/0O. Preemption is implemented by context switch-
ing every n (~ 1000) virtual machine instructions. I/O
interrupts can also cause a context switch.

Multiple representations for values, particularly ta-
bles, are used to provide a representation that is best
suited for the inferred use. For example, tables that
are indexed only by integers have a different represen-
tation (sparse arrays) than those indexed by other val-
ues (hash tables). The conversion from the simpler to
the more complex representation is automatic and per-
formed only when necessary.

Most activations, including processes, are never
accessed as tables, and the ‘default’ activation repre-
sentation anticipates this pattern of ‘transient’ activa-
tions. While the space for all activations is logically
allocated in the virtual address space, activations that
are never used as tables are not written to secondary
storage. Furthermore, the space for these activations is
reused without incurring any paging overhead. Thus,
for procedures invoked in the ‘normal’ functional man-
ner, activations are allocated in a stack-like fashion as in
most languages, and the allocation is nearly as efficient
as stack allocation, once a pool of available activation
pages accumulates.

When an activation is accessed as a table, its rep-
resentation is converted to a representation that caters
to both indexed access and access from the generated
virtual machine code. This is accomplished by building
a hash table for the indexed access and what amounts
to a transfer vector that points into the hash table for
access from the generated code.

To terminate the EZ server, all accessible activa-
tions are converted to the representation just described.
This is necessary because the representation of transient
activations cannot be written to secondary storage.

As described in References 2 and 12, an off-line
garbage collector reclaims inaccessible pages in sec-
ondary storage representation of the virtual address
space. Reclaimed pages are added to a pool of free
pages for subsequent allocation. Pages from this pool
are also used for transient activations.

6. Discussion

Initial use of the EZ process facility, though limited, has
been revealing. While the persistent nature of processes
is useful, it can be confusing if processes are used in the
traditional, throw-away fashion. It’s easy to forget that

processes are just persistent values; uninitiated users
are often surprised when ps (see above) reports days-
old processes that are either blocked or computing away.
More experience is necessary to understand fully the
ramifications of persistent processes and to develop an
methodology for their effective use.

Work is currently underway in several areas: Lan-
guage issues, multi-process applications, a multiproces-
sor implementation, and multiple representations.

Introducing processes into EZ at the language level
has been accompanied with some semantic problems
whose ‘correct’ resolution remains open. One of the
most interesting issues is the interaction between the
process table and EZ’s scope rules. As described above,
the compiler binds identifiers by consulting a list of sym-
bol tables, which are just EZ tables. Processes is sim-
ply another identifier and, in each client environment,
Processes points to the single, system-wide process ta-
ble, which is also an EZ table. An alternative is to have
many process tables and have Processes point to a sep-
arate table in each client. The linguistic implications
of this alternative and its implementation consequences
are yet to be completely investigated.

Another open question concerns ‘runaway’ inacces-
sible processes. For instance,

p = create(procedure ()

while (1) pause()

end)

remove (Processes, p)

p=20
creates a non-terminating process, removes it from the
process table, and changes p so that it no longer refers
to the process. The running process is inaccessible and,
unless special measures are taken, will be ultimately
reclaimed by the garbage collector. Currently, this sit-
uation is handled by keeping a ‘hidden’ pointer to all
executable processes so that they are accessible, but not
from the source-language level. An alternative under in-
vestigation would have the garbage collector terminate
such processes. More experience may suggest the ‘right’
choice or other alternatives.

Applications of EZ processes thus far have been
relatively simple; more ambitious applications will con-
tribute understanding and help identify problems in
the current implementation. An example is a current
project to use the X window system in the EZ clients.
Not only will this application provide a more usable sys-
tem, but will help refine the mechanisms used to have
EZ processes respond to interrupts. It will also require
I/0 processes that deal with bitmapped displays.

The current implementation runs on a uniproces-
sor UNIX system. An implementation for a recently ac-
quired 4-processor DEC ‘Firefly’ is also planned. The
Firefly’s shared memory architecture is matched per-
fectly to EZ’s abstract view of a single large, flat ad-
dress space. A multi-processor implementation will also

96

test the suitability of the process mechanism and its
implementation. For example, the decision to make
virtual machine instructions atomic helped evolve the
implementation of ‘sequential’ EZ to include processes,
but is inappropriate on a multiprocessor. Significant
redesign of the virtual machine will be required to deal
with ‘big’ operations, such as compilation and concate-
nation of long strings, that simply cannot be atomic in
a multiprocessor system.

