
the necessary coordinates to locate the unit in three 
dimensions. The additional variables for the features 
include all square/levels the feature may have ex- 
tended into as determined through excavation. 

The means of ariving at the stored data can best 
be shown by the file of excavated squares. Each record 
consists of the above 15-core variables arranged into 
215 components including the directory, occupying 
less than 375,000 bytes with all data as integers for 
efficiency in storage. 

Since the data are entered in two modes--one  for 
counts and weights, the other for square/level dimen- 
sions and locational information--provenience and 
program instruction take a rather high proportion 
(15 percent) of the keyboard input. The level dimen- 
sions themselves are 36 percent of the input, the counts 
and weights are 21 percent, and single blanks separat- 
ing each entry accounts for an unexpected 28 percent. 
On a system with fixed-format input and the same read- 
ability of input data, the percentage of blanks would 
be at least double, an important consideration in keep- 
ing connect time with the computer to a minimum. 

System Performance 
The computerized file processing and data re- 

trieval worked successfully in the summers of 1972 and 
1973 in processing a file composed of the level records 
of each square. This file was kept up-to-date to the 
very end, and was complete the day following the 
closing of the excavation. We found that the time- 
sharing system was rarely down. There were negligible 
queuing delays, and the weakest link proved to be the 
telephone lines. 

A few statistics will prove useful in evaluating the 
speed of our routines. The updating (on an IBM 370/ 
145) took 120 minutes of elapsed time and one minute 
of computer time for 60 records of 60 bytes each. 

Retrieval on an IBM 370/158 used correctly is quite 
acceptable: for a single parameter search from a file of 
2,097 records of 60 bytes each in 91 components, 54 
sec of elapsed time and 5.4 sec of central processor 
time were used prior to printing the retrieved records. 
Because of the nature of APL'S array processing, mul- 
tiple parameter searches add a negligible percentage to 
the central processor time. 

Conclusion 
The viability of this field experiment indicates that 

the potential of computers for solving the data manage- 
ment problems of large scale multi-disciplinary ar- 
chaeological programs is strong. 
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FORTRAN IV is one of the most widely used program- 
ming languages, and programs written in FORTRAN tend 
to be quite portable. Although the language has, at 
best, only primitive string-handling capabilities, many 
programs that deal primarily with strings are sometimes 
written in FORTRAN simply to achieve a degree of porta- 
bility. It is the purpose of this note to illustrate a very 
simple technique for structuring and manipulating 
varying-length string data in FORTRAN IV [3]. The scheme 
is conducive to such operations as concatenation, sub- 
string extraction and duplication. 

There are many books on FORTRAN IV programming 
[1, 4-5], but none treats variable-length strings in detail. 
Both Harrison [4] and Day [1] describe several methods 
for handling strings in FORTRAN, but their methods do 
not lead to the heuristics for string operations that exist 
in our scheme. McKeeman [6] has used a technique 
similar to ours in XPL a dialect of PL/I. 

Two pieces of information characterize varying- 
length strings--their location in memory and their 
length. In languages such as SNOBOL4 [2] this informa- 
tion is usually contained in a descriptor. We may imple- 
ment a similar descriptor containing the location and 
size of a string in FORTRAN by perverting the use of com- 
plex variables. The actual characters of the string are 
stored in an array set aside for that purpose. Using this 
descriptor scheme, it is not important  whether the 
characters are stored in packed or unpacked format. 

We choose type COMPLEX for string descriptors since 
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one complex variable contains two pieces of informa- 
tion. In order to make efficient use of the values of the 
location and size of a string, we store them as integers 
in a complex variable. This can be effected by an 
EQUIVALENCE statement. 

COMPLEX D 
INTEGER ID(2), OFF, LEN 
EQUIVALENCE (D,ID(1)), (ID(1),OFF), (ID(2),LEN) 

The location field, or first word of the complex variable, 
may be referenced by referencing the integer variable 
OFF. Likewise, the second word is referenced via the 
integer LEN. The complete string descriptor, {loc,size} 
is referenced via the complex variable D. Using this 
method, a string may be passed to a function or sub- 
routine as a single complex argument. Furthermore, a 
function may return a descriptor for a string as its 
value. As mentioned above, the actual characters which 
constitute the string are stored in an array. We simply 
maintain a character index, avail, that points to the next 
available character location. When a new string is in- 
serted into the string storage array avail is incremented 
by its length. 

One advantage of the descriptor representation is 
that strings can "overlap" since there are no special 
markers embedded in the storage array. Suppose the 
string T H I S  STRING is represented by the descriptor 
{o~,111. The string STRING is represented by the de- 
scriptor 1a-t-5,6}, sharing some of the characters used 
by the other string. This makes operations such as sub- 
string extraction trivial--we only need to return a modi- 
fied descriptor. One can easily implement a function 
SUBSTR(S, I ,L)  that returns a descriptor representing 
the substring of S beginning at the Ith character which 
is L characters long. Note that S and S U B S T R  are type 
COMPLEX,  but 1 and L are type INTEGER.  

The descriptor representation allows the introduc- 
tion of heuristics that help make some string operations 
more efficient. For  example, consider a function 
CONCAT(S1,S2)  which concatenates the strings repre- 
sented by the descriptors SI and $2 and returns the ap- 
propriate descriptor. At first glance, one might just copy 
the characters of the strings represented by S1 and $2 
to the " top"  or free portion of the string storage array 
and return the appropriate descriptor. But using the 
descriptor representation, there are three heuristics that 
may greatly affect the speed of concatenation. 
I. If either S1 or $2 represents the null string, {0,0}, 
then C O N C A T  is just the other descriptor. 
2. If S1 represents a string that is at the " top"  of the 
string storage array, only the characters of the string 
represented by $2 must be copied. In other words, if 
loc(S1)q-size(S1) = avail, then we copy only the second 
string and return the descriptor {loc(S1),size(Sl)q- 
size( S2) }. 
3. Finally, if the strings represented by S1 and $2 are 
already adjacent, we need do no character movement 
but just return the appropriate descriptor. That  is, if 
loc(Sl )q-s ize(S l )=loc(S2) ,  C O N C A T  is the same de- 
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scriptor as in (2) above. This heuristic is often over- 
looked, as in [6]. 

If  none of the above heuristics succeeds, we are 
forced to copy the characters of both strings. Heuristics 
may be determined for a multitude of other common 
string operations such as duplication, lexical compari- 
son, identity, and reversal. 

The fact that a function can effectively return a 
string as its value and that a string may be passed to a 
function or subroutine as a single argument leads to 
more readable and organized programs in a language 
that is already notorious for badly structured programs. 
For example, a statement such as 

S = CONCAT(SUBSTR(SI,I,4),SUBSTR(S2,3,2)) 

is significantly more readable and self-documenting than 
a series of CALL statements containing numerous 
repetitive arguments. 

The method has three inconveniences: (1) additional 
storage is required for the descriptors and the machine 
code necessary to perform double-word data movement; 
(2) the variables used for descriptors and string func- 
tions must be declared COMPLEX;  and (3) the printing 
of a string is somewhat cumbersome if the characters 
are stored in packed format. Despite these inconven- 
iences, a system of string functions using this tech- 
nique has been successfully implemented on the IBM/360, 
CDC 6000 series and DECsystem-10 computers. On ma- 
chines such as the CDC 3300 or IBM 1 130 whose FORTRAN 
compilers allocate two words for floating point numbers, 
a descriptor may be represented by a R E A L  variable. It 
should be noted that the use of complex variables in this 
fashion is in violation of the ANSI standards [7]. 
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