
Generators in Icon

RALPH E. GRISWOLD, DAVID R. HANSON, and JOHN T. KORB

The University of Arizona

Icon is a new programming language that includes a goal-directed expression evaluation mechanism.
This mechanism is based on generators--expressions that are capable of producing more than one
value. If the value produced by a generator does not lead to a successful result, the generator is
automatically activated for an alternate value. Generators form an integral part of Icon and can be
used anywhere. In addition, they form the basis for the string scanning facility and subsume some of
the control expressions found in other languages. Several examples are given.

Key Words and Phrases: goal-directed programming, generators, nondeterministic programming,
backtracking, Icon, SL5, programming languages
CR Categories: 4.2, 4.20, 4.22

1. INTRODUCTION

I c o n is a n e w p r o g r a m m i n g l a n g u a g e i n t e n d e d for n o n n u m e r i c a l a p p l i c a t i o n s w i t h
a n e m p h a s i s on s t r i ng a n d s t r u c t u r e p rocess ing . I con h a s i t s r o o t s in S N O B O I A

[16] a n d SL5 [11, 14, 18-20]. I t s h a r e s m a n y o f t h e p h i l o s o p h i c a l b a s e s of t h e s e
l anguages : concise , exp re s s ive f ea tu re s , r u n - t i m e f lex ib i l i ty , s u p p o r t of u n t y p e d
i den t i f i e r s a n d h e t e r o g e n e o u s s t r u c t u r e s , a n d a u t o m a t i c t y p e convers ions . I c o n
l a c k s s o m e of t h e exo t i c f e a t u r e s o f b o t h S N O B O I A a n d SL5; in o r d e r to p r o v i d e
g r e a t e r e f f ic iency in t h e m o s t f r e q u e n t l y u s e d o p e r a t i o n s , I c o n r e s t r i c t s r u n - t i m e
f lex ib i l i ty . I n t h i s sense , I c o n fo l lows t h e m o r e t r a d i t i o n a l m e t h o d o f b i n d i n g
m a n y l a n g u a g e o p e r a t i o n s a t c o m p i l e t ime .

One of t h e m a j o r m o t i v a t i o n s for I c o n is t h e c o n t i n u i n g e f for t to p r o v i d e b e t t e r
s t r ing m a n i p u l a t i o n fac i l i t ies . A c o m p l e t e d i s cus s ion of t h e i s sues i n v o l v e d in th i s
e f for t is g iven in [12]. B r i e f ly s t a t e d , t h e m a j o r i s sue is t h a t , in m o s t l anguages ,
s t r ing m a n i p u l a t i o n fac i l i t i es c o n s t i t u t e a s e p a r a t e s u b l a n g u a g e , a n d i n t e r a c t i o n
b e t w e e n t h e s u b l a n g u a g e a n d t h e l a n g u a g e p r o p e r is a w k w a r d a t bes t . I n add i t i on ,
if t h e fac i l i t i es i nc lude a s e a r c h a n d b a c k t r a c k m e c h a n i s m , i t s use is u s u a l l y
r e s t r i c t e d to t h e s u b l a n g u a g e , a n d t h e p r o g r a m m e r t y p i c a l l y h a s l i t t l e c o n t r o l
ove r i t s o p e r a t i o n .

One o f t h e m a j o r d i f f e rences b e t w e e n I con a n d p r e v i o u s w o r k is t h a t t h e
e v a l u a t i o n m e c h a n i s m , w h i c h i n c l u d e s a l i m i t e d f o r m of b a c k t r a c k i n g , is n o t

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This work was supported by the National Science Foundation under grants MCS75-01307 and
MCS79-03890.
Authors' addresses: R. E. Griswold and D. R. Hanson, Department of Computer Science, The
University of Arizona, Tucson, AZ 85721; J. T. Korb, Xerox Corporation, 3333 Coyote Hill Road, Palo
Alto, CA 94304.
© 1981 ACM 0164-0925/81/0400-0144 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981, Pages 144-161.

Generators in Icon 145

restricted to the string processing facility but is used everywhere. Unlike SNO-
BOIA, for example, the string processing facilities can be thought of as a natural
consequence of the evaluation mechanism. The central concept in the Icon
evaluation mechanism is the generator. A generator is an expression that is
capable of producing a sequence of values. The first value is produced when the
generator is evaluated during ordinary computation. Subsequent values are
produced when alternatives are requested. The production of these alternate
values is under the control of the programmer, much as the programmer controls
ordinary iterative or conditional control structures. It is this integration of
generator control with evaluative control that gives Icon its flexibility and power
and permits concise, natural solutions to typical search and backtrack problems.
Perhaps more important, generators facilitate the composition of conventional
and unconventional control structures from more basic constituents. As a result,
generators subsume several of the control structures found in traditional lan-
guages.

Facilities for programmable search and backtracking appear in several lan-
guages, especially languages intended for string processing [8] or AI applications
[2]. These goal-directed linguistic facilities tend to suffer from two contrasting
problems: They are either cumbersome to use, requiring considerable program-
ming overhead to set up and control the search strategy (as in CONNIVER [30,
37]), or too inaccessible, not allowing the programmer the ability to terminate,
prevent, or force the searching for alternatives (see, e.g., PLANNER [23]). Icon
generators avoid these problems. Backtracking associated with the production of
alternative values is limited in its extent by syntactic constructions. This limited
"scope" of generators avoids the inefficiency of uncontrolled backtracking and
gives the programmer more explicit control in the search for alternatives. This
latter capability is especially important in light of the observation that, in many
cases, backtracking is simply not needed [12, 25].

