
-18 -
The Icon Programming Languag e

An Overview*

Ralph E . Griswold, David R . Hanson ,
and John T . Kor b

Department of Computer Science
The University of Arizon a

1 . Introduction

	

1 .1	 Philosophy and Design Goal s

Icon is a programming language designed for nonnumerical ap-
plications with an emphasis on string processing . Icon inherit s
the philosophical bases of SNOBOL4 [1] and SL5 [2] : high-level ,
sometimes novel features ; ease and convenience of use ; and run -
time flexibility . Unlike SNOBOL4 and SL5, Icon is intended to b e
practical for production applications . The inherent conflic t
between the philosophical goals and the size and speed necessar y
for economic practicality is handled by including optional decla -
rations . Consistent with the philosophy of the language, th e
defaults provided in the absence of declarations provide th e
flexibility needed for experimental and research applications .
Declarations can be added to gain greater efficiency for produc-
tion applications .

	

1 .2	 Language Characteristic s

Icon emphasizes expressive power in control structures . I t
resembles SL5 rather than SNOBOL4 in this respect, although ne w
mechanisms allow a smaller repertoire of basic constructs tha n
that of SL5 . Like SL5, Icon expressions return a result consis-
ting of a value and a signal . Values are used in the normal
computational manner, while signals drive control structures .

An important component of Icon is goal-directed evaluation o f
expressions, called generators . Generators are capable of pro-
ducing alternative values as demanded by circumstances . Th e
goal-directed control structures and generators facilitate pro-
gramming of search algorithms and they eliminate the need fo r
patterns and scanning environments used for string analysis i n
SNOBOL4 and SL5 . In Icon, string scanning operations can b e
freely mixed with other operations, integrating string processin g
as a natural part of the language, as opposed to a separate fa-
cility as in SNOBOL4 and SL5 [3] .

Like SNOBOL4 and SL5, Icon has numerous data types . In addi-
tion to the conventional numerical and string types, there ar e
character sets, arrays, stacks, tables, and records .

*This work was supported in part by the National Science Founda -
tion under Grant MCS75-01307 .

1 9
The remainder of this paper provides a brief overview of th e

most important aspects of Icon . See Reference 4 for a complet e
description . The reader is assumed to be familiar with SNOBOL 4
(in general) and SL5 (for particulars) .

2 .	 Data Types andStructure s

The built-in Icon types are :

intege r
rea l
string
cse t
file
procedur e
array
tabl e
stac k
nul l

The cset (character set) type is an addition to the SNOBOL4-SL 5
repertoire and is used in situations where strings are used a s
sets of characters, as in BREAK(S) in SNOBOL4 . The table type i s
similar to that in SNOBOL4, although some additional operation s
on tables are supported in Icon . Stacks are also provided as a
built-in feature in Icon . Character sets, arrays, tables ,
stacks, and record types are described in more detail in subse-
quent sections . The null type provides a canonical representa-
tion for null values of various types, such as the null string .

Icon makes no attempt to provide mechanisms for data abstrac-
tion, beyond what can be accomplished with defined procedures an d
structures .

As in SNOBOL4 and SL5, type conversions are performed automat -
ically where required . In addition, there are type conversion
functions . For exampl e

vowels := cset("aeiou")

creates a character set from the string "aeiou" .

Automatic conversion is illustrated b y

write (vowels)

which converts the cset to a string for the purpose of output .

Optional type declarations are also provided to allow genera -
tion of more efficient code, to provide type checking, and to
provide automatic type conversion .

-20 -

3 . Control Structure s

Control structures in Icon are similar to those in SL5 . Re -
served words and symbols are used for the syntax .

An example of increased expressive power is given by the suf-
fix reserved word fails, which has the effect of inverting th e
signal of the expression that it follows . Thu s

if el fails then e 2

subsumes the SL5 expression

unless el do e 2

Generators most noticeably distinguish Icon from SNOBOL4 an d
SL5 . In Icon, the mode of evaluation is oriented toward seekin g
successful results in the presence of alternative values .

