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Icon is a new programming language that includes a goal-directed expression evaluation mechanism. 
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1. INTRODUCTION 

I c o n  is a n e w  p r o g r a m m i n g  l a n g u a g e  i n t e n d e d  for  n o n n u m e r i c a l  a p p l i c a t i o n s  w i t h  
a n  e m p h a s i s  on  s t r i ng  a n d  s t r u c t u r e  p rocess ing .  I con  h a s  i t s  r o o t s  in  S N O B O I A  

[16] a n d  SL5  [11, 14, 18-20].  I t  s h a r e s  m a n y  o f  t h e  p h i l o s o p h i c a l  b a s e s  of  t h e s e  
l anguages :  concise ,  exp re s s ive  f ea tu re s ,  r u n - t i m e  f lex ib i l i ty ,  s u p p o r t  of  u n t y p e d  
i den t i f i e r s  a n d  h e t e r o g e n e o u s  s t r u c t u r e s ,  a n d  a u t o m a t i c  t y p e  convers ions .  I c o n  
l a c k s  s o m e  of  t h e  exo t i c  f e a t u r e s  o f  b o t h  S N O B O I A  a n d  SL5; in  o r d e r  to  p r o v i d e  
g r e a t e r  e f f ic iency  in t h e  m o s t  f r e q u e n t l y  u s e d  o p e r a t i o n s ,  I c o n  r e s t r i c t s  r u n - t i m e  
f lex ib i l i ty .  I n  t h i s  sense ,  I c o n  fo l lows t h e  m o r e  t r a d i t i o n a l  m e t h o d  o f  b i n d i n g  
m a n y  l a n g u a g e  o p e r a t i o n s  a t  c o m p i l e  t ime .  

One  of  t h e  m a j o r  m o t i v a t i o n s  for  I c o n  is t h e  c o n t i n u i n g  e f for t  to  p r o v i d e  b e t t e r  
s t r ing  m a n i p u l a t i o n  fac i l i t ies .  A c o m p l e t e  d i s cus s ion  of  t h e  i s sues  i n v o l v e d  in  th i s  
e f for t  is  g iven  in  [12]. B r i e f ly  s t a t e d ,  t h e  m a j o r  i s sue  is t h a t ,  in  m o s t  l anguages ,  
s t r ing  m a n i p u l a t i o n  fac i l i t i es  c o n s t i t u t e  a s e p a r a t e  s u b l a n g u a g e ,  a n d  i n t e r a c t i o n  
b e t w e e n  t h e  s u b l a n g u a g e  a n d  t h e  l a n g u a g e  p r o p e r  is a w k w a r d  a t  bes t .  I n  add i t i on ,  
if  t h e  fac i l i t i es  i nc lude  a s e a r c h  a n d  b a c k t r a c k  m e c h a n i s m ,  i t s  use  is u s u a l l y  
r e s t r i c t e d  to  t h e  s u b l a n g u a g e ,  a n d  t h e  p r o g r a m m e r  t y p i c a l l y  h a s  l i t t l e  c o n t r o l  
ove r  i t s  o p e r a t i o n .  

One  o f  t h e  m a j o r  d i f f e rences  b e t w e e n  I con  a n d  p r e v i o u s  w o r k  is t h a t  t h e  
e v a l u a t i o n  m e c h a n i s m ,  w h i c h  i n c l u d e s  a l i m i t e d  f o r m  of  b a c k t r a c k i n g ,  is n o t  
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restricted to the string processing facility but is used everywhere. Unlike SNO- 
BOIA, for example, the string processing facilities can be thought of as a natural 
consequence of the evaluation mechanism. The central concept in the Icon 
evaluation mechanism is the generator. A generator is an expression that is 
capable of producing a sequence of values. The first value is produced when the 
generator is evaluated during ordinary computation. Subsequent values are 
produced when alternatives are requested. The production of these alternate 
values is under the control of the programmer, much as the programmer controls 
ordinary iterative or conditional control structures. It is this integration of 
generator control with evaluative control that gives Icon its flexibility and power 
and permits concise, natural solutions to typical search and backtrack problems. 
Perhaps more important, generators facilitate the composition of conventional 
and unconventional control structures from more basic constituents. As a result, 
generators subsume several of the control structures found in traditional lan- 
guages. 