This paper describes the use of generators in Icon, concentrating on their use
in applications other than string processing, which is treated in [10]. Implemen-
tations of Icon for the DEC-10 and CDC Cyber have been operational since mid-
1978, and an implementation for the PDP-11 under UNIX has just been com-
pleted. In addition, Icon has been distributed to numerous installations elsewhere.
Thus, the generator facility presented in this paper is the product of over two
years of evaluation, and many of the design decisions have been based on
pragmatic considerations resulting from actual use.

2. OVERVIEW OF ICON

Icon is an expression-oriented language and has a syntax similar to that of
ALGOL 68 [38] and PASCAL [42]. Typical control structures include i f - then-
else and while. As in SL5, control structures are signal driven. Expressions
return a result, which is composed of a value and a signal. The value component
is used like ordinary values in other languages. The signal indicates success or
failure and is used to control the flow of execution. For example, the expression

whi le el do e2

repeatedly evaluates e2 as long as the evaluation of el succeeds. Note that the
value of e2 has no role in controlling the flow of execution.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

146 R.E. Griswold, D. R. Hanson, and J. T. Korb

Standard arithmetic and lexical comparisons signal success or failure as appro-
priate. For example,

i f x < y t h e n x : - : y

swaps the values of x and y if x is less than y.
Typical signal-driven control structures include

i f el t h e n e2 else e3

whi le el do e2

r epea t e

el [e2

The expression r epea t e repeatedly evaluates e until it fails. In the expression
e~te2, the expression e2 is evaluated only if the evaluation of el fails. The I
expression has a more important interpretation in the presence of generators and
is described in the next section.

Icon's type structure is similar to that of SNOBOL4 and SL5. There are a
number of built-in types and a record-definition facility. The type of a variable
may vary during execution, and type coercions are performed automatically as
required by context. A more complete overview of Icon is presented in [15].
Complete details are available in the Icon reference manual [13].

3. GENERATORS

Generators form the basis of the goal-directed facilities in Icon. Some typical
built-in generators produce an arithmetic sequence of integers, the positions of
particular characters in a string, or the elements of a data structure. These values
are produced one at a time as demanded by the expression in which the generator
appears.

3.1 Goal-Directed Evaluation

An expression containing generators represents a goal, and the success of such an
expression signifies that the goal was reached. Failure of an expression, on the
other hand, implies that the goal was not reached.

In the absence of failure, operations are evaluated in the standard order: left to
right and according to the precedence and associativity of the operators involved.
Generators that appear in an expression are evaluated, produce their first value,
and become dormant. A d o r m a n t g e n e r a t o r is an operation whose evaluation has
produced (at least) one value and which has the capacity to produce more, but
which is not presently being evaluated.

Failure of an operation initiates backtracking, in which dormant generators are
activated to produce alternate values. The ac t i va t ion of a dormant generator
transfers control to the point in the expression where that generator became
dormant. The generator produces a new value and evaluation continues from that
point.

The success or failure signal is used to control the order of evaluation. As long
as operations succeed, evaluation proceeds normally. If an operation fails, how-

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

Generators in Icon 147

ever, backtracking is begun in order to seek alternatives that may lead to
successful evaluation.

Backtracking occurs in the evaluation of operands of operators and in the
evaluation of arguments of functions. For example, in

el +e2

el is evaluated first. If it fails, the addition operation fails. If it succeeds, e2 is
evaluated. If e2 fails, however, the addition operation does not necessarily fail.
Instead, backtracking occurs and an alternative value of el is sought. If such an
alternative exists, e2 is evaluated again. Since the evaluation of e~ may affect e2
(by means of side effects), e2 may now succeed. If so, the addition is performed.

Note that only "control" backtracking is done; side effects, such as assignments,
are not reversed. This definition is less general than the classical meanings of
backtracking and nondeterminism [6, 9] but admits programming language facil-
ities that are easier to comprehend, more efficient, and simpler to implement than
typical facilities for full backtracking [3, 32].

In the case of a function call such as f(el, e2), if e2 fails, alternatives are sought
for e~. In fact, if e~ and e2 both succeed, but the function itself fails, alternatives
are sought for the arguments (first ee and, failing that, el). If any argument has
an alternative, the function is called again. If the function continues to fail, it is
called for all alternative values of the arguments. The overall expression fails only
if the function fails for all alternative values of the arguments. This method of
evaluation applies regardless of the number of arguments in the function call.

In the absence of dormant generators, failure of an operation terminates
evaluation of the expression in which it appears. More precisely, failure of an
operation causes control to be transferred to the next expression boundary.
Expression boundaries occur in two places: after expressions in control structures
and after expressions separated by semicolons. For example, in the expression
below boundaries are marked by arrows.

i f a < b < c t hen {x:= a; y : = c }

Similarly, in the three expressions

{el; e2; e3}

t

boundaries appear after each expression. Failure of e2, for instance, causes control
to be transferred to the expression boundary following e2. Evaluation then
continues with expression e3.