Alternatives may be specified explicitly by the alternatio n
operator, el I e2 . Unlike SNOBOL4 and SL5, where this operato r
constructs a pattern or scanning environment, in Icon this opera -
tor more closely resembles logical disjunction "either el or e2" .
That is, either el or e2 are possible values of this expression .
For exampl e

succeeds if either x or y is greater than 3 . This is equivalen t
to

(x > 3) I (y > 3)

In both cases, alternatives are generated as they occur from lef t
to right . Alternatives may be arbitrarily complex, as i n

(x I y I z) > (a I b I c l d)

which succeeds if the value of any of the identifiers on the lef t
side of the comparison operation is greater than the value of an y
of the identifiers on the right .

The mutual success of two expressions can be specified by th e
conjunction operator, el & e2 . This operation succeeds only i f
both el and e2 succeed . For exampl e

((x + y) > 5) & ((x + z) > y)

succeeds only if both of the specified conditions hold . If e l
and e2 have alternatives, the evaluation of the conjunction as-
sures that all alternatives are evaluated in the attempt to mutu-
ally satisfy el and e2 . For exampl e

(x := (3 I 4)) & (x + 2 > 5)

results in x being assigned the value 4 . Since evaluation o f
alternatives is from left to right, x is first assigned the value

-2 1

3, but when the second operand of the conjunction fails, th e
first operand is evaluated again, causing 4 to be assigned to x .

Goal-directed evaluation does not reverse the effects of pre-
vious operations . For example ,

(x

	

(3 I 4)) & (x + 2 > 6)

fails, but leaves 4 assigned to x .

The every construct produces all alternatives of an expressio n
and evaluates a do clause for each alternative . An example i s

every i

	

(1 13 I 7) do f (i)

which evaluates f (l) , f (3) , and f (7) .

In Icon, the expression

el to e2 by e 3

is a generator so tha t

every i

	

el to e2 by e3 do e 4

replaces the more traditional for statement . While the to gener-
ator is typically used in every constructs, it may be used any -
where that a generator is meaningful . Similarly, any generato r
can be used in the every construct, allowing the composition o f
complex control structures from simpler ones .

Another generator is !x, which generates the elements of x i n
sequence . If x is a string, successive characters are generated .
If x is an array, its elements are generated in numerical se-
quence . The operator applies to other types a5 well, providing a
uniform mechanism for processing all elements of a structure .
For exampl e

every write(!x)

prints the value of every element in the structure x .

. Keyword s

Icon keywords are similar to those of SNOBOL4 and SL5, and
serve as a communication interface between the running progra m
and the Icon system . Typical keywords are :

&ascii

	

ASCII alphabe t
&clock

	

time of day
&date

	

year dat e
&lcase

	

lower-case letter s
&level

	

level of procedure cal l
&time

	

elapsed run time
&trace

	

limit on tracing
&ucase

	

upper-case letters

-22 -

	

String	 Operation s

The positions of characters in a string are numbered from th e
left starting at 1 . The numbering identifies positions betwee n
characters . For example, the positions in the string CAPITAL ar e

C A P

	

I

	

T A L

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

1

	

2

	

3

	

4

	

5

	

6

	

7

	

8

Note that the position after the last character may be specified .

Positions may also be specified with respect to the right en d
of a string, using nonpositive numbers starting at 0 and continu-
ing with negative values toward the left :

C A P

	

I

	

T A L

	

I

	

1

	

I

	

I

	

I

	

I

	

I

	

I
-7 -6 -5 -4 -3 -2 -1

	

0

For this string, positions 8 and 0 are equivalent, positions - 1
and 7 are equivalent, and so on .

5 .1	 Basic String Operation s

The basic string operations of Icon are similar, to those o f
SL5, although there are a few differences . For example ,
substr(s,i,l) returns the substring of s starting at position i
and of length 1, while section(s,i,j) returns the substring of s
between positions i and j, inclusive . The expression s[i] refer-
ences the character to the right of position i in the string s .

There is a repertoire of other functions that operate o n
strings . For example, the value of size(s) is the number o f
characters in s and the value of repl(s,n) is a string consistin g
of n replications of s .