Facilities for programmable search and backtracking appear in several lan- 
guages, especially languages intended for string processing [8] or AI applications 
[2]. These goal-directed linguistic facilities tend to suffer from two contrasting 
problems: They are either cumbersome to use, requiring considerable program- 
ming overhead to set up and control the search strategy (as in CONNIVER [30, 
37]), or too inaccessible, not allowing the programmer the ability to terminate, 
prevent, or force the searching for alternatives (see, e.g., PLANNER [23]). Icon 
generators avoid these problems. Backtracking associated with the production of 
alternative values is limited in its extent by syntactic constructions. This limited 
"scope" of generators avoids the inefficiency of uncontrolled backtracking and 
gives the programmer more explicit control in the search for alternatives. This 
latter capability is especially important in light of the observation that, in many 
cases, backtracking is simply not needed [12, 25]. 

This paper describes the use of generators in Icon, concentrating on their use 
in applications other than string processing, which is treated in [10]. Implemen- 
tations of Icon for the DEC-10 and CDC Cyber have been operational since mid- 
1978, and an implementation for the PDP-11 under UNIX has just been com- 
pleted. In addition, Icon has been distributed to numerous installations elsewhere. 
Thus, the generator facility presented in this paper is the product of over two 
years of evaluation, and many of the design decisions have been based on 
pragmatic considerations resulting from actual use. 

2. OVERVIEW OF ICON 

Icon is an expression-oriented language and has a syntax similar to that of 
ALGOL 68 [38] and PASCAL [42]. Typical control structures include i f - then-  
else and while.  As in SL5, control structures are signal driven. Expressions 
return a result, which is composed of a value and a signal. The value component 
is used like ordinary values in other languages. The signal indicates success or 
failure and is used to control the flow of execution. For example, the expression 

whi le  el do e2 

repeatedly evaluates e2 as long as the evaluation of el succeeds. Note that  the 
value of e2 has no role in controlling the flow of execution. 
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Standard arithmetic and lexical comparisons signal success or failure as appro- 
priate. For example, 

i f  x < y t h e n  x : - : y  

swaps the values of x and y if x is less than y. 
Typical signal-driven control structures include 

i f  el t h e n  e2 else e3 

whi le  el do e2 

r epea t  e 

el [ e2 

The expression r epea t  e repeatedly evaluates e until it fails. In the expression 
e~te2, the expression e2 is evaluated only if the evaluation of el fails. The I 
expression has a more important interpretation in the presence of generators and 
is described in the next section. 

Icon's type structure is similar to that  of SNOBOL4 and SL5. There are a 
number of built-in types and a record-definition facility. The type of a variable 
may vary during execution, and type coercions are performed automatically as 
required by context. A more complete overview of Icon is presented in [15]. 
Complete details are available in the Icon reference manual [13]. 

3. GENERATORS 

Generators form the basis of the goal-directed facilities in Icon. Some typical 
built-in generators produce an arithmetic sequence of integers, the positions of 
particular characters in a string, or the elements of a data structure. These values 
are produced one at a time as demanded by the expression in which the generator 
appears. 

3.1 Goal-Directed Evaluation 

An expression containing generators represents a goal, and the success of such an 
expression signifies that  the goal was reached. Failure of an expression, on the 
other hand, implies that  the goal was not reached. 

In the absence of failure, operations are evaluated in the standard order: left to 
right and according to the precedence and associativity of the operators involved. 
Generators that  appear in an expression are evaluated, produce their first value, 
and become dormant. A d o r m a n t  g e n e r a t o r  is an operation whose evaluation has 
produced (at least) one value and which has the capacity to produce more, but 
which is not presently being evaluated. 

Failure of an operation initiates backtracking, in which dormant generators are 
activated to produce alternate values. The ac t i va t ion  of a dormant generator 
transfers control to the point in the expression where that  generator became 
dormant. The generator produces a new value and evaluation continues from that  
point. 

The success or failure signal is used to control the order of evaluation. As long 
as operations succeed, evaluation proceeds normally. If an operation fails, how- 
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ever, backtracking is begun in order to seek alternatives that may lead to 
successful evaluation. 

Backtracking occurs in the evaluation of operands of operators and in the 
evaluation of arguments of functions. For example, in 

el +e2 

el is evaluated first. If it fails, the addition operation fails. If it succeeds, e2 is 
evaluated. If e2 fails, however, the addition operation does not necessarily fail. 
Instead, backtracking occurs and an alternative value of el is sought. If such an 
alternative exists, e2 is evaluated again. Since the evaluation of e~ may affect e2 
(by means of side effects), e2 may now succeed. If so, the addition is performed. 

Note that only "control" backtracking is done; side effects, such as assignments, 
are not reversed. This definition is less general than the classical meanings of 
backtracking and nondeterminism [6, 9] but admits programming language facil- 
ities that are easier to comprehend, more efficient, and simpler to implement than 
typical facilities for full backtracking [3, 32]. 