This handling of "undetected failure" is motivated by experience with Icon that
suggests it is simply more useful than, say, treating undetected failure as an error
as in SUMMER [25]. Many problems are composed of "segmented" goals in
which failure may be a normal result. Forcing such goals into success-oriented
molds limits flexibility and tends to negate the concise expression of intent. Errors
resulting from "unwanted failure" have proved to be infrequent in practice,
especially after the programmer learns to make use of undetected failure.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

148 R.E. Griswold, D. R. Hanson, and J. T. Korb

3.2 Buil t- In Generators

A simple generator is the alternation

el I e2

In this expression el is evaluated first. If el succeeds, its value is returned. If e~
fails, e2 is evaluated. If e2 succeeds, its value is returned; otherwise, the expression
fails. For example,

x f 5 1 x = 1 0

succeeds if x equals 5 or if x equals 10.
In addition to the usual meaning of alternation described above, alternation is

also a generator, generating the values of each of its arguments. If e~ succeeds,
the alternation expression becomes dormant. The alternation expression can be
activated to evaluate e2 if the expression in which it appears fails. Thus, the
expression above can be rewritten as

x = (5110)

After generating the first value, 5, the generator becomes dormant, and the value
5 is compared to x. If x equals 5, the expression succeeds. If not, the generator is
activated and produces the value 10, which is compared to x. If x equals 10, the
expression succeeds; otherwise it fails. In either event, evaluation then continues
with the next expression in sequence.

As another example, consider the expression

x < ((112) + y)

where x is 4 and y is 3. In this example, as in many others involving the alternation
generator, the expression 112 is usually read "one then two" rather than the more
conventional "one or two." The initial comparison of x to 4 (the sum of 1 and y)
fails. Backtracking causes the alternation to produce its second value, the com-
parison of x and 5 succeeds, and the expression terminates successfully.

The evaluation mechanism often permits the internalization of loops. An
example is the following expression, which is one way to determine whether n is
divisible by any of several small primes.

mod(n,p := 2131517111) = 0

If any of the primes divides n, the expression succeeds, and p is assigned the
divisor; otherwise, the expression fails. If the value of p is not needed, the
expression can be further simplified to

rood(n, 2131517111) = 0

While alternation provides a convenient way to generate a pair of values, a
sequence of values can be produced using the generator

e~ t o e2

which generates the arithmetic sequence of integers from e~ through e2, inclusive.
For example, the expression

5 t o 10
ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

Generators in Icon 149

generates the sequence 5, 6, 7, 8, 9, 10. An optional b y clause may be specified to
give an increment (or decrement) o ther than 1. For example,

100 to 1 b y - 1

generates the decreasing sequence of integers f rom 100 down to 1.
Another example is the expression

p(i := 1 to 5, j : = 1 t o 5)

which evaluates procedure p at differing values of i and j as long as p(i, j) fails.
T he value of j varies most frequently, yielding the sequence of calls p(1, 1),
p(1, 2) p(5, 5). The expression terminates successfully when p(i, j) succeeds
for some i and j . I fp(i , j) does not succeed, the expression fails after p has been
called with all combinations of i and j.

Generators can be used to index through the elements of an object. Th e
e lement generator

!e

generates the elements of object e. The value of e m ay be a structure, string, or
file. For example, if x and y are lists of numbers, the expression !x = !y succeeds
if the lists have any equal values. All the elements of y are generated and
compared to each e lement of x. The elements are generated and compared until
e i ther two equal values are found or all e lements have been generated.

If e is a string (or is convertible to a string), its characters are generated, one at
a time. Thus, the expression

! i > 5

succeeds if the integer i (after conversion to string) contains a digit greater
than 5.

Finally, if e is a file, !e generates the lines in tha t file. For example, the following
expression succeeds if string s appears in file f:

s - - = ! f

The operator = = succeeds if its operands are identical strings.
In addit ion to the alternation, sequence, and e lement generators, there are

several built-in generators for string analysis. In general, these functions perform
a simple lexical analysis of a string. As generators, they may produce al ternate
values. The built-in function find(s1, s2) re turns the position of the first occur-
rence of sl in s2, or fails if s2 does not contain the substring sl. For example,

find("ab", "abaabbaaabbbaaaabbbb")

re turns the value 1 initially. If the generator is act ivated for alternatives,
find(s~, s2) generates the next position of sl in s2. Repea ted activation of the
generator above produces the sequence 1, 4, 9, 16.

Another example is upto(c, s), which re turns the position of any character in
the character set c tha t appears in s. For example,

upto ("aeiou", "kaleidoscope")

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

150 R.E. Griswold, D. R. Hanson, and J. T. Korb

returns the value 2 initially. As a generator, upto(c, s) returns successive positions
of characters in c in s. The example above yields the sequence 2, 4, 5, 7, 10, 12.

In an expression containing several generators, each is invoked, produces a
value, and becomes dormant in the order determined by its position in the
expression. Failure initiates backtracking. Dormant generators are activated in a
last-in, first-out order: The generator that most recently became dormant is the
first one activated to produce an alternate value. If that generator has no
alternatives, the next dormant generator is activated. This process continues
until some generator produces a successful alternate or until no dormant gener-
ators remain in the expression. If a successful alternate is found, evaluation
continues from that point. Otherwise evaluation of the expression is terminated,
and control passes to the next expression boundary.

The interaction of generators is illustrated by the expression

x - - (l l 2) + (y l z)

which contains two generators, 112 and y lz. Assume the variables x, y, and z
have the values 6, 3, and 4, respectively. Evaluation causes x to be compared with
the sums 1 + y, 1 + z, 2 + y, and 2 + z, in that order, until the comparison
succeeds. In this example, the comparison succeeds on the last alternative, 2 + z.

Alternation operations can be combined to produce longer sequences of values.
For example,

5191214
produces the sequence 5, 9, 2, 4. Groups of alternations can be used to produce
complex comparisons. For example, the expression

(a lb lc) = (w l x l y l z)

compares the values of a, b, and c with those of w, x, y, and z. If any of the values
on the left is equal to any of the values on the right, the expression succeeds;
otherwise it fails.