Some string operations act as generators in Icon . An exampl e
is upto(c,$), where the value returned is the position in s a t
the first occurrence of a character in c . Since there may be
more than one occurrence of a character in c in this string, ,
there is generally more than one possible value of the expressio n
upto(c,$) . These values are generated (in increasing sequence)
as needed . For example ,

every i := upto(c,$) do write(i)

prints the location of every character in c that appears in s .
Another string operation that is a generator is find(sl,s2) ,
which returns the locations at which sl appears as a substring o f
s2 .

-23 -
5 .2 String Scanning

With generators and a mode of evaluation that seeks successfu l
evaluation, much of the motivation for patterns in SNOBOL4 (an d
scanning environments in SL5) is eliminated . Removing pattern s
and scanning environments has a number of beneficial aspects :

(1) The sharp distinction between pattern matching and othe r
language operations is removed, permitting string analysis to be
intermixed with other operations .

(2) Duplication of control structures, such as the SL5 or and
the scanning environment for I, is avoided . Furthermore, al l
control structures can be used during string scanning .

(3) Awkward binding times are avoided, especially where th e
values of parameters are not known when a pattern or scannin g
environment is constructed, requiring use of unevaluated expres-
sions or deferred evaluation .

The remaining advantage of pattern matching lies primarily i n
the suppression of clerical detail resulting from a subject t o
which operations apply without explicit mention and the implici t
cursor movement that obviates bookkeeping .

In Icon, these advantages are retained by allowing a subjec t
and a position for scanning to be established in the same implic-
it fashion as it occurs in SNOBOL4 and SL5 .

The subject is established by assignment to the keywor d
&subject . For example ,

&subject

	

"fleurons "

sets the subject to the specified string and also automaticall y
sets the keyword &pos to 1, positioning it at the beginning o f
the subject .

A typical scanning operation is move(n) . Unlike its counter -
parts in SNOBOL4 and SL5 {which contruct a pattern and scannin g
environment, respectively), in Icon move(n) simply adds n to &po s
and returns as value the substring of &subject between the ol d
and new values of &pos . For example ,

repeat write(move(2))

prints the pairs of character s

f l
e u
r o
n s

The repeat loop is terminated when move can no longer advance th e
cursor by 2 .

Another scanning function is tab(n), which sets &pos to n and

-24-

returns as value the substring between the old and new values o f
&pos .

All the basic string analysis operations that specify a strin g
to be examined, e .g . upto(c,$) can be used in string scanning b y
omitting the string specification . If this is done, the value o f
s is assumed to be &subject starting at &pos . For exampl e

t := tab(upto("aeiou"))

assigns to t the portion of &subject from the current value o f
&pos up to the first vowel . Note that upto("aeiou") simply re -
turns an integer ; it does not change the position, which is don e
by tab . Similarly ,

&subject := s
t : =
while t := t II tab(upto(" ")) do tab(many(" "))

assigns to t the result of deleting all blanks from s .

A scanning operator in the style of SL5, s ? x, is provided i n
Icon . An equivalent form of the expressions above i s

s ? {t

	

"" ; while t

	

t II tab(upto(" ")) do tab(many(" ")) }

Note that any language operation can be used in string scanning .
In the example above, this includes assignment, while, concatena-
tion, in addition to the string operations . The usefulness o f
this mechanism is particularly evident when the intermediat e
values of scanning are to be processed . An example i s

s ? repeat write(process(move(2)))

where process(s) is some defined procedure . Compare this to th e
methods that are required in SNOBOL4 and SL5 .

6 .	 Procedure s

An Icon program is composed of declarations . Procedures ar e
declared in the form

procedur e
<header >
<declarations >
<body >

end

An example i s

procedure clear(l,i) local j
j := 0
repeat 1[j+] := i
return

end

-25 -

which declares clear to be a procedure . The identifiers 1 and i
are formal parameters and j is a local identifier within th e
procedure .

A procedure may suspend execution rather than returning . The
difference between suspend and return is that a suspended proce-
dure can be reactivated at the point of suspension . Thus proce-
dures may serve as programmer-defined generators . An example i s

procedure suffix(s,n) local i
every i := n to size(s) do suspend section(s,i)
fai l

end

This procedure generates successively shorter suffixes of th e
string s, starting at n . An example of its use i s

every t

	

suffix(s,l) do write (t)

which prints all the suffixes of s .