In the case of a function call such as f(el, e2), if e2 fails, alternatives are sought 
for e~. In fact, if e~ and e2 both succeed, but the function itself fails, alternatives 
are sought for the arguments (first ee and, failing that, el). If any argument has 
an alternative, the function is called again. If the function continues to fail, it is 
called for all alternative values of the arguments. The overall expression fails only 
if the function fails for all alternative values of the arguments. This method of 
evaluation applies regardless of the number of arguments in the function call. 

In the absence of dormant generators, failure of an operation terminates 
evaluation of the expression in which it appears. More precisely, failure of an 
operation causes control to be transferred to the next expression boundary. 
Expression boundaries occur in two places: after expressions in control structures 
and after expressions separated by semicolons. For example, in the expression 
below boundaries are marked by arrows. 

i f  a <  b < c  t hen  {x:= a; y : = c }  

Similarly, in the three expressions 

{el; e2; e3} 

t 

boundaries appear after each expression. Failure of e2, for instance, causes control 
to be transferred to the expression boundary following e2. Evaluation then 
continues with expression e3. 

This handling of "undetected failure" is motivated by experience with Icon that 
suggests it is simply more useful than, say, treating undetected failure as an error 
as in SUMMER [25]. Many problems are composed of "segmented" goals in 
which failure may be a normal result. Forcing such goals into success-oriented 
molds limits flexibility and tends to negate the concise expression of intent. Errors 
resulting from "unwanted failure" have proved to be infrequent in practice, 
especially after the programmer learns to make use of undetected failure. 
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3.2 Buil t- In Generators 

A simple generator is the alternation 

el I e2 

In this expression el is evaluated first. If el succeeds, its value is returned. If e~ 
fails, e2 is evaluated. If e2 succeeds, its value is returned; otherwise, the expression 
fails. For example, 

x f 5 1 x = 1 0  

succeeds if x equals 5 or if x equals 10. 
In addition to the usual meaning of alternation described above, alternation is 

also a generator, generating the values of each of its arguments. If e~ succeeds, 
the alternation expression becomes dormant. The alternation expression can be 
activated to evaluate e2 if the expression in which it appears fails. Thus, the 
expression above can be rewritten as 

x = (5110) 

After generating the first value, 5, the generator becomes dormant, and the value 
5 is compared to x. If x equals 5, the expression succeeds. If not, the generator is 
activated and produces the value 10, which is compared to x. If x equals 10, the 
expression succeeds; otherwise it fails. In either event, evaluation then continues 
with the next expression in sequence. 

As another example, consider the expression 

x <  ((112) + y )  

where x is 4 and y is 3. In this example, as in many others involving the alternation 
generator, the expression 112 is usually read "one then two" rather than the more 
conventional "one or two." The initial comparison of x to 4 (the sum of 1 and y) 
fails. Backtracking causes the alternation to produce its second value, the com- 
parison of x and 5 succeeds, and the expression terminates successfully. 

The evaluation mechanism often permits the internalization of loops. An 
example is the following expression, which is one way to determine whether n is 
divisible by any of several small primes. 

mod(n,p := 2131517111) = 0 

If any of the primes divides n, the expression succeeds, and p is assigned the 
divisor; otherwise, the expression fails. If the value of p is not needed, the 
expression can be further simplified to 

rood(n, 2131517111) = 0 

While alternation provides a convenient way to generate a pair of values, a 
sequence of values can be produced using the generator 

e~ t o  e2 

which generates the arithmetic sequence of integers from e~ through e2, inclusive. 
For example, the expression 

5 t o  10 
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generates the sequence 5, 6, 7, 8, 9, 10. An optional b y  clause may  be specified to 
give an increment  (or decrement)  o ther  than  1. For  example, 

100 to  1 b y  - 1  

generates the decreasing sequence of integers f rom 100 down to 1. 
Another  example is the expression 

p(i := 1 to  5, j : =  1 t o  5) 

which evaluates procedure  p at  differing values of i and j as long as p(i, j) fails. 
T he  value of j varies most  frequently,  yielding the sequence of calls p(1, 1), 
p(1, 2) . . . . .  p(5, 5). The  expression terminates  successfully when p(i, j)  succeeds 
for some i and j .  I fp( i ,  j )  does not  succeed, the expression fails after  p has been 
called with all combinations of i and j.  

Generators  can be used to index through the elements  of an object. Th e  
e lement  generator  

!e 

generates the elements  of object  e. The  value of e m ay  be a structure,  string, or 
file. For  example, if x and y are lists of numbers,  the expression !x = !y succeeds 
if the lists have any equal values. All the elements  of y are generated and 
compared  to each e lement  of x. The  elements  are generated and compared until  
e i ther  two equal values are found or all e lements  have been generated. 

If  e is a string (or is convertible to a string), its characters  are generated,  one at  
a time. Thus,  the expression 

! i > 5  

succeeds if the integer i (after conversion to string) contains a digit greater  
than  5. 

Finally, if e is a file, !e generates the lines in tha t  file. For  example, the following 
expression succeeds if string s appears  in file f: 

s - - =  ! f  

The  operator  = = succeeds if its operands are identical strings. 
In addit ion to the alternation, sequence, and e lement  generators,  there  are 

several built-in generators for string analysis. In general, these functions perform 
a simple lexical analysis of a string. As generators,  they  may  produce al ternate  
values. The  built-in function find(s1, s2) re turns  the position of the first occur- 
rence of sl in s2, or fails if s2 does not  contain the substring sl. For  example, 

find("ab", "abaabbaaabbbaaaabbbb")  

re turns  the value 1 initially. If  the generator  is act ivated for alternatives, 
find(s~, s2) generates the next  position of sl in s2. Repea ted  activation of the 
generator  above produces the sequence 1, 4, 9, 16. 

Another  example is upto(c, s), which re turns  the position of any character  in 
the character  set c tha t  appears in s. For  example, 

upto ("aeiou", "kaleidoscope") 
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returns the value 2 initially. As a generator, upto(c, s) returns successive positions 
of characters in c in s. The example above yields the sequence 2, 4, 5, 7, 10, 12. 

In an expression containing several generators, each is invoked, produces a 
value, and becomes dormant in the order determined by its position in the 
expression. Failure initiates backtracking. Dormant  generators are activated in a 
last-in, first-out order: The generator that  most recently became dormant is the 
first one activated to produce an alternate value. If that  generator has no 
alternatives, the next dormant generator is activated. This process continues 
until some generator produces a successful alternate or until no dormant gener- 
ators remain in the expression. If a successful alternate is found, evaluation 
continues from that  point. Otherwise evaluation of the expression is terminated, 
and control passes to the next expression boundary. 

The interaction of generators is illustrated by the expression 

x - - ( l l 2 ) + ( y l z )  

which contains two generators, 112 and y lz. Assume the variables x, y, and z 
have the values 6, 3, and 4, respectively. Evaluation causes x to be compared with 
the sums 1 + y, 1 + z, 2 + y, and 2 + z, in that  order, until the comparison 
succeeds. In this example, the comparison succeeds on the last alternative, 2 + z. 

Alternation operations can be combined to produce longer sequences of values. 
For example, 

5191214 
produces the sequence 5, 9, 2, 4. Groups of alternations can be used to produce 
complex comparisons. For example, the expression 

(a lb lc )  = ( w l x l y l z )  

compares the values of a, b, and c with those of w, x, y, and z. If any of the values 
on the left is equal to any of the values on the right, the expression succeeds; 
otherwise it fails. 

As demonstrated by this latter example, alternation facilitates "cross-product" 
processing; a is compared to w, x, y, and z, as are b and c. There is not, however, 
a corresponding operation for "dot-product" processing. For example, there is no 
similar construct for comparing a to x, b to y, and c to z. Some processing of this 
kind can be done using additional operators proposed in [26]. 

The absence of such operators in the current version of Icon stems from the 
observation that they are generally less useful than the alternation-style opera- 
tors. For example, in string scanning, as in many problems, there is a single focus 
of attention to which the current approach is ideally suited. Problems having 
multiple foci of attention can be easily imagined, but their solutions often pose 
additional complications beyond what can be handled by dot-product-style pro- 
cessing. The situation is much like that  for pipes as implemented in the UNIX 
shell [34]. Pipes facilitate a linear array of processing and are applicable to only 
those problems that  "fit" the model. The models underlying Icon and UNIX are 
derived from experience and have evolved to meet specific needs but are not so 
orthogonal and complete as might be desired on intellectual grounds. Current 
research is directed toward orthogonality and is focusing on the use of multiple 
independent generators to support dot-product-style processing. 
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3.3 Controlling Generators 

Icon provides several constructs to control the evaluation of generators. These 
constructs can be used, for example, to suppress alternatives of a generator and 
to force a generator through all alternatives. 

An important aspect of controlling generators is the ability to discard remaining 
alternatives if they are not needed. Dormant generators are discarded when the 
boundary of the expression in which they appear is crossed. In this way, generators 
whose values are no longer relevant are not activated in a futile attempt to make 
another, unrelated expression succeed. In addition, the space required for infor- 
mation associated with dormant generators is released. 

