
Appeared in Proceedings of the XIII International Conference of the Chilean Computer Science Society,
La Serena, Chile, Oct. 1993, pp. 251-259.

GARBAGE COLLECTION IN DISTRIBUTED EZ

Alvaro E. Campos1 and David R. Hanson2

1Pontificia Universidad Católica de Chile
Escuela de Ingenieŕıa
Departamento de Ciencia de la Computación
Casilla 306, Santiago 22, Chile
acampos@ing.puc.cl

2Department of Computer Science
Princeton University
Princeton, NJ 08544, USA
drh@cs.princeton.edu

INTRODUCTION

EZ [8, 10] is a programming environment that most closely resembles those for APL, LISP,
Smalltalk, and related systems. EZ integrates the facilities provided separately by traditional program-
ming languages and operating systems by casting traditional operating-system services as language
features. The result is a complete computing environment that is intended to be an alternative to both
conventional languages and operating systems, and that also supports manipulating the environment.

Distributed EZ [6] adapts the recent implementations of shared virtual memory [14] to distribute
EZ ’s virtual address space across a network of work-stations. Identical copies of a distributed memory
manager run at each processor, and the entire, persistent, virtual address space is distributed among
their secondary storage devices. EZ is an interpreted system, and the interpreters are the only clients
of the managers, which hide all distribution details from the rest of the system and from the users’
programs. Each manager caches the pages that its clients are using in an attempt to collect pages at
the processor that accesses them; managers replicate pages to allow multiple readers, but permit only
one writer in order to maintain coherence. Each page is owned by the last manager that granted write
access to the page to a local interpreter; ownership migrates with write accesses. The pages themselves
migrate among the secondary storage devices of the individual processors because the owner keeps the
in-disk copy of a page up to date.

Earlier versions of EZ used an off-line garbage collector to reclaim inaccessible pages in the disk
representation of the virtual address space. This approach worked fine for a prototype and, as shown
by the Oberon system [18], is perhaps adequate for a non-distributed, single-user system that is subject
to frequent idle periods. But an off-line approach is unsuitable for a distributed system.

Distributed EZ uses a distributed, mark-and-sweep garbage collector, which has the usual two
phases. First, the mark phase marks all virtual-memory pages that are accessible from a few system
root objects. Then, the sweep phase sweeps the virtual memory and collects all those pages that
remain unmarked after the mark phase. EZ ’s collector is concurrent ; it works in parallel with the
mutators, which are interpreter threads acting on behalf of EZ processes. It is also real time; the
mutators are never interrupted for longer than a small constant time.

For systems like EZ , which have a large, persistent address space, efficiency of the collection
algorithm is less important than concurrency. Space efficiency and minimal disruption of mutators
are more important than time efficiency of the algorithm itself. Indeed, all that is required is that
the collector replenish the supply of free virtual-memory pages fast enough so that applications rarely
have to wait to allocate a new page; and, also, that it collects all inaccessible pages eventually.

DISTRIBUTED GARBAGE COLLECTION

Most garbage collectors proposed for distributed systems require double indirection for remote
references [12, 16, 17]. This mechanism requires direct mutator collaboration, and imposes a severe
overhead on the mutators when creating references and, especially, when dereferencing. Some collectors
are designed for systems in which pages do not migrate [12, 17], or in which page migration requires
mutator collaboration to update some of the collector’s data structures [4]. Many proposals require
global synchronization among processors [2, 3, 4, 9, 13], which in some cases implies halting the
mutators. Finally, in some parallel or distributed systems collections occur in a per-process basis with
no global garbage collection [11], or they have been serialized disallowing concurrency [15].

Collectors based on reference counting are an interesting alternative because they are relatively
simple and incremental. They do, however, require extra storage per reference, and have two major
weaknesses. First, maintaining the counts requires direct collaboration from the mutators whenever
they copy or remove a reference. Second, and more important, these algorithms cannot handle cyclical
references, which makes them unsuitable for EZ , where cycles abound.

Copying collectors have the potential to be much more efficient than reference-counting and mark-
and-sweep collectors; especially when the total available memory is much larger than the amount
of active objects [1]. These collectors avoid touching the garbage and their work is proportional to
the number of accessible pages; they do, however, split the memory into two semi-spaces halving
the memory available for objects. However, objects in EZ ’s virtual address space do not move; this
restriction greatly simplifies the implementation of the persistent address space, but disallows the use
of copying collectors.

