Filters in SLY

D. R. Hansont

Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA

The filter facility of the SL5 programming language permits the programmer to attach a procedural
component to a variable. This procedura! component can be used to ‘filter’ values assigned to the
variable or to filter the value of the variable whenever it is fetched. Filters are the basis for the
inclusion, at the source language level, of such features as tracing, dynamic datatype checking,
generators, and dynamic protection mechanisms. Most importantly, filters are used for argument
binding, permitting various methods of argument transmission to be defined in SLS5 itself. This paper
gives an overview of SL5, describes the filter facility, and gives several examples of its use.

(Received December 1976)

1. Introduction

It is often convenient to be able to attach a procedural com-
ponent to a variable without having to acknowledge explicitly
the presence of the procedural component when referring
to that variable. An example of this convenience is illustrated
by the SNOBOL4 (Griswold ez al., 1968) statement

OUTPUT = LINE

Assignments to OUTPUT in SNOBOL4 result in the assigned
value being written to the output file. OUTPUT has a pro-
cedural component attached to it to perform the output
operation during execution. This example also illustrates an
advantage of such mechanisms: the extrancous, nonvarying
parameters of the procedural component are not required
for its use. In the case of OUTPUT, a nonvarying parameter
is the file with which OUTPUT is associated. As a result,
the statement given above is a precise notation for conveying
what it does—writes the contents of LINE to the output file.
Other features in SNOBOLA4. such as tracing and keywords,
also require that some variables have procedural components.
In SNOBOLA4, such procedural components are specialised
and are handled in an ad hoc fashion.

This paper describes a general linguistic mechanism in the
SL5 programming language (Griswold and Hanson, 1977)
that permits the programmer to attach a procedural component
to a variable. This procedural component is called a filter,
and may be attached to a variable for filtering values assigned
to the variable or for filtering the value of the variable when-
ever it is fetched.

Filters are a refinement of the variable association facility
in SITBOL (Hanson, 1976b). an implementation of SNOBOL4.
The SL5 concept is more general however. Filters form the
basis for the inclusion, at the source language level, of features
such as dynamic datatype checking, tracing, dynamic protec-
tion schemes, and SNOBOL4-style input and output. Filters
also are used for argument binding, permitting the programmer
to define various methods of argument binding in SLS5 itself.

An overview of SL5 is given in Section 2. The SLS procedure
mechanism, upon which the filter facility is based, is described
in Section 3. Section 4 describes the filter facility, and Section §
reveals how filters are used for argument transmission. Several
examples of the use of filters are given in Section 6.

2. The SLS programming language

SL5 is a programming language designed for programming
language research, mainly in the areas of advanced string and
structure processing. Structurally, SL5 is similar to ALGOL 68

(van Wijngaarden er al.,, 1976) and Bliss (Wulf ef al., 1971).
The syntax of SL5 is expression-oriented, and most of the
‘modern’ iterative control structures are included. There are
no type declarations; like SNOBOL4, a variable can have a
value of any type at any time during program execution. As
evidenced by this feature, the semantics of the language
stress execution time flexibility, which is motivated in part
by its intended use as a research tool.

2.1 Expressions and results

The execution of an SL5 expression returns a result. In contrast
to the conventional meaning of the result of an expression,
a result in SLS is composed of two parts—a value and a signal.
The notation {value, signal} is used to denote a result. To
facilitate the description of the behaviour of SLS constructs,
the selectors V and S are used to refer to the value and signal
components of a result respectively. For example, if r is a
result, V(r) means ‘the value component of the result r’.

Signals are nonnegative integers. The programmer may
associate certain meanings with various signal values, but the
SL5 control expressions and most built in operators and func-
tions are sensitive to only two kinds of signals—success and
failure—where zero values indicate failure and positive values
indicate success. Built in operators and functions use the value 1
for success.

For example, the expression 25 + 6 has the result {31, 1}.
V({31. 1}) is 31 and S({31, 1}) is 1. All expressions return
a result, even though in some cases the ¥ component is not
used. In these cases, the ¥ component of the result of the result
is the null string, which is denoted "”. The comparison operators
are an example of this convention: the result of 100 = 102 is
{"", 0}, the result of 100 < 102is {"", 1}.

2.1.1 Dereferencing

The result of a simple variable reference is {variable, 1}
where a ‘variable’ is the place where a ‘value’ resides. The
result of an expression consisting of only an identifier is of this
form. For example, the result of the expression x is {location
of the value of x, 1} which is written simply as {x, 1}.

A result of this form is dereferenced when the value of the
variable is fetched. Thus, if the value of x is 15, dereferencing
the result {x, 1} produces the result {15, 1}. If the dereferen-
cing operation is applied to a result in which V is already a
value, the result is returned unchanged. As an example of this
process, assurme the value of x is 15 and the value of y is 6.
The evaluation of the expression x + 3 can be illustrated by the
following sequence of expressions containing results:

*This work was supported in part by the National Science Foundation under Grant DCR75-01307 while the author was at the University

of Arizona, Tucson, Arizona.

+Now at Department of Computer Science, The University of Arizona, Tucson, Arizona 85721, USA

134

The Computer Journal

{v. 1} + {». 1}

{15, 1} + {6, 1}
{15+ 6, 1}
{21, 1}

The execution of an expression without dereferencing is called
interpretation. For example, the result of the interpretation
of the simple expression x is {x, 1}. In some cases, interpreta-
tion may be followed by dereferencing, in which case a result
such as {x, 1} becomes {15, 1}. The combination of interpreta-
tion followed by dereferencing is called evaluation. The terms
‘interpret’ and ‘evaluate’ are used below to describe the behav-
iour of the SL5 expressions, and indicate in which cases
dereferencing is performed.

In general, interpretation is performed in situations where a
variable may be desired. For example, the assignment operator,
=, interprets its left argument and evaluates its right argu-
ment. If both of these operations succeed, and if the ¥ com-
ponent of the left argument is a variable, then the ¥ component
of the right argument is stored in the variable. The result of the
assignment operation is the result of the right argument.