The following expression sequence provides an example. 

x := up to ("ae iou" ,  sl); y := f i nd ( "be g in" ,  s2) 

The first expression returns the position of the first vowel in s~ (if one exists). 
The second expression finds an occurrence of the string "begin" in string s2. The 
two expressions are independent; if the second expression fails, remaining alter- 
natives in the first are not tried. In fact, once evaluation has passed through the 
boundary between the two expressions, the dormant upto  generator is discarded; 
its alternatives are no longer accessible. 

Because control structures form boundaries after their arguments, they can 
also be used to control the activation of generators. For example, 

i f  x := up to ("ae iou" ,  s l )  t hen  y := f i nd ( "beg in" ,  s2) 

is similar to the example above, except that  the second expression is only 
evaluated if the tes t  expression succeeds. As in the previous example, the two 
expressions are otherwise isolated from one another and cannot interact. 

The eve ry  expression is used to force a generator to produce all its alternatives. 
The expression 

eve ry  el do e2 

evaluates e~ and repeatedly reactivates it until all of its alternatives are produced. 
After each alternative of el, the expression e2 is evaluated. For example, if s u m  is 
initialized to zero, the expression 

eve ry  i := !x do s u m  := s u m  + i 

finds the sum of the elements of list x. Note that, by using the element generator 
! instead of explicit indexing, this expression is independent of not only the size of 
x but also the type of x. 

The eve ry  expression, in conjunction with generators, provides a facility for 
composing conventional as well as unconventional control structures from more 
basic units. By using the to generator, the equivalent of the ALGOL for  statement 
can be obtained. For example, the expression 

eve ry  i := 1 to 100 do y[i]  := x[ i]  

copies the first 100 elements of list x into list y. 
As another example, if x is a list of 100 elements, the expression 

eve ry  i := (1 to 10) 1{91 to 100) do wr i t e ( x [ i ] )  

writes the first and last ten elements of x. 
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The  e v e r y  expression is more  concise than  the s tandard  ALGOL f o r  loop in 
certain applications. The  for- loop control  variable is often just  an art ifact  tha t  
can be omitted.  For  example, the expression 

e v e r y  1 to  30 d o  f ( )  

invokes the procedure  f th i r ty  times. 
The  do  clause is optional and can often be omitted,  allowing even more  concise 

expressions. For  instance, auxiliary variables tha t  are needed in o ther  languages 
to hold t ransi tory values (such as list indexes) are not  always needed in Icon. Th e  
above example, which writes the first and last ten elements  of list x, can be 
rewri t ten as 

e v e r y  write(x[(1 t o  10)[ (91 to  100)]) 

Since the e lement  generator  generates the elements  of a s t ructure  as variables, 
e v e r y  can be used to zero the elements  of a structure.  For  example, 

e v e r y  !x :-- 0 

zeros the elements  of x, and 

e v e r y  sum := sum + !x 

computes  their  sum. 

3.4 Programmer-Defined Generators 

Icon procedures  have the general form 

procedure n a m e ( a r g l ,  . . . ,  argn) 
declaration 
body 

end 

A typical  procedure  is 

p rocedure  sum(x) 
local s, i 
S : _ - - 0  ~ 

every  i := !x do s := s + i 
if  s >= 0 then  r e tu rn  s 
fail 

end 

which re turns  the sum of the elements  of a s t ructure  if the sum is positive and 
fails otherwise. As i l lustrated by this example, procedures  re turn  values via the 
expression r e t u r n  e. If  e fails, the procedure  invocation fails. T h e  fa i l  expression 
is similar to r e t u r n  in tha t  it te rminates  the invocation, bu t  it causes the calling 
expression to fail. Arguments  to procedures  are t ransmi t ted  by value. 

T h e  r e t u r n  and fa i l  expressions cause terminat ion of the procedure  act ivat ion 
in which they  are executed. T h e  expression 

s u s p e n d  e 

is similar to r e t u r n  e, except  tha t  the procedure  act ivat ion is left in suspension 
so tha t  it may  be resumed for addit ional computat ion.  Execut ion of the procedure  
body is resumed at  the point  of suspension if the context  in which the procedure  
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invocation occurs requires another alternative. Thus, suspended procedures are 
dormant generators. The result of the suspend  expression itself is the null value. 

As a simple example, the following procedure behaves like the built-in t o - b y  
generator with a positive increment. 

procedure toby(i, n, inc) 
if inc = 0 then inc := 1 
while i <= n do { 

suspend i 
i := i + inc 
} 

fail 
end 

The procedure suspends evaluation for each value in the sequence and fails after 
the sequence is exhausted. 

Procedures may, of course, suspend in more than one place. For example, the 
following procedure generates the (infinite) sequence of Fibonacci numbers. 

procedure fib 
local ul, u2, f, i 
suspend 111 
Ul : ~  U2 :~- 1 
repeat { 

f : ~  Ul -}- U2 
suspend f 
Ul :'~- U2 

U2 :-- f 
} 

end 

The first two values of the sequence, 1 and 1, are treated as special cases in the 
first suspend  expression. Subsequent values of the sequence are computed, and 
the procedure is suspended in the middle of the r epea t  loop after each compu- 
tation. The following expression repeatedly assigns values of the Fibonacci 
sequence to f until a value divisible by n is found. 

rnod( f := f i b ( ) ,  n) = 0 

Like every,  suspend  e produces all alternatives of e as required. For example, 

suspend 1 [2[5 

suspends with the values 1, 2, and 5 on successive activations of the procedure in 
which it appears. If the procedure is activated again, execution continues with 
the expression following the suspend. 

Programmer-defined generators are fully recursive and behave exactly like 
built-in generators. For example, multiple activaions of defined generators that 
are suspended simultaneously do not interfere with each other. 

4. EXAMPLES 

4.1 Word Intersect ion 

In completing crossword puzzles it is necessary to determine the intersections at 
which two words have characters in common [40]. This is an example in which 
all possible situations in a search must be processed. The following procedures 
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demonst ra te  the use of generators  to print  all intersections of common characters  
in two words. 

p rocedure  cross(word l, word2) 
local  j, k 
eve ry  j := upto(word2, wordl) do 

every  k := upto(wordl[j], word2) do 
print(wordl, word2, j, k) 

r e tu rn  
end 

p rocedure  print(word 1, word2, j, k) 
every  write(right(word2[1 to k - 1], j))  
write(word1) 
every  write(right(word2[k + 1 to size(word2)], j)) 
r e tu rn  

end 

The  procedure  cross first assigns to j a position in word1 at which a charac ter  
of word2 is found. For  this value of j ,  a position in word2 where the j t h  character  
of word I occurs is then  assigned to k (subscripting a string re turns  the character  
at the position given by the value of the subscript). T h e  procedure  print  merely  
prints the intersection, with word1 being displayed horizontal ly and word2 being 
displayed vertically (right(s, n) re turns  the result  of right-justifying s in a string 
of n blanks). The  uses of e v e r y  ensure tha t  all intersections are located. 

As an example, 

cross("computer", "center")  

produces the following output .  

c o m p u t e r  c c c c 

e e c o m p u t e r  e e 

n n n n n 

t c o m p u t e r  t t t 

e e e c o m p u t e r  e 

r r r r c o m p u t e r  

4 . 2  W o r d  G e n e r a t i o n  

The  procedure  ge tword( f )  generates the words tha t  appear  in file f. A word is 
defined to be any sequence of lowercase letters. 

p rocedure  getword(f) 
local  i, line 
while line := read(f) do ( 

i : = 1  
whi le  i := upto("abc . . .  z", line, i) do 

suspend section(line, i, i := many("abc . . .  z", line, i)) 
} 

fail 
end 

The  procedure  section(s, i, j )  re turns  the section of string s between positions 
i and j ;  the  third a rgument  to upto specifies the position in s at  which to begin 
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examination; and many(c,  s, i) returns the position in string s beginning at 
position i that follows an initial substring of characters in c. 

One use of such a procedure is illustrated by counting the words in a file. The 
expression 

f tab := table(0) 

assigns an empty table to ftab; tables are associative arrays as in SNOBOIA. The 
expression 

eve ry  f lab[getword(  f )  ]+ 

builds a table containing the count of each word appearing in f. The suffix + 
operator increments its operand by 1. Finally, 

every  x := !ftab do write(x[2], " ", x[1]) 

prints the table. (Sequencing through a table returns each entry as a two-element 
list. The first element is the "index" and the second is the associated value.) 

4.3 Data Structure Traversal 

Generators can also be used to generate the elements of a user-defined data 
structure. Below are two procedures that generate the nodes of a binary tree. 
Nodes of the tree are represented using records with three fields: 

record node 
data, ltree, rtree 

end 

The data  field contains the value of the node. The fields ltree and rtree refer 
to the left and right subtrees, respectively, and may have null values. The built- 
in function null(x)  succeeds if x has the null value and is used to test for leaf 
nodes. 