THE COLLECTOR FOR DISTRIBUTED EZ

The distributed mark-and-sweep garbage collector for distributed EZ runs continuously without
interfering with the rest of the system, and performs one collection after another. Identical copies of
the collector run on each processor in the system; technically, there is one collector for each memory
manager. Since the address space is distributed among all processors, each collector can access only
some virtual-memory pages. In particular, each collector processes the pages owned by its associated
manager, which avoids page migration — or even remote reads — for garbage-collection purposes only.

Like uniprocessor mark-and-sweep collectors, EZ ’s collector marks all pages that hold accessible
objects starting from a few system root objects. The algorithm also marks pages referenced from
within marked pages, which may cause some inaccessible pages to be marked. Indeed, the collector is
conservative: it marks a superset of the accessible pages and collects only a subset of the inaccessible
ones [7]. It repeats the collection continuously, so it eventually reclaims all inaccessible pages.

Most pages hold only one EZ value or internal data structure; conversely, all aggregate values use
an integral number of pages. For example, strings are implemented by lists of pages and arrays are
implemented as pointers to pages of additional pointers to pages of values. These techniques produce
a system in which pages cannot have both accessible and inaccessible objects; when a value becomes
inaccessible, all of its pages become inaccessible. ¿From the point of view of memory allocation, these
techniques eliminate external fragmentation and simplify memory management, which deals only with
single-sized pages; however, small aggregate objects produce internal fragmentation because they do
not use all the memory allocated to them; a small page size reduces this effect. ¿From the point of view
of garbage collection, the techniques allow collection in a per-page basis, with the certainty that no
page can be marked solely because of a gratuitous reference from an inaccessible object that happens
to reside in an accessible page.

The mark phase of each local collector proceeds in cycles. After marking the accessible owned
pages, the local collector broadcasts the set of interprocessor references found in those pages to all other
collectors; the collector for distributed Smalltalk [17] performs a similar exchange. When it receives
this same information from the other collectors, the local collector learns about remote references
to its local pages. This information feeds another marking cycle that expands the local collector’s
set of accessible pages. The exchange of information keeps the collector cycles synchronized, but the
mutators need not halt. The mark phase ends when, after an exchange of information, no collector
expands its accessible-page set.

During the sweep phase, the collector must check whether or not each local page is marked. The
implementation, however, does not require access to the pages themselves. The collector accesses only
its own local data structures, which fit in a relatively small number of pages, to determine which local
pages are unmarked. The sweep phase requires no interprocessor communication.

MUTATOR COLLABORATION

A concurrent garbage collector requires some form of mutator cooperation to mark the reachable
objects properly; the goal of “no extra overhead for the mutator” is unattainable [7]. Without ad-
equate protection, interleaving the execution of the collector with the mutators could produce some
undesirable effects. In particular, when a reference is updated, either the old target or the new target
must be marked atomically. Failure to do so may cause the collector to reclaim either the old or new
target erroneously. Most concurrent collectors mark the new target to avoid hanging on to the page
holding the old target [7].

EZ ’s collector, however, marks the old target for two reasons. First, marking the new target
requires direct mutator assistance. Second, marking the old target permits the collector to use the
virtual-memory system to mark the pages referenced by a page before it is modified; alternatively,
virtual-memory hardware could be used. At the start of a collection, all owned pages are set to read-
only. The first write to a page causes a page fault, and pages referenced from the faulted page are
marked before the fault handler approves write access to the page. Marking the referents of a page
before it is updated is equivalent to marking the old targets of updates.

With this scheme, no direct mutator assistance is required by the collector. The virtual-memory
manager accomplishes the desired effect; the mutator processes themselves need not be modified in
any way. However, this approach implies that garbage produced during one collection will be collected
only in the next collection, as in the distal-objects collector [16].

THE COLLECTION ALGORITHM

Figure 1 shows pseudo-code for EZ ’s garbage-collection algorithm. At every moment, each memory
page is marked with one of three possible colors: white, grey, or black. Stop-and-collect uniprocessor
collectors that are not concurrent use only two colors; the third, grey, labels pages that have been
marked, but not yet traversed for pointers. At the beginning of each collection, locally owned pages
have the same color, say, white. After the mark phase, pages are colored either white or black, and
white pages can be reclaimed. Initially, retain and gather are black and white, respectively. The
colors reverse roles in subsequent collections.

Each collection starts by setting owned pages to be read-only, so that their referents are marked
before the pages are modified. The memory manager scans the requested page before granting the
access. This action is the only interaction between the mutators and the collector. As shown in
Figure 1, scanning a page shades its referents, colors the page black, and unprotects it.

Then, the referents of the local roots are colored by Shade, which colors owned white pages grey
and adds remote pages to its argument s. When shading the referents of the local roots, the argument
is the set remote, which is empty initially and is used by the algorithm to record all remote pages that
are locally referenced and should, therefore, be marked.

Next, the mark phase begins to cycle. In each cycle, locally owned grey pages are scanned. Scanning
a page may yield another grey page, but this activity ends eventually. Once all grey owned pages are
scanned, all pages reachable from the local roots have been colored black, and remote contains all
remote pages that should have been colored grey in this cycle.

A subset of remote is then broadcast to the other processors. This subset is the set of pages that
have not been announced in previous broadcasts. Variable cycle records the size of this subset, and
remote is added to all, which accumulates all accessible pages in the address space known to this
collector. The collector then consumes similar messages from the other collectors, accumulates their
sizes in cycle, and shades the pages mentioned in the messages. When shading the pages mentioned
by other collectors, Shade colors owned white pages grey and adds remote pages to the set all directly.

Messages from other collectors reveal information about local pages that are referenced remotely
and feeds another marking cycle, just as if the root set had been augmented. The new cycle might
expand the local collector’s set of accessible pages or its set of interprocessor references. Since each
collector waits for the messages from all other collectors to arrive, these messages not only communicate
the remote references between collectors, but also synchronize them and ensure that they cycle in lock-
step. All collectors see the same messages in each cycle.

As the mark phase progresses, each collector’s all becomes larger until remote-all becomes
empty, i.e., until all grey pages everywhere have been colored black. All collectors then send an empty
message, and all realize simultaneously — i.e., at the end of the same cycle — that the mark phase
has finished. At that point, all owned white pages are added to the set of free pages, the roles of white
and black are reversed and collection begins anew.

retain, gather ← black, white
all ← remote ← ∅
do forever

for every p ∈ owned do
Access(p) ← read only

for every reference r in the local roots do
Shade(Page(r), remote)

do
while ∃p ∈ owned ∧ Color(p) = grey do

Scan(p, remote)
cycle ← |remote - all|
broadcast remote - all
all ← all ∪ remote
for every other processor P do

receive message k from P
cycle ← cycle + |k|
for every p ∈ k do Shade(p, all)

remote ← ∅
while cycle > 0

for every p ∈ owned do
if Color(p) = gather then

free pages ← free pages ∪ {p}
all ← ∅
gather, retain ← retain, gather

Scan(p, s):
for every reference r ∈ p do

Shade(Page(r), s)
Color(p) ← retain
Access(p) ← read write

Shade(p, s):
if p ∈ owned then

if Color(p) = gather then Color(p) ← grey
else

s ← s ∪ {p}

Figure 1: Garbage-collection algorithm.

When a page migrates, it is scanned before being sent to its new owner, if necessary. The memory
manager triggers the scan by simulating a local write, which causes the page to be scanned. The new
owner colors the page black. The memory manager also collaborates to the garbage-collection process
when allocating free pages; they are colored black before being allocated.

IMPLEMENTATION

The implementation of the collector for distributed EZ has a single thread per processor for the
garbage-collection proper, but every message received from the other collectors is processed by an
independent thread. In addition, threads from the virtual-memory manager and interpreter threads
call collector routines.

The collector thread pauses periodically to reduce the time it interrupts the mutators. The mark
phase pauses after shading each of the local roots, and after each grey page is scanned. When sending
the messages to the other collectors at the end of each cycle, the collector pauses after broadcasting
each set of references that fits in a page. The sweep phase pauses after determining the free local
pages in each page of the bit map for the set of owned pages.

The only remote communication induced by garbage collection is the message exchange with the
other collectors that takes place at the end of each cycle in the mark phase. There is no migration of
pages or remote accesses due to garbage collection. The collector thread does get read access to local
pages in order to scan them.

The collector uses reasonably efficient representations for all its data structures, which are kept
in the persistent address space. The set of available pages, free pages, is represented as a list of
page ranges stored in pages. Similarly, page sets for k and remote are implemented as lists of pages
containing page numbers; management of these data structures is simple because they are merely bags
of page numbers in which pages may appear more than once.

The implementation of marks differs slightly from the pseudo-code shown in Figure 1. Marking
pages with three different colors is wasteful because it requires two bits per page, although two bits
can distinguish four different states. Instead of being colored, pages are simply marked or not. A
private bit map is used by each collector to keep the marks for all pages in the address space. A bit
is set in the bit map if the respective page is marked, i.e., it has been processed; the bit is clear if the
page has not been scanned. A marked page is equivalent to a page that has been colored black. An
unmarked page, which has its bit clear, can be either white or grey.

In the algorithm, grey pages are those that have been recognized as accessible, but not yet scanned.
The implementation keeps a bag with the local grey pages, in the same way it keeps the bag, remote,
of remote pages that are locally referenced. When a page from this bag is scanned, the collector also
sets its mark bit. Since only unmarked pages are scanned, no page is scanned more than once, even if
they appear again in the bag.

The bit map for marked pages is also used to mark remote pages that, through the messages
received from other collectors, are known to be accessible. With this extension, this bit map also
represents the set all in the pseudo-code, which need not be implemented separately.

The implementation makes Shade simpler and faster because it does not have to determine the
color of owned pages. When the collector shades a page, it inserts the page’s number in one of two
bags depending on whether or not the page is local. It inserts local pages into the bag of grey pages
and remote pages into the bag remote. Remote pages can also be marked immediately. Pages listed
in a message received from another collector, are treated similarly. Local pages are inserted into the
bag of grey pages and remote pages are simply marked.

The set of owned pages, the set of available pages, and the per-page data are shared by the collector
and the memory manager with appropriate locking. The data structures private to the collector —
the bit map with marks, the bag of grey pages, and the bag of remote pages that are locally referenced
— are not re-used, but allocated each time they are needed. The garbage collector simply loses
their addresses at the end of a collection, and they become garbage to be collected by a subsequent
collection. This mechanism has several benefits. No re-initialization phase is necessary before being re-
used, which would create synchronization hazards with the mutator threads and the threads processing
messages from the other collectors. More importantly, the collector need not process these structures
because their pages are marked when allocated and cannot be reclaimed by the current collection; thus,
garbage-collection time is reduced. Finally, it eliminates the implementation problems that appear
when the structures are processed by the collector itself due to mutual recursion among different parts
of the system.

PERFORMANCE

A prototype has been implemented on a SPARC processor — a Sun 4 work-station — running the
Sun Operating System version 1, release 4.1.1-GF. The prototype runs on a single processor and uses
Unix processes to simulate different processors.

Four sequential and one parallel programs were used to evaluate the system. To simulate the
effects of sharing, the sequential programs were compiled on one processor and executed on a different
one. Pages would migrate from the former to the latter processor as needed for execution of the
programs. The parallel program was compiled on one processor and its threads were run on each
available processor. These threads actively accessed some common data structures to read and write
values. The pages that contain these structures were required for read and write access from different
processors.

The measurements obtained with the prototype show good performance of the distributed mark-
and-sweep garbage collector [5]. It integrates well with the memory manager and rest of the system.
Collections are reasonably fast, and many could be performed while running the test programs. The
collector is especially effective when the system activity is really distributed among several processors;
it takes advantage of performing mostly local operations and runs without increasing the running time
of the mutators significantly.

The number of cycles of a mark phase is important because it is a measure of the interprocess-
communication activity induced by the garbage-collection process. The actual data structures used
by the programs, and its interrelations, help determine the number of cycles. The measurements show
that very few cycles are required for the test programs and that, consequently, the communication
overhead due to the collector is small. On average, the mark phase of the collector needs fewer than 3
cycles per collection, and no collection requires more than 5 cycles.

Most pages scanned by the collection algorithm are scanned by the collector thread; only a few
pages are scanned for the mutators by the memory manager. Consequently, few page requests are
delayed by the scanning process. In most cases, the time required to gain access to a page is due to
the costs of memory management itself.

References

[1] Andrew W. Appel. 1991. Garbage collection. In Peter Lee, editor, Topics in Advanced Language
Implementation Techniques, chapter 4. MIT Press.

[2] Andrew W. Appel, John R. Ellis, and Kai Li. 1988 (July). Real-time concurrent collection on
stock multiprocessors. Proceedings of the SIGPLAN’88 Conference on Programming Language
Design and Implementation, SIGPLAN Notices, 23(7):11–20.

[3] L. Augusteijn. 1987. Garbage collection in a distributed environment. In J. W. de Bakker,
A. J. Nijman, and P. C. Treleaven, editors, PARLE, Parallel Architectures and Languages Europe,
Volume II: Parallel Languages (LNCS 259), pages 75–93, Berlin. Springer-Verlag.

[4] Anders Bjornerstedt. 1989. Secondary storage garbage collection for decentralized object-based
systems. In D. C. Tsichritzis, editor, Object Oriented Development, pages 277–319, Geneve:
Centre Universitaire d’Informatique.

[5] Alvaro E. Campos. 1993 (June). Distributed, Garbage-Collected, Persistent, Virtual Address
Spaces. PhD thesis, Princeton University, Princeton, NJ.

[6] Alvaro E. Campos and David R. Hanson. 1992 (September). Distributed EZ . In Proceedings of
the 16th Annual International Computer Software and Applications Conference, pages 136–142,
Chicago, IL.

[7] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978
(November). On-the-fly garbage collection: An exercise in cooperation. Communications of the
ACM, 21(11):966–975.

[8] Christopher W. Fraser and David R. Hanson. 1985 (January). High-level language facilities for
low-level services. In Conference Record of the ACM Symposium on Principles of Programming
Languages, pages 217–224, New Orleans, LA.

[9] Robert H. Halstead, Jr. 1984 (August). Implementation of Multilisp: Lisp on a multiprocessor.
In ACM Conference on LISP and Functional Programming, pages 9–17, Austin, TX.

[10] David R. Hanson and Makoto Kobayashi. 1990 (March). EZ processes. In Proceedings of the
International Conference on Computer Languages, pages 90–97, New Orleans, LA.

[11] Suresh Jagannathan and Jim Philbin. 1992 (June). A foundation for an efficient multi-threaded
scheme system. In ACM Conference on LISP and Functional Programming, pages 345–357, San
Francisco, CA.

[12] Bernard Lang, Christian Queinnec, and José Piquer. 1992 (January). Garbage collecting the
world. In Conference Record of the ACM Symposium on Principles of Programming Languages,
pages 39–50, Albuquerque, NM.

[13] Claus-Werner Lermen and Deiter Maurer. 1986 (August). A protocol for distributed reference
counting. In ACM Conference on LISP and Functional Programming, pages 343–350, Cambridge,
MA.

[14] Kai Li and Paul Hudak. 1989 (November). Memory coherence in shared virtual memory systems.
ACM Transactions on Computer Systems, 7(4):321–359.

[15] Joseph Pallas and David Ungar. 1988 (July). Multiprocessor Smalltalk: A case study of a
multiprocessor-based programming environment. Proceedings of the SIGPLAN’88 Conference
on Programming Language Design and Implementation, SIGPLAN Notices, 23(7):11–20.

[16] Martin Rudalics. 1986 (August). Distributed copying garbage collection. In ACM Conference on
LISP and Functional Programming, pages 364–372, Cambridge, MA.

[17] Marcel Schelvis and Eddy Bledoeg. 1988 (August). The implementation of a distributed Smalltalk.
In Gjessing, Stein and Kristen Nygaard, editors, ECOOP’88: European Conferece on Object-
Oriented Programming (LNCS 322), pages 212–232, Berlin. Springer-Verlag.

[18] Niklaus Wirth and Jurg Gutknecht. 1989 (September). The Oberon system. Software—Practice
& Experience, 19(9):657–693.

