
the necessary coordinates to locate the unit in three
dimensions. The additional variables for the features
include all square/levels the feature may have ex-
tended into as determined through excavation.

The means of ariving at the stored data can best
be shown by the file of excavated squares. Each record
consists of the above 15-core variables arranged into
215 components including the directory, occupying
less than 375,000 bytes with all data as integers for
efficiency in storage.

Since the data are entered in two modes--one for
counts and weights, the other for square/level dimen-
sions and locational information--provenience and
program instruction take a rather high proportion
(15 percent) of the keyboard input. The level dimen-
sions themselves are 36 percent of the input, the counts
and weights are 21 percent, and single blanks separat-
ing each entry accounts for an unexpected 28 percent.
On a system with fixed-format input and the same read-
ability of input data, the percentage of blanks would
be at least double, an important consideration in keep-
ing connect time with the computer to a minimum.

System Performance
The computerized file processing and data re-

trieval worked successfully in the summers of 1972 and
1973 in processing a file composed of the level records
of each square. This file was kept up-to-date to the
very end, and was complete the day following the
closing of the excavation. We found that the time-
sharing system was rarely down. There were negligible
queuing delays, and the weakest link proved to be the
telephone lines.

A few statistics will prove useful in evaluating the
speed of our routines. The updating (on an IBM 370/
145) took 120 minutes of elapsed time and one minute
of computer time for 60 records of 60 bytes each.

Retrieval on an IBM 370/158 used correctly is quite
acceptable: for a single parameter search from a file of
2,097 records of 60 bytes each in 91 components, 54
sec of elapsed time and 5.4 sec of central processor
time were used prior to printing the retrieved records.
Because of the nature of APL'S array processing, mul-
tiple parameter searches add a negligible percentage to
the central processor time.

Conclusion
The viability of this field experiment indicates that

the potential of computers for solving the data manage-
ment problems of large scale multi-disciplinary ar-
chaeological programs is strong.

646

Short Communications
Programming Techniques

A Simple Technique for
Representing Strings
in Fortran IV
David R. Hanson
The University of Arizona

Key Words and Phrases: string processing, Fortran
IV, string representation, structured programming,
data structures

CR Categories: 3.70, 4.0, 4.19, 4.9

FORTRAN IV is one of the most widely used program-
ming languages, and programs written in FORTRAN tend
to be quite portable. Although the language has, at
best, only primitive string-handling capabilities, many
programs that deal primarily with strings are sometimes
written in FORTRAN simply to achieve a degree of porta-
bility. It is the purpose of this note to illustrate a very
simple technique for structuring and manipulating
varying-length string data in FORTRAN IV [3]. The scheme
is conducive to such operations as concatenation, sub-
string extraction and duplication.

There are many books on FORTRAN IV programming
[1, 4-5], but none treats variable-length strings in detail.
Both Harrison [4] and Day [1] describe several methods
for handling strings in FORTRAN, but their methods do
not lead to the heuristics for string operations that exist
in our scheme. McKeeman [6] has used a technique
similar to ours in XPL a dialect of PL/I.

Two pieces of information characterize varying-
length strings--their location in memory and their
length. In languages such as SNOBOL4 [2] this informa-
tion is usually contained in a descriptor. We may imple-
ment a similar descriptor containing the location and
size of a string in FORTRAN by perverting the use of com-
plex variables. The actual characters of the string are
stored in an array set aside for that purpose. Using this
descriptor scheme, it is not important whether the
characters are stored in packed or unpacked format.

We choose type COMPLEX for string descriptors since
Copyright © 1974, Association for Computing Machinery, Inc.

General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Results of this study were presented at the 1974 Computer
Science Conference in Detroit, Michigan, February 14, 1974.
Author's address: University Computer Center, The University
of Arizona, Tucson, AZ 85721.

Communications November 1974
of Volume 17
the ACM Number 11

one complex variable contains two pieces of informa-
tion. In order to make efficient use of the values of the
location and size of a string, we store them as integers
in a complex variable. This can be effected by an
EQUIVALENCE statement.

COMPLEX D
INTEGER ID(2), OFF, LEN
EQUIVALENCE (D,ID(1)), (ID(1),OFF), (ID(2),LEN)

The location field, or first word of the complex variable,
may be referenced by referencing the integer variable
OFF. Likewise, the second word is referenced via the
integer LEN. The complete string descriptor, {loc,size}
is referenced via the complex variable D. Using this
method, a string may be passed to a function or sub-
routine as a single complex argument. Furthermore, a
function may return a descriptor for a string as its
value. As mentioned above, the actual characters which
constitute the string are stored in an array. We simply
maintain a character index, avail, that points to the next
available character location. When a new string is in-
serted into the string storage array avail is incremented
by its length.