The procedure walk(t) ,  which follows, generates the data fields of all the nodes 
in tree t. The nodes are generated in postorder; that is, the left and right subtrees 
of a node are generated, followed by the node itself. The infLx dot accesses the 
fields of a record as in PASCAL [42]. 

procedure walk(t) 
if null(t) then 

fail 
else { 

suspend walk(t.ltree I t.rtree) 
return t.data 
} 

end 

The suspend  expression suspends with each of the values generated by walking 
the left subtree and then with each of the values generated by walking the right 
subtree. The r e t u r n  expression produces the value of the root node. 
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The procedure l e a v e s ( t )  below generates only the leaves of the binary tree t. 
The leaves are generated by walking the tree in postorder. 

procedure leaves(t) 
if null( t )  then 

fail 
else if null(t . l tree = = = t.rtree) then 

return t .data 
else { 

suspend leaves(t.ltree I t.rtree) 
fail 
} 

end 

The = = = operator denotes object comparison much like IDENT in SNOBOIA. 
As for all comparison operators, if the comparison succeeds, the right operand is 
returned. 

4.4 Data Backt rack ing with Generators 

As mentioned above, the backtracking in Icon is limited to control backtracking. 
There are, however, several built-in operators that  provide a limited form of data 
backtracking. Note, however, that  the control backtracking is implicit in Icon's 
evaluation mechanism, whereas data backtracking must be explicitly specified by 
the programmer by the use of an operator. 

The most useful of the data backtracking operators is reversible assignment: 

e l  <--- e2 

The value of e2 is assigned to el and the assignment operator becomes dormant. 
If activated for alternatives, the previous value of el is restored and the expression 
fails. For example, suppose a program is to read a parameter from the input file 
and assign the value to a global variable. If the line is of zero length, a default 
value, which was assigned earlier, is to be retained. The expression 

s i z e ( p a r a m  ~ r e a d ( ) )  ~ =  0 

assigns the next input line to the variable p a r a m .  If the line is empty, the 
assignment is reversed and the original (default) value is retained. The use of 
reversible assignment obviates the use of a temporary variable. 

Although Icon provides only limited backtracking, more elaborate backtracking 
facilities can be constructed using programmer-defined generators. An example 
is the eight queens problem [5, 6, 9]. The object is to place eight queens on a 
chess board such that  no queen may attack any other. The standard method of 
solving this problem uses a recursive procedure to place queens on successive 
rows, backtracking to a previous position if a row becomes blocked [41]. 

An alternate solution, using coroutines, eliminates the awkward hierarchical 
relationship among the queens and allows the main program to control the 
backtracking [19]. Each coroutine is still responsible for reversing the effects it 
causes, but the main program determines when that  is to be done. 
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The following procedure is similar to the solution in [19] but is further simplified 
by the use of generators. 

procedure q(c) 
local r 
every place(r  :--- i to 8, c) do 

suspend r 
fail 

end 

The value returned by q(c)  is the row on which queen c was placed. The 
expression 

wri te (q(1) ,  q(2), q(3), q(4), q(5), q(6), q(7), q(8)) 

generates and writes the first solution 

15863724 

(multiple arguments to w r i t e  are concatenated onto the output file); inserting 
this expression in an eve ry  expression produces all 92 solutions. The procedure 
p l a c e  is a generator that tests and occupies the sequence of available board 
positions for a given queen: 

procedure place(r, c) 
if row[r] = up[r - c] = down[r + c] -- 0 then 

suspend rows[r] ~ up[r - c] *-- down[r + c] ~-- 1 
fail 

end 

Following [41], three lists are used to keep track of the free rows, upward facing 
diagonals, and downward facing diagonals. If the square at row r and column c is 
free, then each of the list elements rows[r],  up[r  - c], and d o w n [ r  + c] is 0; 
otherwise, at least one is 1. The suspend  expression initially assigns a nonnull 
value (the integer 1) to each of the three list elements and suspends. I f  p l a c e  is 
activated, the suspend  expression activates the dormant reversible assignment 
operations, which restore the three list elements to 0. After restoring the variable, 
the reversible assignment operation fails and the procedure fails. 

5. RELATED WORK 

The concept of generators has appeared in various forms in many languages. An 
early language that has generators is IPL-V [31], in which a generator is a 
subroutine that calls a processing routine to operate on each object in a data 
structure. Other languages, such as ALGOL 68 [38] and COBOL, use the term 
generator to describe various language features, but this use is unrelated to the 
Icon notion. 

Languages that  support coroutines frequently use the term generator to de- 
scribe a particular coroutine usage. SIMULA [1] is the oldest of such languages; 
more recent examples include extensions to POP-2 [24] and SL5 [20] and 
coroutine additions to PASCAL [27]. There also has been a substantial amount 
of work on the "lazy evaluation" approach to the incremental generation of 
sequences, usually in LISP or APL frameworks [7, 17, 22]. 
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More recently, ALPHARD [43] and CLU [28] have been developed to support 
data structure abstraction. In these languages generators are used to iterate over 
the elements of programmer-defined data structures [35]. Included with the 
definition of a data abstraction (or "cluster" in CLU) is a procedure for generating 
the elements of the abstraction. In CLU, this procedure, called an iterator, 
produces its values using the yie ld  statement. When another element is required, 
execution of the iterator continues where the y ie ld  statement left off. In each of 
these languages, generators are only accessible in a specific context: a particular 
type of for  statement. This is significantly more restricted than in Icon, where 
generators may appear anywhere. 

Superficially, generators in ALPHARD and CLU appear to correspond to the 
e v e r y  expression in Icon. But while e v e r y  has the syntactic appearance of a 
standard control structure, the nonstandard goal-directed evaluation mechanism 
makes its semantics more general than the corresponding ALPHARD and CLU 
constructs. It is the restricted applicability and the lack of goal-directed evaluation 
that differentiate these constructs from generators in Icon. 

Backtracking mechanisms exist in a number of programming languages. Lan- 
guages intended for research in artificial intelligence typically include such 
facilities [2]. Backtracking is also used for solving string processing problems [8]. 

Most artificial intelligence languages deal with lists and are usually based on 
the syntax of LISP [29]. PLANNER [23] and PROLOG [4, 39], which use 
theorem-proving techniques for AI research, provide pattern-directed procedure 
invocation. In PROLOG, for example, the theorem to be proved is used to select 
the procedures to invoke. Associated with each procedure is a template that 
defines the effect of the procedure. The theorem is compared to each template, 
and those procedures that match are selected. If only one exists, it is invoked. If 
more than one procedure matches, a choice is made and the selected procedure 
is invoked. If that procedure fails to prove the theorem, the system backtracks 
and a different procedure is invoked. PROLOG also has a mechanism, the cut 
determiner, that is analogous to expression boundaries in Icon and gives the 
programmer some control over the extent of backtracking. Another example is 
CONNIVER [30], which is based on PLANNER and gives the programmer 
greater control over the search strategy. 

SAIL [33] is an ALGOL-based artificial intelligence language that supports 
backtracking. The backtracking facilities include primitives to REMEMBER,  
FORGET, and RESTORE variables in different contexts. Like CONNIVER, 
SAIL requires explicit manipulation of variables by the programmer to effect a 
backtracking control regime. 

6. CONCLUSIONS 

Generators provide a linguistic facility that allows concise expression of solutions 
to problems suitable for goal-directed programming. These problems are typically 
found in string processing, artificial intelligence, and other areas in which com- 
binatorial searching is performed. Experience with Icon has demonstrated its 
utility in string processing and in problems involving simple combinatorial 
searches. Problems related to artificial intelligence research have not yet been 
studied. 
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The  significant contr ibut ion of Icon is the development  of unified linguistic 
facilities in which goal-directed evaluation is an integral part.  In o ther  languages 
support ing goal-directed programming, for example, MLISP2  [36] and ECL [32], 
the facilities are not  so well integrated into the language. For  example, these 
languages contain special s ta tements  for marking decision points and initiating 
backtracking. In Icon, generators are expressions and can be used anywhere  a 
value is required. The  manipulat ion and activation of generators are integrated 
using the control  s t ructures  and signaling mechanism of the language. 

Another  advantage of generators  s tems from their  use in constructs  tha t  are 
not  usually considered related to goal-directed programming. For  example, the 
e v e r y  expression forces all al ternatives of generators  to be evaluated, not  just  
the ones needed to reach a goal. When  used with the al ternat ion and t o  
generators,  e v e r y  subsumes the less general f o r  s ta tement  found in o ther  
languages. In addition, generators  can be used to build more complex control  
s t ructures  from simpler ones. This  construct ion is especially evident  in the use of 
programmer-def ined generators  to augment  the repertoire  of built-in generators.  

Some of the inherent  inefficiencies of goaldirected facilities in o ther  languages 
are el iminated by avoiding automat ic  backtracking and by limiting the scope of 
generators.  Experience has shown tha t  backtracking often is not  necessary, tha t  
it can be the source of hidden inefficiencies, and tha t  it often hinders the solution 
of a problem by destroying information. 

The  scope of generators  is limited to the expression in which they  appear.  Since 
expressions may  be arbitrari ly complex, this places no restrictions on the pro- 
grammer,  but  it allows unwanted  al ternatives of dormant  generators to be 
explicitly discarded. Limiting the scope of generators  not  only prevents  unwanted 
activation, but  it also permits  the space associated with them to be released. Once 
an expression boundary  is crossed, the space occupied by dormant  generators  for 
tha t  expression is no longer needed. Finally, generators have little impact  on the 
efficiency of o ther  language operations; very  little overhead associated with 
generators  is imposed on expressions tha t  do not  contain generators.  The  imple- 
menta t ion  of generators  is described more fully in [21, 26]. 
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