2.1.2 Transmission of failure

Most built in operators and functions transmit failure if any
of their arguments fail. Usually, the result {"”, 0} is transmitted
to indicate this condition. For example, consider the expression
X := e, + e,. If the evaluation of e, or ¢, fails, the operator +
transmits this failure by returning the resuit {"”, 0}. Since the
operator := performs the indicated assignment only if its
right argument does not fail, the assignment is not performed
and the result {"”, O} is returned, thereby transmitting the
failure signal. The result of the entire expression is therefore

{", 0}.

2.1.3 Composing a result

The built in operator & is used to compose a result. The expres-
sion e, & e, returns the result {¥V(e,), V(e,)}. The expression e,
1s interpreted and e, is evaluated. The signal portions of their
results are ignored.

2.2 Control expressions

In SLS the program structures that control the flow of execu-
tion are expressions, each of which returns a result. They are
driven by signals, not by Boolean values as in most program-
ming languages, although in many cases the use of a signal
is equivalent to the use of a Boolean value. All of the control
expressions treat any nonzero signal as success.

A summary of some of the SLS control expressions is given
in Table 1. In Table 1 phrases enclosed in square brackets are
optional. A complete list of control expressions is given in
Hanson (1976a).

2.3 Primitive datatypes
The primitive datatypes of SL5 are integer, character, real,
string, file, procedure and environment. Integers and reals
are the usual scalar types found in most programming lan-
guages. A character differs from a string of length 1 in that its
numeric code can be obtained. A stringin SL5, asin SNOBOLA4,
can be used as a scalar type. That is, an entire string can be
manipulated as a single entity; it is not an array of characters.
There are, however, built in functions that permit the pro-
grammer to access the individual characters of a string.

An object of datatype file is used for input and output.
For the most part, files are used as arguments to built in
functions for reading and writing strings or characters. The
datatypes procedure and environment are described in sub-
sequent sections.

Most built in operators and functions attempt to convert

Volume 21 Number 2

Table 1 SL5 control expressions

{el' eZ’ R en}

Each expression in the sequence is interpreted. The result
of the entire expression is the result of e,.

if e, then e, [else e,]

e, is evaluated first. If it succeeds, e, is interpreted, and its
result is the result of the if expression. If e, fails, the result
is the result of interpreting e;.

e, ore,

The result of the or expression is the result of interpreting e,
if that interpretation succeeds. Otherwise. the result of inter-
preting e, is returned.

e, and e,

The result of the and expression is the result of interpreting e,
if that interpretation fails. Otherwise, the result of interpreting
e, is returned.

while e, do e,

e, is repeatedly interpreted as long as the evaluation of e,
succeeds. The result is the result of the last interpretation of e,.
If e, is never interpreted, the result is {"”, 1}.

repeat e

e is repeatedly interpreted until it fails. The result is the result
of the last interpretation of e, which necessarily has a failure
signal.

for ¢, [from e,] [to e;] [by e,] [while 5] do e,

e, is interpreted and the ¥ component of its result must be a
variable, which is called the control variable. e, through e,
are evaluated and their ¥ components are used to control the
loop in the conventional manner. The loop consists of repeat-
edly interpreting e4 as long as the evaluation of e5 succeeds,
and the value of the control variable satisfies the conditions
given by e, and e;. The result is the result of the last interpre-
tation of eq, or {"”, 1} if e4 is never interpreted. If the phrase
by e, is omitted, by | is assumed.

Note: Square brackets enclose optional phrases.

their arguments to the expected type. Consequently, the pro-
grammer usually does not have to be concerned about type
conversion. For example, in the expression x + y, the values
of x and y are converted to a numeric type—integer or real—
prior to the addition. The failure of an implicit type conversion
is treated as an error by most built in functions.

3. Procedures
SLS provides a procedure mechanism that is a generalisation
of functions in which ordinary recursive function use is a special
case. SLS procedures can be used as recursive functions or as
coroutines. Unlike procedures in most languages, SLS5 pro-
cedures are data objects, and are capable of being manipulated
and transmitted throughout the program like other data
objects. Procedure invocation may be decomposed into separate
operations, each of which is available at the source language
level.

This procedure mechanism is motivated by the desire to
generalise the usefulness of procedural abstractions. Indeed,
filters are a direct consequence of the features of the SLS
procedure mechanism. In addition. the procedure mechanism
is designed for use in goal directed programming (Hanson,
1976d; Griswold, 1976). and is the basis for the SLS data
structuring facility (Hanson, 1976c).

3.1 Procedure construction
A procedure is constructed and returned by the procedure

expression. The syntax is
procedure (a,, a,, . . ., a,) {(declarations)

<body>
135

end

where @, through a, are the formal argument identifiers,
{declarations) are of the form described below, and (body)
is a sequence of expressions separated by semicolons. For
example, the expression

sine := procedure (x)

sin 1= term = x;

for i from 3 to 100 by 2 while abs(term) > 0-001 do {
term 1= — term*x*x/(i*(i — 1));
sin 1= sin + term
b

succeed sin

end

assigns to sine a procedure that computes sin(x) using the
Maclaurin series expansion. Procedures can be created at any
time and can be transmitted as values throughout the program.

3.2 Procedure invocation

Procedure invocation, which is an atomic operation in most
programming languages, is decomposed into three distinct
components in SL5. These components are available at the
source language level, and are what permit SL5 procedures
to be used as coroutines as well as recursive functions. The
three components of procedure invocation are creation of an
environment (activation record) for the procedure, binding
of the actual arguments to the environment, and resumption
of the execution of the procedure associated with the environ-
ment.

3.2.1 Environment creation
The expression

e := create p

creates an environment for the procedure p and assigns this
environment to e. An environment for a procedure contains the
storage for the identifiers appearing in the procedure. An
environment also contains the procedure continuation point,
which indicates where execution is to begin when the environ-
ment is activated. When an environment for a procedure is
created, the continuation point is at the beginning of the pro-
cedure. When a procedure returns, the continuation point
is set to the position following the point of return. An environ-
ment is a source language data object that can be transmitted
throughout the program.

The environment in which the create p is executed is called the
creator for that environment. Each environment contains in-
formation identifying its creator,

3.2.2 Argument binding
The binding of the actual arguments to an environment is
accomplished by the with expression, The expression

, a,)

transmits the actual arguments, a, through a,, to the environ-
ment e, and returns that environment as its value. The methods
by which the actual arguments are transmitted to the environ-
ment are controlled by the argument transmitters associated
with the procedure for which e is an environment. This
mechanism, which is implemented using filters, is described
in Section 6. In the absence of any explicit specification of
transmitters, arguments are transmitted by value, that is,
the expressions a, through a, are evaluated and the V com-
ponents of their results are assigned to the formal arguments
for that environment.

e with (a,, a5, . ..

3.2.3 Procedure resumption
A procedure is activated by the resume expression. The resume
expression is written

136

resume ¢

where e is an environment. This operation is referred to
as ‘resuming e’

The resume expression causes the execution of the current
procedure to be suspended and e to be resumed. The current
procedure is suspended within the resume expression itself,
When the environment is subsequently reactivated, the resume
expression produces the result that is provided by the environ-
ment causing the subsequent reactivation.

The resume expression also establishes the resumer for an
environment—the environment that caused its most recent
resumption via the resume expression. Note that an environ-
ment’s resumer changes during the course of program execu-
tion, whereas the creator, defined above, remains constant,
since an environment is created only once.

3.2.4 Procedure returns

While the resume expression requires an explicit indication of
the environment to which control should be transferred,
the return expression always returns control to the resumer
of the current environment. The expression

return r

returns the results of interpreting r. If r is omitted in return,
the null string is assumed. Like resume, the return expression
causes the current procedure to be suspended. When the
procedure is subsequently reactivated, the result transmitted
becomes the result of the return expression.

The important difference between return and resume is that
return does not establish a new resumer for the environment
to which control is returned. Only an explicit resume establishes
a resumer.

Since the signals success and failure are used so frequently
in SLS, the expressions succeed r and fail » are provided as
equivalents, respectively, to return r&| and return r&0. Note
that a value is returned even if the signal is failure. If r is
omitted, the null string is assumed.

3.2.5 Functional notation

The abbreviated notation f(e,, e, . . . , e,) may be used for the
usual recursive function invocation. This form of procedure
invocation is equivalent (o

resume (create [with (e,, €5, ..., ¢,)

Note that the functional notation results in the invocation of
the procedure that is the current value of f, not a procedure
named f.

3.3 Accessing the attributes of environments

The identifiers in an environment may be accessed using the
environment reference operator, which is indicated by a dot.
The expression e. x refers to the identifier xin the environment e.
The left argument of the operator may be an arbitrary expres-
sion including an environment reference. The environment
reference operator associates to the left so that a.b.c is
equivalent to (a.b).c.

3.4 The extent of identifiers
Declarations are used to determine the extent to which an
identifier is known throughout the program. This is sometimes
referred as scope on other programming languages. The term
scope, however, is most often associated with the concept of
static scope rules. As described below, the conventions in SL3
are more like the dynamic scope (Dijkstra, 1967) used in
SNOBOL4 and LISP, Since there are subtle differences be-
tween this kind of dynamic scope and the conventions used
in SL5, the term extent is used to avoid confusion.

Identifiers may be declared either public or private in declara-

The Computer Journal

tions of the form
private id,, . . ., id,
public id,, . . ., id,

Private identifiers are accessible only to the procedure in
which they are declared. Private identifiers are used for data
that is local to a particular environment. Unless otherwise
declared, the formal arguments of a procedure are private
identifiers.

Public identifiers are accessible to the procedure in which
they are declared and to any procedure whose environment is a
descendant of the environment for the procedure containing
the public declaration. Identifiers that do not appear in any
of the declarations for the procedure in which they are used
are termed nonlocal identifiers. Nonlocal identifiers are bound
to the appropriate public identifiers upon the creation of an
environment for the procedure in which they appear. This is
accomplished by examining successive creators until one is
found whose procedure contains a public declaration for the
nonlocal identifier. When SL5 procedures are used in the
usual recursive fashion, this is equivalent to the kind of
dynamic scope used in SNOBOL4 and LISP. Further details
concerning the interpretation of identifiers are given in Britton
et al. (1976) and Hanson and Griswold (1978).

3.5 An example

A common use for a coroutine is to generate the next clement
of a sequence each time it is resumed. For example, the follow-
ing procedure can be used to create label generators.

genlabel := procedure (p, n)
repeat {
succeed p || Ipad(n, 4. *0");
n:=n+1
}

end

(The built in function Ipad pads n with zeros to form a
4-character string, and | denotes string concatenation.) An
environment for genlabel is created by an expression such as
nextlab := create genlabel with ("X, 10)

which assigns to nextlab an environment for genlabel that
generates the sequence of labels X0010, X0011, etc. The next
label is returned each time nextlab is resumed, i.e. in expressions
such as x := resume nextlab. The sequence can be restarted
or changed by retransmitting the arguments:

nextlab:= nextlab with ("*L", 100)
or by simply resetting the values of p and n:

nextlab.p := "L,
nextlab.n := 100;

4. Filters

A variable denotes a place in an environment where a value
resides. The two operations that may be performed on a
variable are assigning it a new value and fetching its value.
These operations are referred to as value fetching and value
assignment, respectively. Fig. 1 gives a pictorial representation
of these two operations. The circle represents the place denoted
by the variable. An arrow directed away from the variable
represents fetching its value. and an arrow directed toward the
variable represents assignment.

A reference to a variable produces a result of the form
{variable, 1}. The value of the variable is fetched when this
result is dereferenced and the ¥ component is replaced by the
value. Assignment of the result {V, S} to a variable causes V to
replace the current value of the variable. unless S is 0, in
which case the assignment is not performed. The result of the
assignment operation is {V, S}.

A filter may be thought of as a screen that is placed in the

Volume 21 Number 2

{v.s}
~—o0

fetching the volue

{v.s}
——ﬂ ,V
assigning a volue

Fig. 1 Accessing a variable

fetching the volue

ossigning o value

Fig. 2 Accessing a filtered variable

path of these operations. The result of value fetching or value
assignment must pass through this screen. A filter is an environ-
ment that is capable of modifying the result as it passes through.
Pictorially, a filter is placed ‘in front’ of the variable as shown
in Fig. 2. {V", S’} denotes the result of modifying or ‘filtering’
{V, S}.

A variable may have more than one filter attached to it as
shown in Fig. 3. An arrangement of several filters in this fashion
is called a pipe: the result entering one end of the pipe is passed
through each filter in turn, finally emerging from the other end,
which is indicated by {¥V*, $*} in Fig. 3.

The terms filter and pipe were suggested by the use of similar
terms in the UNIX operating system (Ritchie and Thompson,
1974) for describing the behaviour of a class of programs.
For example, a program that converts the characters in a file
to upper case by writing a new file is a filter. A program of this
type performs a transformation on the contents of an input
file to produce a new file as output. Likewise, a pipe is com-
posed of several programs that perform successive transforma-
tions. Filters are also described in Kernighan and Plauger
(1976) as classes of software tools.

4.1 Filter construction
A filter is an environment for a procedure having the general
schema

procedure (. . .)

. . . initialisation part . . .
succeed;

... filtering part . . .
end

The initialisation part is executed once and performs the opera-
tions necessary to initialise the environment. The general
sequence to create a filter is to first create the environment,

137

pips fliters

£ 7
l:l |

bind the actual arguments to that environment (if present),
and then resume the environment once in order to initialise
the filter. The result returned by the initialisation part is
ignored. and it is the environment itself that constitutes the
filter. This sequence is performed by the new expression:

{vos*} «

Fig. 3 A pipe

X := new f
and is equivalent to

x .= create f;

resume x;
If the initialisation part requires arguments, the with expression
is used:

x := new fwith (a,,...,a,)

The new expression is also employed when environments are
created for use as data structures (Hanson, 1976c).

The arguments serve two purposes. When a filter is created,
the arguments are used to convey whatever information is
necessary for initialisation. Once a filter is connected to a
variable, the filter is resumed whenever the value of the
variable is fetched or whenever an assignment is made to the
variable, depending on the type of connection. In either case,
the value and signal portions of the result to be filtered are
passed to the filter as its arguments. Notice that the signal
portion of the result is passed as a value in the second argu-
ment. Thus the result is decomposed into its two components
as it is passed to the filter. After performing the desired modifica-
tion to each component, the filter recomposes the filtered result
and returns it to its resumer.

As a simple example, a filter created from the following
procedure might be called a ‘cutoff” filter. It permits a result
in which the ¥ component is a string of five or fewer characters
to pass, but changes the result to {"”, 0} for longer strings.
five .= procedure (v, 5)

succeed;
repeat
if s = O then
return v&s
else if length(v) < = 5 then
return v&s
else fail
end

This filter ‘propagates’ failure in the event that it is resumed
with a result having a failure signal. This is a common property
of many filters: most modify only the ¥ component but must
be written to handle results with any signal.

4.2 Connecting a filter to a variable
A filter may be connected to a variable for one of two opera-
tions: value fetching or value assignment. Filters connected
to a variable for the purpose of assignment do not interfere
with those connected for filtering the value, and vice versa.
Any number of filters. for either operation, may be connected
to any variable.

Filters are connected to a variable using the operators :- and
:—. The :- operator is used to connect a filter for filtering
results obtained by fetching the value of the variable, and -~

138

is used to connect a filter for filtering assignments to the vari-
able. The right argument to both operators must be a procedure
or an environment. If the argument is an environment, that
environment is connected to the variable given by the left
argument. If a procedure is used instead, an implicit new
operation is performed, using that procedure as its argument,
and the resulting environment is connected to the variable.
The result of both operators is the result of the right argument.
As an example, the expression

Str :— new five,;
connects a filter created from the procedure five, given above,
to the variable str. Subsequent attempts to fetch the value of str
result in the filter five being resumed with the current value of
str and a success signal as arguments. This filter does not
interfere with assignments, however. For instance, the expres-
sion

str 1= *‘too long”
assigns the string “'too long™ to str. However, since the length
of this string is greater than five, subsequent references to
the value of str cause the filter to return the result {"*, 0}.

A filter need not examine the incoming result. The label

generator given in Section 3.5, when rewritten as a filter,
illustrates this usage:

genlabel := procedure (v, s) private prefix, n;
prefix 1= v;

n.=yg,

succeed ;

repeat {

succeed prefix || Ipad(n, 4, *'0");

n:=n+1

}

end

A filter is created from this procedure with the arguments
indicating the label prefix and the initial label number,
respectively. For example, the expression

nextl .= new genlabel with (“X"", 10)

causes subsequent successive references to the variable next/
to return the sequence of labels X0010, X0011, etc. The value
of the variable, given by the argument v, is ignored by the
filter. The filtered result is completely determined by the pro-
cedural component attached to the variable, i.e., the filter.

When several filters are connected to a variable to form a
pipe. the order in which they are invoked is determined by the
order in which they are connected. The first filter to be con-
nected is ‘closest’ to the variable, and so on.

4.3 Disconnecting a filter

A filter can be disconnected from a variable by an expression
such as v —: f where fis the filter and v is the variable. This
expression causes any filters that are the same as f to be
disconnected from v. Two filters are equivalent only if they
refer to the same environment. The result of the — : operator
is {””. 1}, unless f is not connected to v in which case the result
is {"", 0}.

4.4 The extent of a filter

When a filter is connected to a variable, it affects all other
variables that refer to that variable. This condition arises
when a filter is connected to a nonlocal identifier. For example,
consider the following expressions:

a := procedure public x: ... ;b(): ... end;

x = f1.. . end;

where x is a nonlocal identifier in the procedure assigned to b.
When b is called from within a, the environment for @ becomes

the custodian for x. References to x in @ after b has been called
are affected by the filter connected to x during the execution

b := procedure . . .

The Computer Journal

of b.

Thus the effect of connecting a filter to a variable is the same
as assigning it a new value, and is determined by the rules
governing the extent of identifiers given in Section 3.4.

5. Argument binding using filters

As described in Section 3.2.2. arguments are bound 1o an
environment using the with expression. By default, actual
arguments are transmitted by value. This mode of transmission,
however, is only one of many that might be desired. Argument
transmission is a special form of assignment in which the formal
argument identifiers are assigned the V' components of the
results of the corresponding actual argument expressions.
As such. the filter facility provides a mechanism for the defini-
tion of various modes of argument transmission in the source
language.

The special form of assignment that occurs with argument
binding is another primitive operation on a variable. It is
called transmission. A filter may also be connected to a variable
for the operation of transmission. This type of connection
does not interfere with the operations of value fetching and
assignment. A filter is connected to a variable for transmission
by the :—-- operator, e.g. v:——-f specifies that f is to be
connected to v for transmission.

A more convenient way of making a transmission connection
is in the procedure heading. The general form of a procedure is

procedure ({formal), {formal), . . .) {(declarations)

(body)
end

where a (formal) specification has the form

[{decl)]id [: €]

Here, {decl) is a private or public specification. If {decl) is
omitted, private is assumed. The value of ¢ is a filter that is
called the transmitter for the corresponding argument. This
form of specification causes the filter to be connected to the
corresponding argument for the operation of transmission
when an environment for the procedure is created. The trans-
mitter specification. e, may be an arbitrary expression and is
evaluated during the execution of the procedure expression.
Its value must be a procedure or an environment in order
to be connected to the corresponding argument.

This method of connecting a transmitter is necessary since
the arguments are usually transmitted before the execution
of the procedure, and connecting the filter from within the
procedure would affect only subsequent argument transmission.
The transmitter may. however, be changed or augmented dur-
ing execution by connecting another filter to the desired
argument.

5.1 Built in transmitters

If the transmitter specification is omitted, the current value of
the variable val is used as the transmitter. The initial value of
val is a built in filter that transmits arguments by value. Thus a
procedure heading such as

ged = procedure (x, y)
is equivalent to
ged = procedure (x :val, y : vrl)

The initial value of the variable ref is a built in filter that
transmits arguments by reference. This transmitter causes the
actual argument expression to be interpreted, rather than
evaluated, and the V component of the result to be stored
in the corresponding formal argument. This is similar to the
way in which arguments are passed in FORTRAN.

5.2 Programmer defined transmitters
The built in transmitters val and ref provide the basis upon

Volume 21 Number 2

which programmer defined transmitters can be constructed.
Transmitters may be constructed to perform, for example
datatype and range checking, automatic type coercion, tracing
of argument binding, or centralising common preprocessing
of arguments.

For example, the expression

positiveint := new procedure (v, s)
succeed,;
repeat
if s = O then
return v&s
else if (v := integer(v)) > 0 then
return v&s
else fail
end

assigns to positiveint a filter that, when used as a transmitter,
ensures that the corresponding actual argument is a positive
integer. To use positiveint in this manner, it is included in a
procedure heading such as
ged := procedure (x: positiveint, y : positiveint)

The filter positiveint can also be connected to any other
variable for the assignment operation in order to insure the
variable is assigned only positive integers. The filter itself
does not know for what operation it is connected; it simply
filters results.

The with expression fails if the binding of any of the arguments
fails. In terms of filters, this occurs when the result emerging
from a transmitter contains a failure signal. The following
filter modifies the incoming result so that the signal is always
success. If the incoming signal is failure, the signal is changed
to success.

neverfail := new procedure (v, 5)
succeed ;
repeat
return v& (if s = O then | else 5)
end

Note that if the signal does not indicate failure, it is passed
along even though it may be something other than the success
indicator |.

A transmitter may behave differently at each resumption.
For example, the following transmitter permits the argument
to be transmitted only once. Subsequent attempts at argument
transmission cause an error message to be issued and the
transmission to fail.

onceonly := new procedure (v, 5)
succeed;
repeat
if s = O then
return v&s
else {
return v&s
repeat {
writeline(errfile,
“illegal argument transmission”);
fail
}
}

end

Like the filters created from genlabel, the incoming result to a
transmitter may be ignored. This permits, for example, certain
arguments to be initialised with an initial value that iscomputed
independent of the actual argument expression. If this is a
frequent requirement, it can be placed in a single transmitter
rather than in every procedure that needs it. The following
filter transmits a random number each time it is resumed:

random := create procedure (v, s)

139

private seed, p, ¢, m, n;

seed := 0;

p = 12621:
¢ = 21131,
m = 100000;
n = 100:
succeed;
repeat {

seed .= remdr(seed*p + c, m);
succeed s*n/fm + 1

}

end

A random number between 1 and 100 is generated every time
this filter is resumed using the linear congruence method
(Knuth, 1969).