Implementing EZ tends to require specialized tech-
niques because the semantics are so different from tra-
ditional languages and operating systems. While all
implementations to date have used multiple represen-
tations, processes stress the current implementation to
its limit. New representations for processes are being
investigated; the approach taken for transient activa-
tions, mentioned in the previous section, is an example.
Measurements to confirm the efficacy of alternative rep-
resentations are also contemplated.

Implementing and using EZ’s processes has also
suggested numerous areas for future work. Examples in-
clude a concurrent garbage collector as an EZ process
[13], performance monitoring for persistent processes,
and long-term reliability mechanisms. A particularly
interesting area is in building a ‘distributed’ EZ, per-
haps by adapting the recent implementations of shared
virtual memory [14, 15] to, in effect, distribute the EZ
virtual address space across a network of workstations.

Acknowledgements

Chris Fraser’s comments helped clarify several sections
of this paper.

References

1. C. W. Fraser and D. R. Hanson. A high-level program-
ming and command language. Proceedings of the SIG-
PLAN’88 Symposium on Programming Language Issues
in Software Systems, SIGPLAN Notices, 18(6):212-219,
June 1983.

2. C. W. Fraser and D. R. Hanson. High-level language fa-
cilities for low-level services. In Conference Record of the
ACM Symposium on Principles of Programming Lan-
guages, pages 217-224, New Orleans, LA, Jan. 1985.

3. R. E. Griswold and M. T. Griswold. The Icon Program-
ming Language. Prentice Hall, Englewood Cliffs, NJ,
second edition, 1990.

4. M. J. Accetta, R. V. Baron, W. Bolosky, D. B. Golub,
R. F. Rashid, A. Tevanian, Jr., and M. W. Young.
Mach: A new kernel foundation for UNIX development.
In Proceedings of the Summer USENIX Technical Con-
ference, pages 93-112, Atlanta, GA, July 1986.

5. Sun Microsystems, Inc., Mountain View, CA. NeWS 1.1
Manual, 1987.

10.

11.

. NeWS technical overview. Technical report, Sun Mi-

crosystems, Inc., Mountain View, CA, Jan. 1988.

. A. Goldberg, D. Robson, and D. H. H. Ingalls.

SmallTalk-80: The Language and Its Implementation.
Addison-Wesley, Reading, MA, 1983.

. B. W. Kernighan and D. M. Ritchie. The C' Program-

ming Language. Prentice Hall, Englewood Cliffs, NJ,
second edition, 1988.

. R. E. Griswold and M. T. Griswold. The Implemen-

tation of the Icon Programming Language. Princeton
University Press, Princeton, NJ, 1986.

E. C. Cooper and R. P. Draves. C threads. Technical
Report CMU-CS-88-154, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, June 1988.
G. V. Cormack. A micro-kernel for concurrency in
C. Software—Practice and Experience, 18(5):485-491,
May 1988.

Errata

1. Page 92, §4, second paragraph, change

to

12

13.

14.

15.

. C. W. Fraser and D. R. Hanson. The EZ reference man-
ual. Technical Report 84-1, Department of Computer
Science, The University of Arizona, Tucson, AZ, Jan.
1984.

A. W. Appel, J. R. Ellis, and K. Li. Real-time con-
current collection on stock multiprocessors. Proceedings
of the SIGPLAN’88 Conference on Programming Lan-
guage Design and Implementation, SIGPLAN Notices,
23(7):11-20, July 1988.

K. Li. Shared Virtual Memory on Loosely Coupled Mul-
tiprocessors. PhD thesis, Yale University, New Haven,
CT, Sept. 1986.

K. Li and P. Hudak. Memory coherence in shared vir-
tual memory systems. In Proceedings 5th Annual Sym-
posium on Principles of Distributed Computing, pages
229-239, Calgary, Alberta, Aug. 1986.

If p is a table (i.e., a procedure activation) a copy is made and instantiated; ...

If p is a table (i.e., a procedure activation) it is simply instantiated;. ..

2. Page 93, §4.2, change the second program display to

printer = table(procedure server()
local head = 0, tail = O,
mutex = ["count": 1]
while (1) {
P(printer)

print (printer [head += 1])
remove (printer, head)
}
end)
create(printer)

97