There are three kinds of identifier declarations : scope ,
retention, and type . The form of a declaration i s

<scope> <retention> <identifier> :<type >

The various declarations are optional and have defaults, but a t
least a scope or retention declaration must be present .

A type declaration specifies the type of an identifier . Th e
possible types include those given in Section 2 as well as recor d
types, which are described in Section 11 . An example i s

j :intege r

which declares j to be an integer .

The type any may be used to indicate an identifier that ma y
have any type (as in SNOBOL4 and SL5) . If no type is given, an y
is assumed .

Scope declarations limit the accessibility of identifiers .
There are two scope declarations : local and global . A loca l
identifier is accessible only within the invocation of the proce-
dure in which it is declared . Global identifiers are accessibl e
to all procedure invocations . An example of a scope declaratio n
is

local s :string

which declares s to be a local identifier of type string .

Undeclared identifiers ordinarily default to local, althoug h
the default may be changed to global or error . If the default i s
error, undeclared identifiers are diagnosed as programmin g
errors .

-26 -

The retention declarations are dynamic and static . The
dynamic declaration, which is the default, causes storage to b e
allocated for local identifiers on each invocation of the proce-
dure in which they appear . The static declaration is similar t o
Algol own, and causes storage to be allocated permanently so tha t
the value of the corresponding identifier is retained from on e
invocation of the procedure to the next .

Formal parameters are local and dynamic, but may be typed . An
example i s

procedure clear(l :array,i :integer) local j :intege r

7. Character Set s

Character sets are used in functions such as upto(c,$) wher e
individual characters, but not their order, are important . If a
string is given in a context where a cset is expected, type con -
version occurs automatically .

The operation "'c produces the complement of c with respect t o
cset(&ascii) and provides a compact way of expressing csets b y
exclusion . When a string is converted to a character set, dupli-
cate characters are eliminated . The use of implicit type conver-
sion is illustrated by the following procedures, which define th e
usual set operations on character sets .

procedure union(csl,cs2)
return cset(csl II cs2)

end

procedure inter(csl,cs2)
return - (- csl II -cs2)

end

procedure differ(csl,cs2)
return - (-csl II cs2)

end

When a cset is converted to a string, the result is in alphabeti -
cal order (collating sequence) . This property of the conversio n
can be used to sort characters in a string .

8. Array s

Icon arrays are created by a reserved word construction tha t
has the for m

array <prototype> <type> <initial clause >

This construction creates an array described by the prototype ,
which is similar to that of SNOBOL4 . The type and initia l
clauses are optional and may be used to specify the type an d
initial value of all array elements . For example ,

x := array n+m integer initial 0

-27 -

creates a linear array of n+m integers each of which is initiall y
0 . Note that while an identifier may be declared to have typ e
array as i n

local x :array

the type for array elements is specified when the array i s
created .

The prototype may specify upper and lower bounds and multipl e
dimensions . For example ,

board

	

array -3 :3,-3 : 3

creates a two-dimensional array, each of whose bounds run from - 3
to 3 .

Arrays are heterogeneous unless declared otherwise .

One-origined linear arrays can be specified literally by giv -
ing the array element values in order with surrounding angula r
brackets . For exampl e

x := <1 .0,4 .0,6 .0 >

assigns to x a linear array containing three real numbers .

Arrays are referenced as in SNOBOL4 . An example i s

x[2] := x[3] * 3 .1415 9

Out-of-range array references ordinarily fail . A linear arra y
can be made expandable by the function open(a) . In expandabl e
moae, assignment to one position past the current length of th e
array causes the array to be extended automatically . An array o f
size zero is automatically open . For exampl e

y := array 0 strin g
i

	

0
repeat y[i+] := read()
close (y)

fills y with values from the input file, automatically extendin g
it . When the input is complete, the array is closed so tha t
further out-of-range references fail .

9 .	 Stack s

Stacks, with the conventional last-in, first-out access meth -
od, are created in a fashion similar to arrays . The form i s

stack <size> <type >

The size limits the depth of the stack . A zero (or omitted) siz e
produces a stack of unlimited depth . The usual access function s
are available : push(k,x), pop(k), and top(k) .