5.3 Transmitting a single argument

The with expression requires that all of the arguments be
bound to the environment at once. Arguments can be bound
individually by using the operator <—. If x is an argument
identifier of the procedure for which e is an environment,
“the expression

e.x <—exp

transmits the expression exp to the argument x, passing the
result through the appropriate filters. The <— operator
can be used to describe the semantics of the with expression:
If a, through a, are the formal arguments of the procedure
for which e is an environment, the expression

e with (e,, €5, €,)
is equivalent to the sequence

{e.a, <— e, and
e.a, <— e, and

and

e.a, <— e,

e}
The operator <— is not restricted to use with arguments,
but may be used with any variable. In the absence of a filter
connected for transmission, the operator <— is equivalent to
:=. Using the operator :---, a filter may be connected for
transmission to any variable. 1f an assignment is made using
the <— operator, the result is passed through the filter. Alter-
natively, the <— operator can be used to assign a value to a
variable without activating any of the filters connected for
assignment.

6. Examples of filters

6.1 Dynamic type declarations

A convenient way to connect a filter to a variable is to make the
connection within another procedure. As an example, the
procedure declare (v, dt, tag) connects a filter to v that permits
only values of datatype dr to be assigned to v. The third
argument, fag, is used to identify v in an error message should
an attempt be made to assign a value of the wrong type.

declare := procedure (v : ref, dt, 1ag) private typechkr.
typechkr := procedure (v, s) private dt, fag.
dt :=v;
tag := s:
succeed ;
repeat
if s = O then
return v&s
else if datarype(v) = = dt then
return v&s
else {
writeline(errfile,

140

“attempt to assign illegal value to ™" || tag):

fail
)
end;
v :— — new typechkr with (dt, tag):
succeed
end
(datatype is a built in function that returns a string denoting
the datatype of its argument, and = = denotes string com-

parison.) The first argument to declare is passed by reference
so that filter is properly connected to the variable used as the
actual argument. For example, the expression

declare(lineno, “integer”, ‘‘line number counter’’)
ensures that values assigned to the variable lineno are integers.

6.2 Tracing

A useful feature in SNOBOLA4 is the ability to trace assign-
ments to a variable (Griswold er al.,, 1971, Chapter 8). The
filter facility can be used to trace references to a variable for
both assignment and fetching its value. The following pro-
cedure connects two filters, each created from one procedure,
to the variable for which access tracing is desired. Messages
are issued to the specified file only if the incoming result indi-
cates success.

trace := procedure (v: ref, public tag, public /imit, public f)
private fracer,
tracer := procedure (v, 5) private msg:
msg = v,
succeed;
repeat {
if s~ = 0 and limit ~= 0 then {
writeline(f. tag || msg || v);
limit := limit — |
I8
return v&s
}
end;
v :— new tracer with *“fetched, value = ;
v :— — new tracer with “‘assigned”;
succeed
end

The argument /imit is used to limit the amount of trace infor-
mation issued on a per-variable basis. It is decremented by one
for each message that is issued. By declaring the arguments
to trace public, it is unnecessary to pass them to fracer. Since
they are nonlocal in tracer, they will refer to the identifiers
with the same name in the environment for trace.

As an example of the use of trace, the expression

trace(incr, “‘incr”, 100, errfile)
causes a message to be issued to the error file for each of the
next 100 accesses to incr. If incr has the initial value 22, then
the expression
incr 1= incr + 1

results in the messages

incr fetched, value = 22

incr assigned 23

The important point of this example is that by using filters
the programmer can implement the form of tracing that best
suits the specific program. Moreover, since any number of
filters may be connected to a variable, a filter that is connected
by trace does not interfere with other filters that might be
connected.

6.3 Input and output
Input and output in SNOBOLA4 are very simple and are often

The Computer Journal

cited by programmers as one of the virtues of using the
language. The same effect can be defined by the programmer
in SLS using a filter. The procedure
input .= procedure (v: ref, f)
v :— new procedure (v, 5) private f;
f:=v
succeed;
repeat
return readline(f)
end with(f):
succeed
end

performs essentially the same function as the SNOBOL4
function INPUT. It connects a filter to the given variable
which returns the next line from the indicated file whenever
its value is fetched, ignoring the incoming result. For example,
the expression

input(in, infile)

causes references to in to return the next line from the standard
input file. The reference fails on end-of-file. As in SNOBOL4,
the failure of the reference on end-of-file can be used to control
loops:

while line := in do

... process a line . . .

A similar procedure can be written to handle output as in
SNOBOLA4.

A filter that returns the next line in a file can be rewritten
to return whatever is needed for the particular application.
For example, a document preparation program usually operates
at the level of ‘text segments’, which consist of the next word
including its preceding spaces and immediately adjoining
punctuation marks.

6.4 Data structure accessing

In SLS, data structures are constructed using environments
and their fields are accessed using the environment reference
operator described in Section 3.3 (Hanson, 1976c). For
example, environments for the procedure defined by

node .= procedure (value, link) end

can be used as records representing nodes having a value and
a link field.

Filters can be connected to the fields of a data structure for
protection purposes or so that the user of the data structure
is not required to know which fields have procedural values.
As an example, in the implementation of a stack given below,
filters are connected to each field so that simply referencing
them triggers the appropriate action. A stack is created by an
expression such as

p = new stack

Assignments to p.push cause the value assigned to be pushed
onto p and references to p.fop refer to the top stack element
or fail if p is empty. Fetching the value of p.pop returns the
top element and pops the stack or fails if p is empty.

stack := procedure ()
private push, pop, top, empty;
public stk ;
push — create procedure (v, s)
repeat
fail
end;
push :— - create procedure (v, 5)
repeat {

if s ~= 0 then
stk := create node with (v, stk);
return v&s

Volume 21 Number 2

}
end;
pop :— create procedure (v, s) private /;
repeat
if compare (stk) then
fail
else {
t 1= stk .value;
stk := stk . link:
succeed 7
}
end;
pop — — create procedure (v, 5)
repeat
fail
end;
top :— create procedure (v, 5)
repeat
if compare (stk) then
fail
else succeed stk . value
end;
top .- - create procedure (v, s)
repeat
if s = O then
return v&s
else if compare (stk) then
fail
else {
stk .value = v;
return v&s
}
end:
succeed
end

Notice that the filters are created without the use of the new
expression. The new expression is most useful when the filter
requires some initialisation. For filters that do not require
any initialisation, the create expression may be used instead.

This example also illustrates the use of filters for protection.
Two filters are connected to each field: one for value fetching
and one for assignment. In some cases, one of the filters
simply protects the field value by always failing when it is
resumed, for instance push is meant to be used in assignments.
In this implementation of a stack, fetching the value of push is
meaningless so the filter connected to push for that purpose
converts any incoming result to {" ", 0}. Likewise, attempts to
assign a value to pop fail. Top is the only field in which both
filters access the stack in a meaningful way.

The actual values of push, pop, and top are not used. The
filters contain all the necessary information and the variables
simply provide places to connect the filters. Most importantly,
the filters provide a means of keeping within the definition
of a stack the information concerning its implementation and
how it is accessed.

6.5 A prime number sieve

In the examples given thus far, filters are connected to variables
only once. No use has been made of the dynamic nature of a
filter connection or of pipes. A prime number sieve can be
written using a pipe in such a way that each filter in the pipe
filters out multiples of a particular prime number by transmit-
ting the result {" ”, 0}. If the result emerging from the end of
the pipe contains a success signal, the V component contains a
prime number. In this case, another filter, which filters multiples
of the new prime, is connected to the variable. This example
was inspired by an example given by Mcliroy (1968) for demon-
strating the use of coroutines, and represents an implementation

1414

1 L
(

L
L

]

—

|

peime peime
n:? n:$

&3l

2%
2
g
H

Fig. 4 A prime number sieve

of the Sieve of Eratosthenes for finding primes (for example,
sce Hoare, 1972).

This example involves the use of two procedures from which
filters are created: prime. which filters out numbers that are
multiples of a given prime, and bortom, which is positioned
at the end of the pipe to print out new primes as they emerge
and to connect another filter created from prime to the variable.
These two procedures are written as follows. The procedure
botrom assumes that owt is the variable to which the pipe is
connected.

prime := procedure (v, s) private n:
ni=v;
succeed;
repeat
if s = O then
return v&s
else if remdr (v, n) = 0 then
fail
else return v&s
end;
bortom := procedure (v, 5)
succeed;
repeat
if s = 0 then
fail
else {
writeline (outfile, v),
out :~ - new prime with v;
return v&s
}
end

Initially, a filter created from bottom must be connected to
out:

out -~ - new bottom

The primes from 2 to 100 can then be printed by executing
the expression
for i from 2 to 100 do out := i
Fig. 4 depicts the arrangement of the filters as they are in-
serted into the pipe connected to out. The pipe acts as a sieve
does by allowing only results containing a prime to pass
successfully through without modification.

References
BriTTON, D. E. ef al. (1976).
pp. 185-191.

142

As mentioned above, when several filters are connected to a
variable to form a pipe. the order in which they are activated
is determined by the order in which they are connected. This
convention leads to the arrangement shown in Fig. 4.

6.6 Capturing a result

Normally, the signal portion of a result is volatile: its existence
can be detected only by its effect on the flow of program
execution or by its effect on assignments. A filter, however,
receives a ‘desensitised’ result that has been decomposed into
its components. This feature can be used to ‘capture’ a result
and store it as a data object for subsequent inspection or
modification. In addition, once a result has been captured,
it can be ‘released’ at a later time.

Environments for the following procedure can be used as
records representing results with two fields, value and signal.
References to the attribute release cause the components to be
recombined to form a true result.

result := procedure public value, public signal
private release
release :— create procedure (v, 5)
repeat
return value&signal
end;
succeed ;
end

The procedure result provides a way to manipulate desensitised
results and to release them when desired. It does not, however,
capture them. This is accomplished by connecting a filter
created from the following procedure:

capture := procedure (v, 5)
succeed ;
repeat
succeed new result with (v,)
end

For example, the expression
X - - capture

connects a filter to x that captures results assigned to x and
transforms them into the data representation described above.
For instance, an expression such as x := 25 causes a data
object representing the result {25, 1} to be assigned to x.
The expression x := (5 < 3) causes a data object representing
the result {" ”. 0} to be assigned to x. The two attributes of a
result assigned to x may be inspected or modified by using
expressions involving x.value and x.signal. The captured
result may be released, as many times as desired, by referencing
x.release.

7. Conclusions

The filter facility is a result of recent research in new linguistic
mechanisms for making effective use of abstraction in the
programming process (Hanson, 1976c). Filters provide a way
to integrate, at the source language level, a number of seemingly
disjoint features as described above. This initial success suggests
that the filter facility may provide a basis for the realisation
of many abstractions that are difficult to realise in other
programming languages. Current research is concentrating on
the use of filters in data structure processing and as a means in
implementing programmer defined protection schemes.

Acknowledgements
I would like to thank Ralph E. Griswold for many stimulating
discussions during the course of this research.

Procedure Referencing Environments in SLS, Third ACM Symp. on Principles of Programming Languages,

The Computer Journal

DukstrA, E. W. (1967).

Recursive Programming, in Programming Systems and Languages, Saul Rosen (ed.), McGraw-Hill, New York.

GriswoLp, R. E. (1976). The SL5 Programming Language and Its Use for Goal-Directed Programming, Proc. of the Fifth Texas Conf. on

Computing Systems, pp. 1-5.
GriswoLD, R. E. et al. (1968).
GriswoLD, R. E. and Hanson, D. R. (1977).
Hanson, D. R. (1976a).

of Arizona, Tucson, Arizona.
Hanson, D. R. (1976b).
Hanson, D. R. (1976¢).

The University of Arizona, Tucson, Arizona.
Hanson, D. R. (1976d).
Haxson, D. R. and GriswoLrp, R. E. (1978).
Hoarg, C. A. R. (1972).
KERNIGHAN, B. W. and PLAUGHER, P. J. (1976).
KnuTH, D. E. (1969).
MclLroy, M. D. (1968).
RiTcHIE, D. and THoMPSON, K. (1974).
VAN WUNGAARDEN, A, ef al. (1976).
WuULF, -W. A. et al (1971).

The SNOBOL4 Programming Language, second edition, Prentice-Hall, Englewood Cliffs, New Jersey
An Overview of SL5, SIGPLAN Notices, Vol. 12 No. 4, pp. 40-50.
The Syntax and Semantics of SLS, SL5 Project Document SSLD2b, Dept. of Computer Science, The University

Variable Associations in SNOBOLA, Software—Practice and Experience, Yol. 6 No. 2, pp. 245-254.
Procedure-Based Linguistic Mechanisms in Programming Languages, Ph.D. Dissertation, Dept. of Computer Science,

A Procedure Mechanism for Backtrack Programming, Proc. of the ACM Annual Conference, pp. 401-405.

The SL5 Procedure Mechanism, CACM, Vol. 21, to appear.

Notes on Data Structuring, Structured Programming. Academic Press, London, pp. 127-130.

Software Tools, Addison-Wesley, Reading, Mass.

The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, Addison-Wesley, Reading, Mass., p. 9.
Coroutines, Technical Report, Bell Laboratories, Murray Hill, New Jersey.

The UNIX Time-Sharing System, CACAM, Vol. 17 No. 7, pp. 365-375.

Revised Report on the Algorithmic Language ALGOL 68, Acta Informatica, Vol. 5 No. 1, pp. 1-236.

Bliss: A Language for Systems Programming, CACM, Vol. 14 No. 12, pp. 780-790.

Book reviews

Compiler Construction (An Advanced Course), Second edition,
edited by F. L. Bauer and J. Eickel, 1976; 638 pages. (Springer-
Verlag, DM 24)

This book is a reprint of the course notes used in an Advanced
Course in Compiler Construction, organised in Germany in March
1974 and repeated in March 1975. The course was presented by a
number of persons prominent in the academic community, and
covered a wide range of subjects. It is extremely difficult to review
a book of this nature concisely, since it consists of many lectures of
widely differing quality.

McKeeman's introduction to the course is lucid and interesting
even though the lecture deals with material which must surely be
present in any undergraduate course in language implementation.

A number of other lectures in this book fall into the same class
as this. These are: DeRemer’s lecture on formalisms and notation,
Waite's lectures on the relationship of languages to machines and on
assembly and linkage, McKeeman's lectures on symbol table
access methods and on programming language design, Horning's
lectures entitled ‘What the compiler should tell the user’ and
‘Structuring compiler development’, and Griffiths’ lecture on run
time storage management.

Some lectures give fairly complete and interesting coverage of
their subject matter. These are: Waite’s on optimisation techniques,
Poole’s on portable and adaptable compilers—which also contains
useful case study material; and Hill's on run time organisation
for ALGOLG68.

Griffiths’ coverage of LL(1) grammars and analysers gives enough
information about LL(1) techniques to enable the reader to construct
a parser-generator. Unfortunately, his description of the automatic
elimination of left-recursion is confusing, as is his brief introduction
to LL(k) grammars.

Horning's description of LR grammars and analysers will also
enable the reader to construct a parser-generator based on one of the
various refinements of LR(1) techniques.

DeRemer’s lecture on lexical analysis covers elementary material.
His lecture ‘Transformational grammars’ deals with a useful
method of approaching the specification of translators, and advo-
cates a view of language processing—as tree manipulation—which
is extremely fruitful.

Koster’s lecture on two level grammars is obscure. The material
could easily have been presented less formally in about half the
space. This reviewer would have preferred such a treatment to be
augmented by an indication of the relevance to the compiler writer
of two level grammars.

Waite's lecture on code generation is inadequate. Its first section
is written in such an abstract style as to be almost incomprehensible

Volume 21 Number 2

to those who are not familiar with the model of code generation
which he presents. Furthermore, his terminology changes from
paragraph to paragraph—which adds confusion.

Koster's series of lectures on using the CDL compiler compiler
demonstrates the unwieldliness of CDL, rather than the utility of
compiler compilers. A newcomer to compiler compilers could,
after reading these lectures, be forgiven for concluding that such
systems are of little more use in the building of compilers than
‘ordinary’ high level languages. This is far from being the case.
[t is unfortunate that the latest widely known review paper on
automatic compiler generation—that of Feldman and Gries—
dates back to 1968. Unfortunately, Griffiths® introductory lecture
on compiler compilers doesn’t remedy this deficiency in the
literature.

In summary, this book does not amount to ‘An Advanced Course
in Compiler Construction’, despite the excellence of a few of the
lectures in it.

B. A. SurriN (Colchester)

Reference
Feldman and Gries, (1968). Translator Writing Systems, CACM,
Vol 11 No 2

Online Review, Vol. 1 No. 1, published by Learned Information,
Oxford, $45 a year

In the context of this journal the term online describes the facility
whereby data bases may be accessed remotely via terminals for a
tariff.

In the UK these systems are rarc; however in the United States
many independent information services are in operation. A major
use of these systems is by researchers interested in articles published
by others on related topics. For this reason it is likely that usage
will continue to be mainly by libraries, research institutes and major
organisations.

Much emphasis is given to the number of items available from
various data bases, frequency of update and the ease with which
the required items may be accessed. One paper attempts to identify
which features of a certain interrogation language are the most
useful. There is some justification for hoping that as these systems
spread only a handful of interrogation languages remain, allowing
users easily to use a number of different information services.

A journal dedicated to online systems must at present be addressed
to a limited audience. However several times contributors empha-
sised the need for just such a journal. It will be interesting to see
how it and information services develop.

E. GiLDERSLEEVES (Norwich)

143