One advantage of the descriptor representation is
that strings can "overlap" since there are no special
markers embedded in the storage array. Suppose the
string T H I S STRING is represented by the descriptor
{o~,111. The string STRING is represented by the de-
scriptor 1a-t-5,6}, sharing some of the characters used
by the other string. This makes operations such as sub-
string extraction trivial--we only need to return a modi-
fied descriptor. One can easily implement a function
SUBSTR(S, I ,L) that returns a descriptor representing
the substring of S beginning at the Ith character which
is L characters long. Note that S and S U B S T R are type
COMPLEX, but 1 and L are type INTEGER.

The descriptor representation allows the introduc-
tion of heuristics that help make some string operations
more efficient. For example, consider a function
CONCAT(S1,S2) which concatenates the strings repre-
sented by the descriptors SI and $2 and returns the ap-
propriate descriptor. At first glance, one might just copy
the characters of the strings represented by S1 and $2
to the " top" or free portion of the string storage array
and return the appropriate descriptor. But using the
descriptor representation, there are three heuristics that
may greatly affect the speed of concatenation.
I. If either S1 or $2 represents the null string, {0,0},
then C O N C A T is just the other descriptor.
2. If S1 represents a string that is at the " top" of the
string storage array, only the characters of the string
represented by $2 must be copied. In other words, if
loc(S1)q-size(S1) = avail, then we copy only the second
string and return the descriptor {loc(S1),size(Sl)q-
size(S2) }.
3. Finally, if the strings represented by S1 and $2 are
already adjacent, we need do no character movement
but just return the appropriate descriptor. That is, if
loc(Sl)q-s ize(S l)=loc(S2) , C O N C A T is the same de-

647

scriptor as in (2) above. This heuristic is often over-
looked, as in [6].

If none of the above heuristics succeeds, we are
forced to copy the characters of both strings. Heuristics
may be determined for a multitude of other common
string operations such as duplication, lexical compari-
son, identity, and reversal.

The fact that a function can effectively return a
string as its value and that a string may be passed to a
function or subroutine as a single argument leads to
more readable and organized programs in a language
that is already notorious for badly structured programs.
For example, a statement such as

S = CONCAT(SUBSTR(SI,I,4),SUBSTR(S2,3,2))

is significantly more readable and self-documenting than
a series of CALL statements containing numerous
repetitive arguments.

The method has three inconveniences: (1) additional
storage is required for the descriptors and the machine
code necessary to perform double-word data movement;
(2) the variables used for descriptors and string func-
tions must be declared COMPLEX; and (3) the printing
of a string is somewhat cumbersome if the characters
are stored in packed format. Despite these inconven-
iences, a system of string functions using this tech-
nique has been successfully implemented on the IBM/360,
CDC 6000 series and DECsystem-10 computers. On ma-
chines such as the CDC 3300 or IBM 1 130 whose FORTRAN
compilers allocate two words for floating point numbers,
a descriptor may be represented by a R E A L variable. It
should be noted that the use of complex variables in this
fashion is in violation of the ANSI standards [7].

Received February 1974, revised April 1974

References
1. Day, A.C. FORTRAN Techniques. Cambridge U. Press, Ox-
ford, England, 1972.
2. Griswold, R.E. The Macro Implementation of SNOBOL4.
W.H. Freeman, San Francisco, Calif., 1972.
3. Hanson, D.R. Descriptor representation of strings and other
objects in FORTRAN IV. 1974 Comput. Sci. Conf., Program
Abstracts, 87, Feb. 1974.
4. Harrison, M.C. Data-Structures and Programming. Courant
Inst. of Math. Sci., New York, 1970, Chs. 3 and 4.
5. McCracken, D.D. A Guide to FORTRAN 1V Programming.
Wiley, New York, 1972.
6. McKeeman, W.M., Homing, J.J., and Wortman, D.B. A Com-
piler Generator. Prentice-Hall, Englewood Cliffs, N.J., 1970,
Ch. 8 and Appendix 4.
7. USA Standards Institute. Fortran. USAS X3.9, 1966.

Communications November 1974
of Volume 17
the ACM Number I 1