-28 -

Like arrays, stacks may be typed or heterogeneous .

10. Table s

Icon tables are similar to those in SNOBOL4, except that they
are created in a manner similar to arrays . The form i s

table <size> <type 1> <type 2> <initial clause >

The size limits the number of elements in the table . A zero (o r
omitted) size produces a table of unlimited size . The first and
second types may be used to type the subscripts and values of th e
table elements, respectively . For exampl e

wordcount := table string intege r

assigns to wordcount a table that has string subscripts and inte-
ger values .

Tables are ordinarily open for the addition of new references .
A table may be closed by close(t) . A reference to a nonexisten t
entry in a closed table fails . A table may be opened for ne w
references by open(t) .

11. Record s

Record types are declared in the for m

record <name >
<field 1> :<type 1> ,
<field 2> :<type 2> ,

<field n> :<type n >
end

The name specifies a new type and fields 1 through n are th e
names of fields defined on the type . For example ,

record complex r :real, i :real end

defines a new type of record, complex, with two real fields, r
and i .

The form for the creation of instances of records i s

<type> <value list >

For exampl e

z := complex 2 .0, 3 . 5

creates a record of type complex with initial values 2 .0 and 3 . 5
for the r and i fields, respectively .

-29 -

References to fields are made using the infix dot operator .
For example ,

z .r .- z .r + 3 . 0

adds 3 .0 to the r field of z .

Records can also be accessed like linear arrays . For exampl e

z[l] := z[l] + 3 . 0

is equivalent to the expression above .

12 . Input and Output

The function open(s) opens a file corresponding to the name s
and returns this file as value . Similarly, a file is closed b y
close(f) . A file that has been closed and reopened is automat-
ically rewound .

Note that open(x) and close(x) are polymorphous, and can b e
applied to files, arrays, or tables .

The function write(f,sl,s2, . . ., sn) writes the strings sl ,
s2, . . ., sn in sequence onto file f . If .f is omitted, the stand-
ard output file is assumed . That is, write(sl,s2, . . ., sn)
writes sl, s2, . . ., sn onto the standard output file . This func-
tion writes a complete line, appending a newline sequence auto-
matically .

The function read(f) reads a line from file f . If f is omit-
ted, the standard input file is assumed .

13 . A Programming Exampl e

A simple example of the use of Icon is illustrated by th e
following procedures which print the intersections at which tw o
words have characters in common [5] .

procedure cross(wordl,word2) local j, k
every j := upto(word2,wordl) d o

every k := upto(wordl[j],word2) d o
xprint(wordl,word2,j,k)

retur n
end

procedure xprint(wordl,word2,j,k) local pad
pad := repl(" ",j-l)
every write(pad,word2[1 to k-1])
write(wordl)
every write(pad,word2[k+l to size(word2)])
write()

end

The procedure cross first assigns to j a position in wordl at

3 0

which a character of word2 is found (the conversion of string t o
cset for the first argument of upto is done automatically) . Fo r
this value of j, a position in word2 where the jth character o f
wordl occurs is then assigned to k . The procedure xprint merel y
prints the intersection, with wordl being displayed horizontall y
and word2 being displayed vertically . The uses of every insur e
that all intersections is located .

As an example of the use of these procedures ,

cross("fish","school")

produces the outpu t

fis h
c
h
0
0
1

s
c

fish
0
0
1

14 . Status of Ico n

Icon is implemented in Ratfor [6] . Implementations for th e
DEC-10 and CYBER 175 are presently running and in use .

The system consists of a translator (written in Ratfor) tha t
produces Fortran code . This code, compiled and linked with a
library of runtime routines written in Ratfor, produces an exe -
cutable program .

Only a few of the runtime routines depend on specific compute r
architecture and system considerations . The system is quit e
portable and a number of other implementations are in progres s
and are planned .

Acknowledgement

We thank Walt Hansen for his suggestions and especially fo r
his patience in putting up with it all .

-31 -
Reference s

1. Griswold, Ralph E ., James F . