
SOFTWARE—PRACTICE AND EXPERIENCE. VOL. 22(8). 659–672 (AUGUST 1992)

Garbage Collection Alternatives for Icon

MARY F. FERNANDEZ AND DAVID R. HANSON
Department of Computer Science, Princeton University, Princeton, NJ 08544, U.S.A.

SUMMARY

Copying garbage collectors are becoming the collectors of choice for very high-level languages and for
functional and object-oriented languages. Copying collectors are particularly efficient for large storage
regions because their execution time is proportional only to the amount of accessible data, and they
identify and compact this data in one pass. In contrast, mark-and-sweep collectors execute in time
proportional to the memory size and compacting collectors require another pass to compact accessible
data. The performance of existing systems with old compacting mark-and-sweep collectors might be
improved by replacing their collectors with copying collectors. This paper explores this possibility by
describing the results of replacing the compacting mark-and-sweep collector in the Icon programming
language with four alternative collectors, three of which are copying collectors. Copying collectors do
indeed run faster than the original collector, but at a significant cost in space. An improved variant of
the compacting mark-and-sweep collector ran even faster and used little additional space.

KEY WORDS Storage management Garbage collection High-level languages [con

INTRODUCTION

Automatic reclamation of inaccessible memory—garbage collection—has long been
an important aspect of very high-level languages, such as Lisp and SNOBOL4.
Garbage collection is emerging as an essential component of a wide range of modern
programming language systems. Examples include very high-level languages, such
as Icon, 1 object-oriented languages with late binding times, such as Smalltalk 2 and
Self, 3 and new languages with traditional compile-time type systems such as ML, 4

Eiffel, 5 Oberon 6 and Modula-3. 7 Garbage collectors have also been implemented
for languages that were not originally designed to support garbage collection, such
as Modula-2+ , 8 C+ + 9; and even C. 10

Recent implementations tend to use copying collection algorithms instead of mark-
and-sweep algorithms. 11,12 Copying algorithms take time that is proportional to the
amount of accessible data and identify and compact accessible data in one pass.
Mark-and-sweep algorithms take time that is proportional to the amount of accessible
and inaccessible data and the compacting variants require another pass to compact
accessible data. Copying collectors use more memory because they require two
separate spaces, but they tend to improve locality of reference because they place
objects near their referents. Large storage regions (e.g. tens of megabytes) may
amplify the advantages of copying collectors. 13

Recent advances suggest that existing systems with ‘old’ compacting mark-and-

0038–0644/92/080659–14$12.00 Received 13 June 1991
© 1992 by John Wiley & Sons, Ltd. Revised 16 March 1992

660 M. F. FERNANDEZ AND D. R. HANSON

sweep collectors might benefit from new collectors. Icon 1 is a prime example. The
key question is whether or not a new collector can yield significant performance
improvements for most Icon programs. The remainder of this paper describes the
results of implementing several new compacting collectors for version 8 of Icon. 14

Documented experiences that might help choose a collector for a specific system
are scarce. Those that are available are necessarily system specific; it is often difficult
to translate results from one system to another, especially if the systems differ
significantly. Significant differences can exist even for similar languages. For instance,
recent reports on Lisp systems 15,16 are likely to be valuable for other systems in
which memory is composed of small, fixed sized, homogeneous objects, but those
results may be less applicable when memory holds a wide variety of variable sized,
heterogeneous objects, as in Icon. Also, most systems have complicating idiosyncras-
ies, such as the preponderance of variable length strings in Icon.

The complexities of specific systems make measurement results difficult to interpret
and to apply. Few real systems are documented well enough to understand fully the
ramifications of their designs and implementations and how they might be reflected
in other systems. Icon’s implementation is well documented, 17 and its source code
is available publicly. The results reported here are, of course, specific to Icon, but
Reference 1 7 and the source code provide a context in which to evaluate the
applicability of these results to other systems.

ICON

Icon is a very high-level imperative language with a rich repertoire of facilities for
string and structure processing. 1 It is available on a wide range of computers from
personal to supercomputers and it is widely used; over 10,000 copies have been
distributed.

In Icon, values are typed, not variables. Built-in data types include numerics,
character sets, strings, sets, lists, associative tables and records. The latter four
aggregate types can hold values of any type. Numerics, character sets and strings
are atomic values; operations on them produce new values. Aggregates use pointer
semantics; operations on them can change existing values as well as produce new
ones. Strings and aggregates can be of arbitrary sizes, and these sizes can change
during execution. Memory management is automatic.

During execution, storage is divided into the three regions depicted in Figure 1.
Values that cannot be moved, such as I/O buffers and execution stacks, are allocated
in the static region. These values are fixed sized, system dependent, and are never
reclaimed. Thus, garbage collection alternatives do not involve this region.

Strings are allocated from the string region. Values in Icon are represented by
two-word descriptors, which contain a type code and other type-specific data, e.g.
the value of an integer. For strings, these type-specific data are the length of the
string and the location of its first character in the string region. The string region
contains only string data, so allocation is fast: strfree is simply incremented by the
requested amount. This representation simplifies many string operations. For exam-
ple, if s has been assigned the string ″ hippopotamus ″, the substring ″ pot ″ can be
formed in constant time by returning a descriptor with a location equal to the
location of s plus 5 and a length of 3. Likewise, concatenation to a newly created
string can omit copying its left operand if it ends at strfree, and sometimes the

GARBAGE COLLECTION ALTERNATIVES FOR ICON 661

Figure 1. Memory layout

operands of concatenation are already adjacent, so concatenation is trivial. Such
considerations are particularly important to the efficient implementation of string
scanning—Icon’s ‘pattern matching’. 18

All other values are allocated in the block region. The type-specific data in
descriptors for character sets and aggregates point to blocks in the block region.
Blocks are analogous to nodes or objects in other systems and have type-specific
sizes and layouts and most hold one or more descriptors. 17 As in the string region,
allocation is trivial: blkfree is incremented by the size of the requested block.

Garbage collection occurs when a request for space cannot be satisfied and is
described fully in Chapter 11 of Reference 17. Briefly, collection begins with a
marking phase that locates all blocks and strings accessible from a root set, which
includes values in the static region, the stack, global variables, and several internal
variables. As accessible strings are located, pointers to their descriptors are appended
to the qualifier list, which is used during compaction. Space for this list begins at
blkfree. Accessible blocks are marked by processing each block recursively. Each
block has a header word that usually contains a block code, but for marked blocks,
heads a list of descriptors that point to the block. This list is threaded through the
descriptors themselves and is terminated by the block code in the last descriptor.

After marking, accessible strings in the string region are compacted by sorting the
qualifier list by location and making a pass over the list identifying and moving
accessible characters. This scheme takes into account the possibility of ‘overlapping’
strings and preserves substrings. This pass also updates the locations in the descriptors
pointed to from the qualifier list to reflect the new locations of the strings.

Next, two passes over the block region are made. The first pass computes the new
locations for accessible blocks, which are identified by the presence of a list of
descriptors in their headers, and, for each such block, traverses this list changing
the descriptors to point to the block’s new location. The block codes are also returned
to the headers along with a mark. The second pass compacts accessible blocks,
identified by header marks, and clears these marks.

If necessary, the string region is expanded by relocating the entire block region.
This relocation is accomplished by collecting the block region as usual, but including
the amount of expansion when computing new block locations. The entire—now
compacted—block region is then shifted up. This possibility of expansion is why the

662 M. F. FERNANDEZ AND D. R. HANSON

two passes over the block region mentioned above cannot be combined. The qualifier
list can also overflow the block region; if it does, which is rare, the block region is
expanded by requesting more memory from the operating system.

OBSERVATIONS

Garbage collection can have a measurable effect on total performance. It accounts
for 5–78 per cent of total execution time for the programs in the test suite described
below. This suite was used to understand the behavior of the existing collector and
to guide the design of alternatives, described below. The measurements of the
existing collector corroborate earlier work. 19

The maximum amount of accessible memory used during execution ranged from
200KB to 2MB for the test suite. These sizes are much smaller than the accessible
data sizes in test suites used in comparative analyses in Lisp, for example, where
sizes from 5–100MB are typical. But a few megabytes or less are typical of Icon
programs on workstations, and even smaller sizes are typical on personal computers,
such as the Macintosh. Copying collectors that excel for large amounts of accessible
data may not do so for smaller amounts.

Long-lived data is data that survives many collections; researchers have long
recognized the importance of handling such data efficiently 20–22 For the Icon test
suite, 30-50 per cent of the allocated data remains accessible to the end of execution
occupying space that cannot be reclaimed. The existing collector does not move data
unnecessarily, but a non-generational copying collector will move such data at each
collection.

The existing memory management scheme caters to strings, but programs that do
extensive string manipulation pay for it; for those programs in the test suite, 16-58
per cent of collection time is spent constructing and sorting the qualifier list and
compacting the string region. These programs would benefit from alternatives that
eliminate the qualifier list.

Dividing memory into two equal-sized regions wastes memory for programs that
use mostly strings or mostly aggregates. This division complicates region expansion
as described below. For example, executing the 63 small programs in the Icon
program library 23 with their small test inputs generates 9816 strings with a mean
length of only 7·23 characters and a median length of 2. Strings longer than 100
characters were counted as 100-character strings, and only 2 per cent of the 9816
strings exceeded 100 characters. These data suggest that it might be equally effective
to store strings in blocks and dispense with the separate string region.

ALTERNATIVES

The observations described above motivated the design and implementation of four
alternative collectors for Icon.

An initial premise was that a copying collector might outperform the existing
mark-and-sweep collector, so the first alternative, copier, is a simple copying collector
for the block region. Simple copying collectors are rarely used alone; they are usually
used in a generational collector. 4

copier serves only as a baseline for comparing other
copying alternatives.

GARBAGE COLLECTION ALTERNATIVES FOR ICON 663

As in all copying collectors, the block region is divided into two semi-spaces.
Allocation proceeds as in the existing collector from ‘old’ space until a request
cannot be satisfied. During collection, accessible data is copied from old space to
‘new’ space, which also compacts the data, the roles of the spaces are reversed, and
execution continues. 11 When a block is copied, a forwarding pointer is left in the
original so that other descriptors pointing to the block can be re-aimed at its location
in new space.

The second alternative, string, eliminates the separate string region and allocates
strings and blocks in a single region and eliminates the qualifier list, which reduces
sharing after collection as described below. string allocates a 4KB ‘string block’ and
doles out space for strings from this block. When it becomes full, another string
block is allocated. Collection proceeds as in copier. When an accessible string is
located, it is appended to the ‘current’ 4KB string block in new space, creating one
if necessary. While this scheme eliminates the qualifier list and its expensive pro-
cessing, its space cost can be high because it duplicates strings that share characters
before collection. For example, suppose N accessible string descriptors point to an
M -byte string block. Collection might create N strings totaling as much as N × M
bytes. Excessive expansion would suggest significant sharing, which should be highest
for programs that create many substrings.

The third alternative, string2, is similar to string, but avoids its worst case behavior.
As blocks are copied to new space, accessible string descriptors are added to a
qualifier list as in copier, but the list is never sorted, and string blocks are not copied.
Instead, string block headers record ‘low’ and ‘high’ water marks, which give the
lowest and highest addresses, respectively, of accessible string data within the
block. 21,24 After copying all other blocks to new space, the data between the low
and high water marks in each string block in old space are copied into 4KB string
blocks in new space as in string, and the qualifier list is scanned to update the string
descriptors. The qualifier list is at the end of the region and is expanded, if necessary.
string2 is otherwise identical to string. Note that string2 saves all characters between
the low and high water marks, even if they are inaccessible.

The last alternative, mark&compact3, is a single-region variant of the original mark-
and-compact algorithm that handles strings as in string2. The marking phase builds
lists of descriptors that reference accessible blocks as in the original algorithm, adds
strings to a qualifier list as in string2, and computes string2 ’s low and high water marks
for string blocks. The next phase adjusts descriptors as in the original algorithm, but
the low water mark is taken into account in adjusting string descriptors, and both
the low and high water marks are used to compute the new size and location of a
string block. The final phase compacts accessible blocks as in the original algorithm,
but copies only the data between the low and high water marks in string blocks. As
in the original algorithm, mark&compact3 does not copy long-lived data unnecessarily
and does not incur the space cost of two semi-spaces. mark&compact3 is similar to
SITBOL’s collector. 21

The original algorithm and the algorithms described above expand regions after
collection, if necessary, in order to avoid collecting too frequently. For example, if
a collection yields only a small amount of free space, another collection is imminent.
Expanding regions by 25 per cent avoids excessive collecting. For the copying
copying alternates.

664 M. F. FERNANDEZ AND D. R. HANSON

MEASUREMENT RESULTS

Test suite

The test suite consists of the ten programs summarized in Table I, which, for each
program, gives its length and the percentage of accessible block and string data when
run with the original collector. These percentages show the range of the amount of
accessible after each collection, e.g. at each collection in callgraph, 51–78 per cent
of bytes in the block region were in accessible blocks. For all of the test programs,
later collections tended to have the higher percentages.

The first four programs listed in Table I are artificial programs designed to
expose the bounds of expected improvements for each alternative. best and worst
characterize, respectively, the best and worst programs for a copying collector (and
vice versa for mark-and-sweep collectors). best generates almost all garbage:

procedure main()
local t, i
t:= table(1);
every i:= 1 to 500000 do t[i]

end

This program builds a table of 500,000 entries by referencing each entry, which
allocates space, but each entry is inaccessible because it is never assigned a value.
worst is similar except that it does 100,000 assignments t[i]: = i instead of just referenc-
ing t[i], which allocates only accessible entries and hence creates no garbage.

string0 and string50 are similar. string0 creates 500,000 strings of random lengths
between 1 and 100 characters and hence creates only string garbage. string50 creates
75,000 random-length strings and assigns them to the entries in t with probability
one-half, i.e. approximately 50 per cent of the entries.

The other six programs listed in Table I are real programs provided by Icon users.
They vary in size, execution time and number of collections, but most do extensive
string manipulation as do most Icon programs.

Table I. Test suite

Test program Length in Accessible blocks after Accessible strings after
lines collection, % collection, %

best
worst
string0
string50

callgraph
pslist
burg
typsum
mkgen
concord

8
8

12
12

54 51–78 2–7
426 24–78 1–3
625 72–79 4–5

2804 56–80 3–8
991 32–76 4–36

53 56–78 2–19

GARBAGE COLLECTION ALTERNATIVES FOR ICON 665

callgraph reads compiler-generated assembly language files, computes the call
graph, and prints an indented representation of the graph and a procedure index.
The sample input for callgraph is the assembly code generated from Icon’s run-time
system, 22,743 lines of C; it references 334 procedures and has 1558 call-graph edges.

pslist reads C, Fortran, or Ratfor source files and generates PostScript that prints
listings with cross-reference indices. Unlike callgraph, which generates its output after
reading all of its input, pslist generates much of its output as it executes.

mkgen, a large program by Icon standards, reads a compact code-generator speci-
fication and emits a code generator in C. 25

mkgen is used to generate the code
generators for lcc.

26 The input is the VAX specification.
burg is similar in function to mkgen, and its input is a VAX specification.
typsum reads ‘ucode’, Icon’s intermediate representation, 17 and performs type

inference. Its minimal output summarizes the results of type inference, e.g., number
of variables with no type, etc. A refined variant of typsum is part of the new Icon
compiler. 27

concord is a concordance program from the Icon programming library. It produces
an index of the words in its input by building a table indexed by words and containing
lists of line numbers. It prints a line-numbered copy of its input, and, at the end of
the program, the table and each list are sorted and the line numbers are concatenated
and printed. The input to concord is the text of Macbeth.

Results

Data was collected by running the test suite with each of the alternative collectors
described above. In each case, execution began with 130KB regions, divided into
two 65KB semi-spaces for the copying collectors. As mentioned above, regions or
semi-spaces are expanded if there is not enough free space to satisfy the request that
triggered the collection. Specifically, a region is expanded so that the resulting free
space is twice the amount of the triggering request or 25 per cent of the region’s
size, whichever is larger.

All times reported are the average elapsed times in seconds on a DECStation
5000, averaged over at least 4 runs. All reported runs achieved at least 90 per cent
utilization (i.e. the ratio of times (user + system) /elapsed =0·90).* The raw data
includes elapsed time, garbage collection time, number of collections, and the
maximum size of the storage region. These data appear in the Appendix and are
summarized in the Figures below. All data in the Figures are normalized so that the
original collector runs in 100 time units, i.e. they display 100 × X/T where T is the
execution time of each test program using the original collector, and X is the
execution time using alternative X.

Space costs are reported similarly as X/S where S is the maximum storage size of
each test program using the original collector and X is the maximum storage size
using alternative X. If storage for a program never exceeded 130KB, X is reported
as 130KB.

Figures 2 and 3 show the execution times for the original and for each alternative
algorithm. The number of collections appears above each bar, and the black line in
each bar indicates the portion of the execution time spent in collection, i.e. the black
lines are positioned at 100 × C/T, where C is the collection time.

* The iteration counts for best, worst, string0 and string50 were chosen to yield this high utilization.

666 M. F. FERNANDEZ AND D. R. HANSON

Figure 2. Reduction in execution time

The results for the artificial programs follow the expected trends, e.g. the copying
collectors (copier, string and string2) do poorly on worst because it generates no
garbage, and they do well on best and string50 because best generates only garbage
and string50 generates 50 per cent garbage. string, string2, and mark&compact3 do not
have separate string regions, so their storage regions are twice as large as copier ’s.
Consequently, they do fewer collections and thus do better than copier on best.
mark&compact3 ’s performance on best is lower than that of string and string2 because,
being a mark-and-sweep collector, it must scan all of the garbage, which is most of
memory for best.

copier does poorly on string50 because copier uses the original collector for strings
and repeatedly copies the long-lived data in the block region. Using mark&compact3
on worst shows a slight improvement because almost all of the data is long-lived and
it avoids copying this data. It does well on string50 for the same reason.

The small difference in performance between string and string2 and mark&compact3
on string0 is due entirely to the different string representation used in the latter two
variants.

Three of the alternative collectors reduce execution time for the real programs
and some reduce it dramatically. Figure 3 shows the importance of collecting strings
efficiently: copier, which uses the original collector for strings, performs respectably
only for burg and typsum, which do less string manipulation than the other test
programs. For instance, most of concord’s 109 collections are because the string

GARBAGE COLLECTION ALTERNATIVES FOR ICON 667

Figure 3. Reduction in execution time

region is full. mark&compact3 is competitive with the string and string2 copying
collectors and is often superior. string and string2 collect strings efficiently, but their
performance can suffer when most strings are long-lived as in callgraph and pslist.

The reductions in execution time come at a significant cost in space, however.
Figures 4 and 5 display the space costs for each alternative, as described above.

The copying alternatives pay for the second semi-space; at any time, only one
space contains accessible data, so these alternatives can use twice as much memory
as the maximum amount of accessible data. The space costs for string include the
effects of string duplication described above. Space costs above 2 can be attributed
to this effect, which, as Figure 5 shows, is minimal. string2’s space cost is often
higher than string’s because it constructs a qualifier list and saves some characters
that are inaccessible. This latter effect is particularly noticeable in string50: every
other string is garbage, so almost one-half of every string block is tied up with
inaccessible data.

For most of the test programs, mark&compact3 uses little more space than the
original collector. mark&compact3 has the lowest space cost because it does not
require an unused semi-space. mark&compact3 uses slightly less space than the original
collector for worst because it uses most of its storage for blocks; the original pays
for its initial 130KB string space, most of which goes unused for worst.

668 M. F. FERNANDEZ AND D. R. HANSON

Figure 4. Space costs

Figure 5. Space costs

GARBAGE COLLECTION ALTERNATIVES FOR ICON 669

GENERATIONAL COLLECTION

Generational collectors 22 are another alternative that should be explored. These
collectors perform best for languages in which most of the inter-object pointers are
from recently allocated ‘new’ objects to previously allocated ‘old’ objects, i.e. langu-
ages in which old objects are rarely changed. Generational collectors work well for
mostly applicative languages like ML 4 and for some very high-level imperative langu-
ages like Smalltalk, 28 which is similar to Icon in some respects (e.g. run-time typing,
heterogeneous structures),

A generational collector was not implemented for two reasons. Icon’s original
collector is similar to the one used in SITBOL, 21 an implementation of SNOBOL4.
SITBOL’s collector used a scheme similar to that used in generational collectors. It
remembered the value of blkfree after a collection and treated all blocks below this
value as part of the root set at the next collection. These blocks are analogous to
the older generation in a generational collector with two generations. The intent
was to reduce collection time by not processing long-lived blocks, but measurements
revealed that this scheme saved only 5 per cent. 24 Icon and SNOBOL4 are very
similar, both as languages and in their implementation techniques, so this measure-
ment suggests the improvement from a generational collector might be small.

The more important reason is that the current implementation of Icon’s goal-
directed evaluation mechanism involves numerous assignments buried in the run-
time system. 17 Generational collectors must maintain ‘remembered sets’—lists of old
blocks that point to newer blocks. Maintaining these sets, which might become large,
would require massive changes to Icon’s run-time system and compiler. The result
would be incomparable to the original implementation.

Moreover, simply changing these assignments is the wrong way to test a gener-
ational collector for Icon. Icon’s implementation should be redesigned to use rep-
resentations and techniques that best suit generational collectors, e.g. using virtual
memory hardware for detecting changes to old objects. 11 Given Icon’s wide use, this
kind of study is undoubtedly worthwhile, but is well beyond the scope of replacing
just the garbage collector.

DISCUSSION

As the measurements detailed above demonstrate, the alternative collectors usually
made the test suite’s real programs run faster by a few tens of per cent. But some
alternatives achieve this improvement at a significant cost in additional space. For
example, string and string2 often run faster than the original, but they have a high
space cost. The execution times for mark&compact3 were as fast or faster than those
for its copying competitors, it uses less space, and, like all mark-and-sweep collectors,
it can accommodate larger sets of accessible data. These space advantages are
particularly important for small computers.

Increased space is not free; performance of programs with large memory require-
ments may suffer because of cache effects and paging. In some environments,
programs that use mark-and-sweep collectors have a better locality of reference and
hence better cache performance than programs that use copying collectors. 16

The measurements also highlight the importance of collecting strings efficiently
and not moving data unnecessarily. mark&compact3 and string2 handle strings ident-
ically, but mark&compact3 consistently outperforms string2 because it does not move

670 M. F. FERNANDEZ AND D. R. HANSON

data that is already in place. It is especially effective when there is little garbage.
Based on these measurements, mark&compact3 is the best of these alternatives to
Icon’s current collector.

Garbage collector design continues to depend on many factors, and a priori
decisions about which collector to use are ill-advised. Collector design is intertwined
intimately with the design of other language details from data representations to
code generation strategies. Inappropriate collector designs can complicate other parts
of a language system unnecessarily and adversely affect performance. For some
designs of some languages, copying collectors will indeed provide the best perform-
ance. For other designs, however, mark-and-sweep collectors remain viable choices.

ACKNOWLEDGEMENTS

Chris Fraser provided burg and mkgen and Ken Walker provided typsum, and the
referees’ perceptive suggestions improved the paper. Mary Fernandez is supported
by an IBM Graduate Research Fellowship, an AT&T Bell Laboratories Graduate
Research Program for Women Grant, and a Fannie and John Hertz Foundation
Grant.

APPENDIX

Table II and III below list the raw data that are displayed in Figures 2–5. Times are
in seconds and sizes are in kilobytes.

Table II

Test Collector Elapsed Collection Number of Maximum
program time time collections storage

best original
copter
string

string2
mark&compact3

worst original
copier
string

string2
mark&compact3

string0 original
copier
string

string2
mark&compact3

string50 original
copier
string

string2
mark&compact3

21·2
20·1
18·3
17·6
18·9

12·1
17·0
18·2
18·0
11·4

77·7
76·0
73·4
77·4
77·3

40·6
46·0
21·6
24·5
19·9

1·15
0·04
0·02
0·02
1·52

4·41
8·72

10·22
10·15
4·08

0·07
0·08
0·06
0·04
0·05

25·44
29·90

6·92
9·42
4·30

107
215
143
143

71

14
34
32
32
12

388
388
270
271
132

37
47
38
38
15

191
191
191
191
191

2951
5711
6724
6724
2771

191
191
191
191
191

3238
4516
6751

11919
5026

1

2.

3.

4.

5.
6.

7.

8.

GARBAGE COLLECTION ALTERNATIVES FOR ICON

Table III

671

Test Collector
program

callgraph

pslist

burg

typsum

mkgen

concord

original
copier
string

string2
mark&compact3

original
copter
string

string2
mark&compact3

original
copier
string

strlng2
mark&compact3

original
copier
string

string2
mark&compact3

original
copier
string

string2
mark&compact3

original
copier
string

string2
mark& compact3

Elapsed
time

3·2
3·4
3·0
3·0
2·8

15·3
16·9
15·1
14·9
14·5

12·1
11·6
10·0
10·3
10·0

117·3
111·1
106·8
105·3
101·7

49·9
50·9
40·7
40·2
33·1

59·7
59·8
20·7
20·4
19·3

Collection Number of
time collections

0·31
0·55
0·26
0·28
0·19

0·85
2·02
0·58
0·64
0·42

1·28
1·91
0·74
0·79
0·46

35·63
34·21
26·71
28·73
30·18

16·22
17·29
6·89
7·05
5·65

46·88
47·05

8·21
8·06
6·91

3
7
7
7
2

9
23
19
19
8

9
17
13
12
5

83
100
95
94
78

65
84
74
65
44

95
109
43
39
25

Maximum
storage

220
381
354
379
195

221
376
396
507
257

337
542
458
482
254

2329
4592
4561
4599
2304

668
1302
1392
1816
888

1283
2503
2630
3142
1573

REFERENCES

Ralph E. Griswold and Madge T. Griswold, The Icon Programming Language, Prentice
Englewood Cliffs. NJ. second edition. 1990.

Hall,

Adele Goldberg, ‘David Robson and ‘Daniel H. H. Ingalls, SmallTalk-80: The Language and Its
Implementation, Addison Wesley, Reading, MA, 1983.
David Ungar and Randall B. Smith, ‘SELF: the power of simplicity’, OOPSLA ’87 Conference
Proceedings, SIGPLAN Notices, 22, (12), 227–241 (1987).
Andrew W. Appel, ‘Simple generational garbage collection and fast allocation’, Software—Practice
and Experience, 19, (2), 171–183 (1989).
Bertrand Meyer, Eiffel: The Language, Prentice Hall International, London, 1992.
Niklaus Wirth, ‘The programming language Oberon’, Software–Practice and Experience, 18, (7),
670–690 (1988).
Greg Nelson, (ed.), Systems Programming with Modu/a-3, Prentice Hall, Englewood Cliffs, NJ,
1991.
Paul Rovner, ‘Extending Modula-2 to build large, integrated systems’, IEEE Sof[ware, 3, (6),
46–57 (1986).

672 M. F. FERNANDEZ AND D. R. HANSON

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

David L. Detlefs, ‘Concurrent garbage collection for C+ +’, in Peter Lee, (ed.), Topics in Advanced
Language Implementation Techniques, MIT Press, 1991, chapter 5.
Hans-Juergen Boehm and Mark Weiser, ‘Garbage collection in an uncooperative environment’,
Software—Practice and Experience, 18, (9), 807–820 (1988).
Andrew W. Appel, ‘Garbage collection’, in Peter Lee (ed.), Topics in Advanced Language
Implementation Techniques, MIT Press, 1991, chapter 4.
Jacques Cohen, ‘Garbage collection of linked data structures’, ACM Compiling Surveys, 13, (3),
341–367 (1981).
Andrew W. Appel, ‘Garbage collection can be faster than stack allocation’, Information Processing
Letters, 25, (4),275–279(1987).
Ralph E. Griswold, ‘Version 8 of Icon’, Technical Report 90-lb, Department of Computer Science,
The University of Arizona, Tucson, AZ, February 1990.
Robert A. Shaw, ‘Empirical analysis of a Lisp system’, Ph.D. Thesis, Stanford University, Stanford,
CA, February 1988.
Benjamin Zorn, ‘Comparing mark-and-sweep and stop-and-copy garbage collection’, in Proceedings
of the 1990 ACM Symposium on LISP and Functional Programming, Nice, France, July 1990, pp.
87–98.
Ralph E. Griswold and Madge T. Griswold, The implementation of the Icon Programming Langu-
age. Princeton University Press, Princeton, NJ, 1986.
Ralph E. Griswold, ‘String scanning in the Icon programming language’, The Computer Journal,
33, (2), 98–107, (1990).
Cary A. Coutant, Ralph E. Griswold and David R. Hanson, ‘Measuring the performance and
behavior of Icon programs’, IEEE Trans. Software Engineering, SE-9, (1), 93–103, (1983).
Alan Demers, Mark Weiser, Barry Hayes, Hans-Juergen Boehm, Daniel G. Bobrow, and Scott
Shenker, ‘Combining generational and conservative garbage collection: framework and implemen-
tations’, Conference Record of the ACM Symposium on Principles of Programming Languages,
San Francisco, January 1990, pp. 261–269.
David R. Hanson, ‘Storage management for an implementation of SNOBOL4’. Software—Practice
and Experience, 7, (2), 179–192 (1977).
Henry Lieberman and Carl Hewitt, ‘A real-time garbage collector based on the lifetimes of objects’,
Communications of the ACM, 26, (6), 4 19–429 (1983).
Ralph E. Griswold, ‘The Icon program library’, Technical Report 90-7b. Department of Computer
Science, The University of Arizona, Tucson, AZ, March 1990.
G. David Ripley. Ralph E. Griswold and David R. Hanson, ‘Performance of storage management
in an implementation of SNOBOL4’, IEEE Transactions on Software Engineering, SE-4, (2),
130–137 (1978).
Christopher W. Fraser, ‘A language for writing code generators’, Proceedings of the SIGPLAN
’89 Conference on Programming Language Design and Implementation, SIGPLAN Notices, 24,
(7), 238–245 (1989).
Christopher W. Fraser and David R. Hanson, ‘A retargetable compiler for ANSI C’, SIGPLAN
Notices, 26, (10), 29–43 (1991).
Kenneth Walker, ‘Using the Icon compiler’, Icon Project Document IPD157. Department of
Computer Science, The University of Arizona, Tucson, AZ, 1991.
David Ungar, ‘Generation scavenging: a non-disruptive high-performance storage reclamation
algorithm’, Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, SIGPLAN Notices, 19, (5), 157–167 (1984).

	Garbage Collection Alternatives for Icon
	SUMMARY
	INTRODUCTION
	ICON
	OBSERVATIONS
	ALTERNATIVES
	MEASUREMENT RESULTS
	Test suite
	Results

	GENERATIONAL COLLECTION
	DISCUSSION
	ACKNOWLEDGEMENTS
	APPENDIX
	REFERENCES