As demonstrated by this latter example, alternation facilitates "cross-product"
processing; a is compared to w, x, y, and z, as are b and c. There is not, however,
a corresponding operation for "dot-product" processing. For example, there is no
similar construct for comparing a to x, b to y, and c to z. Some processing of this
kind can be done using additional operators proposed in [26].

The absence of such operators in the current version of Icon stems from the
observation that they are generally less useful than the alternation-style opera-
tors. For example, in string scanning, as in many problems, there is a single focus
of attention to which the current approach is ideally suited. Problems having
multiple foci of attention can be easily imagined, but their solutions often pose
additional complications beyond what can be handled by dot-product-style pro-
cessing. The situation is much like that for pipes as implemented in the UNIX
shell [34]. Pipes facilitate a linear array of processing and are applicable to only
those problems that "fit" the model. The models underlying Icon and UNIX are
derived from experience and have evolved to meet specific needs but are not so
orthogonal and complete as might be desired on intellectual grounds. Current
research is directed toward orthogonality and is focusing on the use of multiple
independent generators to support dot-product-style processing.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

Generators in Icon 151

3.3 Controlling Generators

Icon provides several constructs to control the evaluation of generators. These
constructs can be used, for example, to suppress alternatives of a generator and
to force a generator through all alternatives.

An important aspect of controlling generators is the ability to discard remaining
alternatives if they are not needed. Dormant generators are discarded when the
boundary of the expression in which they appear is crossed. In this way, generators
whose values are no longer relevant are not activated in a futile attempt to make
another, unrelated expression succeed. In addition, the space required for infor-
mation associated with dormant generators is released.

The following expression sequence provides an example.

x := up to ("ae iou" , sl); y := f i nd ("be g in" , s2)

The first expression returns the position of the first vowel in s~ (if one exists).
The second expression finds an occurrence of the string "begin" in string s2. The
two expressions are independent; if the second expression fails, remaining alter-
natives in the first are not tried. In fact, once evaluation has passed through the
boundary between the two expressions, the dormant upto generator is discarded;
its alternatives are no longer accessible.

Because control structures form boundaries after their arguments, they can
also be used to control the activation of generators. For example,

i f x := up to ("ae iou" , s l) t hen y := f i nd ("beg in" , s2)

is similar to the example above, except that the second expression is only
evaluated if the tes t expression succeeds. As in the previous example, the two
expressions are otherwise isolated from one another and cannot interact.

The eve ry expression is used to force a generator to produce all its alternatives.
The expression

eve ry el do e2

evaluates e~ and repeatedly reactivates it until all of its alternatives are produced.
After each alternative of el, the expression e2 is evaluated. For example, if s u m is
initialized to zero, the expression

eve ry i := !x do s u m := s u m + i

finds the sum of the elements of list x. Note that, by using the element generator
! instead of explicit indexing, this expression is independent of not only the size of
x but also the type of x.

The eve ry expression, in conjunction with generators, provides a facility for
composing conventional as well as unconventional control structures from more
basic units. By using the to generator, the equivalent of the ALGOL for statement
can be obtained. For example, the expression

eve ry i := 1 to 100 do y[i] := x[i]

copies the first 100 elements of list x into list y.
As another example, if x is a list of 100 elements, the expression

eve ry i := (1 to 10) 1{91 to 100) do wr i t e (x [i])

writes the first and last ten elements of x.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

152 R.E. Griswold, D. R. Hanson, and J. T. Korb

The e v e r y expression is more concise than the s tandard ALGOL f o r loop in
certain applications. The for- loop control variable is often just an art ifact tha t
can be omitted. For example, the expression

e v e r y 1 to 30 d o f ()

invokes the procedure f th i r ty times.
The do clause is optional and can often be omitted, allowing even more concise

expressions. For instance, auxiliary variables tha t are needed in o ther languages
to hold t ransi tory values (such as list indexes) are not always needed in Icon. Th e
above example, which writes the first and last ten elements of list x, can be
rewri t ten as

e v e r y write(x[(1 t o 10)[(91 to 100)])

Since the e lement generator generates the elements of a s t ructure as variables,
e v e r y can be used to zero the elements of a structure. For example,

e v e r y !x :-- 0

zeros the elements of x, and

e v e r y sum := sum + !x

computes their sum.

3.4 Programmer-Defined Generators

Icon procedures have the general form

procedure n a m e (a r g l , . . . , argn)
declaration
body

end

A typical procedure is

p rocedure sum(x)
local s, i
S : _ - - 0 ~

every i := !x do s := s + i
if s >= 0 then r e tu rn s
fail

end

which re turns the sum of the elements of a s t ructure if the sum is positive and
fails otherwise. As i l lustrated by this example, procedures re turn values via the
expression r e t u r n e. If e fails, the procedure invocation fails. T h e fa i l expression
is similar to r e t u r n in tha t it te rminates the invocation, bu t it causes the calling
expression to fail. Arguments to procedures are t ransmi t ted by value.

T h e r e t u r n and fa i l expressions cause terminat ion of the procedure act ivat ion
in which they are executed. T h e expression

s u s p e n d e

is similar to r e t u r n e, except tha t the procedure act ivat ion is left in suspension
so tha t it may be resumed for addit ional computat ion. Execut ion of the procedure
body is resumed at the point of suspension if the context in which the procedure

ACM Transact ions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

Generators in Icon 153

invocation occurs requires another alternative. Thus, suspended procedures are
dormant generators. The result of the suspend expression itself is the null value.

As a simple example, the following procedure behaves like the built-in t o - b y
generator with a positive increment.

procedure toby(i, n, inc)
if inc = 0 then inc := 1
while i <= n do {

suspend i
i := i + inc
}

fail
end

The procedure suspends evaluation for each value in the sequence and fails after
the sequence is exhausted.

Procedures may, of course, suspend in more than one place. For example, the
following procedure generates the (infinite) sequence of Fibonacci numbers.

procedure fib
local ul, u2, f, i
suspend 111
Ul : ~ U2 :~- 1
repeat {

f : ~ Ul -}- U2
suspend f
Ul :'~- U2

U2 :-- f
}

end

The first two values of the sequence, 1 and 1, are treated as special cases in the
first suspend expression. Subsequent values of the sequence are computed, and
the procedure is suspended in the middle of the r epea t loop after each compu-
tation. The following expression repeatedly assigns values of the Fibonacci
sequence to f until a value divisible by n is found.

rnod(f := f i b () , n) = 0

Like every, suspend e produces all alternatives of e as required. For example,

suspend 1 [2[5

suspends with the values 1, 2, and 5 on successive activations of the procedure in
which it appears. If the procedure is activated again, execution continues with
the expression following the suspend.

Programmer-defined generators are fully recursive and behave exactly like
built-in generators. For example, multiple activaions of defined generators that
are suspended simultaneously do not interfere with each other.

4. EXAMPLES

4.1 Word Intersect ion

In completing crossword puzzles it is necessary to determine the intersections at
which two words have characters in common [40]. This is an example in which
all possible situations in a search must be processed. The following procedures

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

154 R .E . Griswold, D. R. Hanson, and J. T. Korb

demonst ra te the use of generators to print all intersections of common characters
in two words.

p rocedure cross(word l, word2)
local j, k
eve ry j := upto(word2, wordl) do

every k := upto(wordl[j], word2) do
print(wordl, word2, j, k)

r e tu rn
end

p rocedure print(word 1, word2, j, k)
every write(right(word2[1 to k - 1], j))
write(word1)
every write(right(word2[k + 1 to size(word2)], j))
r e tu rn

end

The procedure cross first assigns to j a position in word1 at which a charac ter
of word2 is found. For this value of j , a position in word2 where the j t h character
of word I occurs is then assigned to k (subscripting a string re turns the character
at the position given by the value of the subscript). T h e procedure print merely
prints the intersection, with word1 being displayed horizontal ly and word2 being
displayed vertically (right(s, n) re turns the result of right-justifying s in a string
of n blanks). The uses of e v e r y ensure tha t all intersections are located.

As an example,

cross("computer", "center")

produces the following output .

c o m p u t e r c c c c

e e c o m p u t e r e e

n n n n n

t c o m p u t e r t t t

e e e c o m p u t e r e

r r r r c o m p u t e r

4 . 2 W o r d G e n e r a t i o n

The procedure ge tword(f) generates the words tha t appear in file f. A word is
defined to be any sequence of lowercase letters.

p rocedure getword(f)
local i, line
while line := read(f) do (

i : = 1
whi le i := upto("abc . . . z", line, i) do

suspend section(line, i, i := many("abc . . . z", line, i))
}

fail
end

The procedure section(s, i, j) re turns the section of string s between positions
i and j ; the third a rgument to upto specifies the position in s at which to begin

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

Generators in Icon 155

examination; and many(c, s, i) returns the position in string s beginning at
position i that follows an initial substring of characters in c.

One use of such a procedure is illustrated by counting the words in a file. The
expression

f tab := table(0)

assigns an empty table to ftab; tables are associative arrays as in SNOBOIA. The
expression

eve ry f lab[getword(f)]+

builds a table containing the count of each word appearing in f. The suffix +
operator increments its operand by 1. Finally,

every x := !ftab do write(x[2], " ", x[1])

prints the table. (Sequencing through a table returns each entry as a two-element
list. The first element is the "index" and the second is the associated value.)

4.3 Data Structure Traversal

Generators can also be used to generate the elements of a user-defined data
structure. Below are two procedures that generate the nodes of a binary tree.
Nodes of the tree are represented using records with three fields:

record node
data, ltree, rtree

end

The data field contains the value of the node. The fields ltree and rtree refer
to the left and right subtrees, respectively, and may have null values. The built-
in function null(x) succeeds if x has the null value and is used to test for leaf
nodes.

The procedure walk(t) , which follows, generates the data fields of all the nodes
in tree t. The nodes are generated in postorder; that is, the left and right subtrees
of a node are generated, followed by the node itself. The infLx dot accesses the
fields of a record as in PASCAL [42].

procedure walk(t)
if null(t) then

fail
else {

suspend walk(t.ltree I t.rtree)
return t.data
}

end

The suspend expression suspends with each of the values generated by walking
the left subtree and then with each of the values generated by walking the right
subtree. The r e t u r n expression produces the value of the root node.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

156 • R.E. Griswold, D. R. Hanson, and J. T. Korb

The procedure l e a v e s (t) below generates only the leaves of the binary tree t.
The leaves are generated by walking the tree in postorder.

procedure leaves(t)
if null(t) then

fail
else if null(t . l tree = = = t.rtree) then

return t .data
else {

suspend leaves(t.ltree I t.rtree)
fail
}

end

The = = = operator denotes object comparison much like IDENT in SNOBOIA.
As for all comparison operators, if the comparison succeeds, the right operand is
returned.

4.4 Data Backt rack ing with Generators

As mentioned above, the backtracking in Icon is limited to control backtracking.
There are, however, several built-in operators that provide a limited form of data
backtracking. Note, however, that the control backtracking is implicit in Icon's
evaluation mechanism, whereas data backtracking must be explicitly specified by
the programmer by the use of an operator.

The most useful of the data backtracking operators is reversible assignment:

e l <--- e2

The value of e2 is assigned to el and the assignment operator becomes dormant.
If activated for alternatives, the previous value of el is restored and the expression
fails. For example, suppose a program is to read a parameter from the input file
and assign the value to a global variable. If the line is of zero length, a default
value, which was assigned earlier, is to be retained. The expression

s i z e (p a r a m ~ r e a d ()) ~ = 0

assigns the next input line to the variable p a r a m . If the line is empty, the
assignment is reversed and the original (default) value is retained. The use of
reversible assignment obviates the use of a temporary variable.

Although Icon provides only limited backtracking, more elaborate backtracking
facilities can be constructed using programmer-defined generators. An example
is the eight queens problem [5, 6, 9]. The object is to place eight queens on a
chess board such that no queen may attack any other. The standard method of
solving this problem uses a recursive procedure to place queens on successive
rows, backtracking to a previous position if a row becomes blocked [41].

An alternate solution, using coroutines, eliminates the awkward hierarchical
relationship among the queens and allows the main program to control the
backtracking [19]. Each coroutine is still responsible for reversing the effects it
causes, but the main program determines when that is to be done.
ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

Generators in Icon 157

The following procedure is similar to the solution in [19] but is further simplified
by the use of generators.

procedure q(c)
local r
every place(r :--- i to 8, c) do

suspend r
fail

end

The value returned by q(c) is the row on which queen c was placed. The
expression

wri te (q(1) , q(2), q(3), q(4), q(5), q(6), q(7), q(8))

generates and writes the first solution

15863724

(multiple arguments to w r i t e are concatenated onto the output file); inserting
this expression in an eve ry expression produces all 92 solutions. The procedure
p l a c e is a generator that tests and occupies the sequence of available board
positions for a given queen:

procedure place(r, c)
if row[r] = up[r - c] = down[r + c] -- 0 then

suspend rows[r] ~ up[r - c] *-- down[r + c] ~-- 1
fail

end

Following [41], three lists are used to keep track of the free rows, upward facing
diagonals, and downward facing diagonals. If the square at row r and column c is
free, then each of the list elements rows[r], up[r - c], and d o w n [r + c] is 0;
otherwise, at least one is 1. The suspend expression initially assigns a nonnull
value (the integer 1) to each of the three list elements and suspends. I f p l a c e is
activated, the suspend expression activates the dormant reversible assignment
operations, which restore the three list elements to 0. After restoring the variable,
the reversible assignment operation fails and the procedure fails.

5. RELATED WORK

The concept of generators has appeared in various forms in many languages. An
early language that has generators is IPL-V [31], in which a generator is a
subroutine that calls a processing routine to operate on each object in a data
structure. Other languages, such as ALGOL 68 [38] and COBOL, use the term
generator to describe various language features, but this use is unrelated to the
Icon notion.

Languages that support coroutines frequently use the term generator to de-
scribe a particular coroutine usage. SIMULA [1] is the oldest of such languages;
more recent examples include extensions to POP-2 [24] and SL5 [20] and
coroutine additions to PASCAL [27]. There also has been a substantial amount
of work on the "lazy evaluation" approach to the incremental generation of
sequences, usually in LISP or APL frameworks [7, 17, 22].

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

158 R.E. Griswold, D. R. Hanson, and J. T. Korb

More recently, ALPHARD [43] and CLU [28] have been developed to support
data structure abstraction. In these languages generators are used to iterate over
the elements of programmer-defined data structures [35]. Included with the
definition of a data abstraction (or "cluster" in CLU) is a procedure for generating
the elements of the abstraction. In CLU, this procedure, called an iterator,
produces its values using the yie ld statement. When another element is required,
execution of the iterator continues where the y ie ld statement left off. In each of
these languages, generators are only accessible in a specific context: a particular
type of for statement. This is significantly more restricted than in Icon, where
generators may appear anywhere.

Superficially, generators in ALPHARD and CLU appear to correspond to the
e v e r y expression in Icon. But while e v e r y has the syntactic appearance of a
standard control structure, the nonstandard goal-directed evaluation mechanism
makes its semantics more general than the corresponding ALPHARD and CLU
constructs. It is the restricted applicability and the lack of goal-directed evaluation
that differentiate these constructs from generators in Icon.

Backtracking mechanisms exist in a number of programming languages. Lan-
guages intended for research in artificial intelligence typically include such
facilities [2]. Backtracking is also used for solving string processing problems [8].

Most artificial intelligence languages deal with lists and are usually based on
the syntax of LISP [29]. PLANNER [23] and PROLOG [4, 39], which use
theorem-proving techniques for AI research, provide pattern-directed procedure
invocation. In PROLOG, for example, the theorem to be proved is used to select
the procedures to invoke. Associated with each procedure is a template that
defines the effect of the procedure. The theorem is compared to each template,
and those procedures that match are selected. If only one exists, it is invoked. If
more than one procedure matches, a choice is made and the selected procedure
is invoked. If that procedure fails to prove the theorem, the system backtracks
and a different procedure is invoked. PROLOG also has a mechanism, the cut
determiner, that is analogous to expression boundaries in Icon and gives the
programmer some control over the extent of backtracking. Another example is
CONNIVER [30], which is based on PLANNER and gives the programmer
greater control over the search strategy.

SAIL [33] is an ALGOL-based artificial intelligence language that supports
backtracking. The backtracking facilities include primitives to REMEMBER,
FORGET, and RESTORE variables in different contexts. Like CONNIVER,
SAIL requires explicit manipulation of variables by the programmer to effect a
backtracking control regime.

6. CONCLUSIONS

Generators provide a linguistic facility that allows concise expression of solutions
to problems suitable for goal-directed programming. These problems are typically
found in string processing, artificial intelligence, and other areas in which com-
binatorial searching is performed. Experience with Icon has demonstrated its
utility in string processing and in problems involving simple combinatorial
searches. Problems related to artificial intelligence research have not yet been
studied.
ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

Generators in Icon 159

The significant contr ibut ion of Icon is the development of unified linguistic
facilities in which goal-directed evaluation is an integral part. In o ther languages
support ing goal-directed programming, for example, MLISP2 [36] and ECL [32],
the facilities are not so well integrated into the language. For example, these
languages contain special s ta tements for marking decision points and initiating
backtracking. In Icon, generators are expressions and can be used anywhere a
value is required. The manipulat ion and activation of generators are integrated
using the control s t ructures and signaling mechanism of the language.

Another advantage of generators s tems from their use in constructs tha t are
not usually considered related to goal-directed programming. For example, the
e v e r y expression forces all al ternatives of generators to be evaluated, not just
the ones needed to reach a goal. When used with the al ternat ion and t o
generators, e v e r y subsumes the less general f o r s ta tement found in o ther
languages. In addition, generators can be used to build more complex control
s t ructures from simpler ones. This construct ion is especially evident in the use of
programmer-def ined generators to augment the repertoire of built-in generators.

Some of the inherent inefficiencies of goaldirected facilities in o ther languages
are el iminated by avoiding automat ic backtracking and by limiting the scope of
generators. Experience has shown tha t backtracking often is not necessary, tha t
it can be the source of hidden inefficiencies, and tha t it often hinders the solution
of a problem by destroying information.

The scope of generators is limited to the expression in which they appear. Since
expressions may be arbitrari ly complex, this places no restrictions on the pro-
grammer, but it allows unwanted al ternatives of dormant generators to be
explicitly discarded. Limiting the scope of generators not only prevents unwanted
activation, but it also permits the space associated with them to be released. Once
an expression boundary is crossed, the space occupied by dormant generators for
tha t expression is no longer needed. Finally, generators have little impact on the
efficiency of o ther language operations; very little overhead associated with
generators is imposed on expressions tha t do not contain generators. The imple-
menta t ion of generators is described more fully in [21, 26].

REFERENCES
1. BIRTWISTLE, G.M., DAHL, O.-J., MYHRHAUG, B., AND NYGAARD, K. SIMULA Begin (Student

Literature). Auerbach, Philadelphia, 1973.
2. BOBROW, D.G., AND RAPHAEL, B. New programming languages for artificial intelligence re-

search. Comput. Surv. (ACM) 6, 3 (Sept. 1974}, 153-174.
3. BOBROw, D.G.,ANDWEGBREIT, B. Amodelandstackimplementationofmultipleenvironments.

Commun. ACM 16, 10 (Oct. 1973), 591-603.
4. BOWEN, K.A. PROLOG. In Proc. 1979Ann Conf. (Detroit, Mich., Oct. 29-31, 1979), ACM, New

York, pp. 14-23.
5. DAHL, O.-J., DIJKSTRA, E.W., AND HOARE, C.A.R. Structured Programming. Academic Press,

London, 1972, pp. 72-62.
6. FLOYD, R.W. Nondeterministic algorithms. J. ACM 14, 4 (Oct. 1967), 636-644.
7. FRIEDMAN, D.P., AND WISE, D.S. CONS should not evaluate its arguments. In Automata,

Languages, and Programming, S. Michaelson and R. Milner, Eds., Edinburgh Univ. Press,
Edinburgh, 1976, pp. 257-284.

8. GIMPEL, J.F. Algorithms in SNOBOL4. Wiley, New York, 1976.
9. GOLOMB, S.W., AND BAUMERT, L.D. Backtrack programming. J. ACM 12, 4 (Oct. 1965), 516-

524.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

160 R.E. Griswold, D. R. Hanson, and J. T. Korb

10. GRISWOLD R.E. The Icon programming language: A new approach to high-level string process-
ing. In Proc. 1979Ann. Conf. (Detroit, Mich., Oct. 29-31, 1979), ACM, New York, pp. 8-13.

11. GRISWOLD R.E. The SL5 programming language and its use for goal-directed programming. In
Proc. 5th Texas Conf. on Computer Systems, Univ. Texas, Austin, Oct. 1976.

12. GRISWOLD R.E., AND HANSON, D.R. An alternative to the use of patterns in string processing.
ACM Trans. Program. Lang. Syst. 2, 2 (April 1980), 153-172.

13. GRISWOLD R.E., AND HANSON, D.R. Reference manual for the Icon programming language.
Tech. Rep. TR 79-1a, Dep. Computer Science, Univ. Arizona, Tucson, Feb. 1980.

14. GRISWOLD R.E., AND HANSON, D.R. An overview of SL5. SIGPLAN Notices (ACM) 12, 4
(April 1977), 40-50.

15. GRISWOLD R.E., HANSON, D.R., AND KORB, J.T. The Icon programming language: An overview.
SIGPLAN Notices (ACM) 14, 4 (April 1979), 18-31.

16. GRISWOLD R.E., POAGE, J.F., AND POLONSKY, I.P. The SNOBOL4 Programming Language,
2d ed. Prentice-Hall, Englewood Cliffs, N.J., 1971.

17. GUIBAS, L.J., AND WYATT, D.K. Compilation and delayed evaluation in APL. In Conf. Rec., 5th
Ann. ACM Syrup. on Principles of Programming Languages, Tucson, Ariz., Jan. 23-25, 1978, pp.
1-8.

18. HANSON, D.R. Procedure-based linguistic mechanisms in programming languages. Ph.D. disser-
tation, Dep. Computer Science, Univ. Arizona, Tucson, 1976.

19. HANSON, D.R. A procedure mechanism for backtrack programming. In ACM "76: Proc. Ann.
Conf., Houston, Tex., Oct. 20-22, 1976, pp. 401-405.

20. HANSON, D.R., AND GRISWOLD, R.E. The SL5 procedure mechanism. Commun. ACM 21, 5
(May 1978), 392-400.

21. HANSON, D.R., AND HANSEN, W.J. Icon implementation notes. Tech. Rep. TR79-12a, Dep.
Computer Science, Univ. Arizona, Feb. 1980.

22. HENDERSON, P., AND MORRIS, J.H. JR. A lazy evaluator. In Conf. Rec., 3d ACM Symp. on
Principles of Programming Languages, Atlanta, Ga., Jan. 19-21, 1976, pp. 95-103.

23. HEWITT, C. PLANNER: A language for manipulating models and proving theorems in a robot.
In Proc. 2d Int'l Joint Conf. on Artificial Intelligence, London, 1971, pp. 167-182.

24. KAHN, G., AND McQUEEN, D.B. Coroutines and networks of parallel processes. In Proc. IFIPS
77, 1977, pp. 993-998.

25. KLINT, P. An overview of the SUMMER programming language. In Conf. Rec., 7th Aim. ACM
Symp. on Principles of Programming Languages, Las Vegas, Nev., Jan. 28-30, 1980, pp. 47-55.

26. KORB, J.T. The design and implementation of a goal-directed programming language. Ph.D.
dissertation, Univ. Arizona, Tucson, 1979.

27. LINDSTROM, G. Backtracking in a generalized control setting. ACM Trans. Program. Lang.
Syst. 1, 1 (July 1979), 8-26.

28. LISKOV, B., SNYDER, A., ATKINSON, R., AND SCHAFFERT, C. Abstraction mechanisms in CLU.
Commun. ACM 20, 8 (Aug. 1977), 564-576.

29. MCCARTHY, J., ABRAHAMS, P., EDWARDS, D., HART, T., AND LEVIN, M. LISP 1.5 Programmer's
Manual, 2d ed. MIT Press, Cambridge, Mass., Feb. 1965.

30. McDERMOTT, D.V., AND SUSSMAN, G.J. The CONNIVER reference manual. AI Lab. Memo 259,
MIT, Cambridge, Mass., 1972.

31. NP.WELL, A. (ED.) Information Processing Language- V Manual, Rand Corp., Prentice-Hall,
Englewood Cliffs, N.J., 1961.

32. PRENNER, C.J., SPITZEN, J.M., AND WEGBREIT, B. An implementation of backtracking for
programming languages. SIGPLAN Notices (ACM) 7 (Nov. 1972), 36-44.

33. REINS.R, J.F. SAIL. Tech. Rep., Stanford AI Lab., Computer Science Dep., Aug. 1976.
34. RITCHIE, D.M., AND THOMPSON, K. The UNIX timesharing system. Commun. ACM 17, 16 (July

1974), 365-375.
35. SHAW, M., WULF, W.A., AND LONDON, R.L. Abstraction and verification in Alphard: Defining

and specifying iteration and generators. Commun. ACM 20, 8 (Aug. 1977), 553-564.
36. SMITH, D.C., AND ENEA, H.J. Backtracking in MLISP2. In Proc. 3d Int'l Joint Conf. on AI,

Stanford, Calif., 1973, pp. 677-685.
37. SUSSMAN, G.J., AND MCDERMOTT, D.V. From PLANNER to CONNIVER--A genetic approach.

In Proc. AFIPS 1972 Fall Joint Computer Conf., vol. 41, AFIPS Press, Arlington, Va., 1972, pp.
1171-1179.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

Generators in Icon 161

38. VAN WIJNGAARDEN, A., MAILLOUX, B.J., PECK, J.E.L., KOSTER, C.H.A., SINTZOFF, M., LINDSEY,
C.H., MEERTENS, L.G.L.T., AND FISKER, R.G. (Eds.). Revised report on the algorithmic language
Algol 68. Acta Inf. 5 (Jan. 1976), 1-236.

39. WARREN, D.H.D., PEREIRA, L.M., AND PEREIRA, F. PROLOG--The language and its imple-
mentat ion compared with LISP. In Proc. Syrup. on Artificial Intelligence and Programming
Languages, Rochester, N.Y., Aug. 1977, pp. 109-115.

40. WETHERELL, C. Etudes for Programmers. Prentice-Hall, Englewood Cliffs, N.J., 1978.
41. WIRTH, N. Algorithms + Data Structures = Programs. Prentice-Hall, Englewood Cliffs, N.J.,

1976.
42. WIRTH, N. The programming language Pascal. Acta Inf. 1 (Jan. 1971), 35-63.
43. WULF, W.A., LONDON, R.L., AND SHAW, M. An introduction to the construction and verification

of Alphard programs. I E E E Trans. Softw. Eng. SE-2, 4 (Dec. 1976), 253-265.

Received May 1979; revised June and November 1980; accepted November 1980

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

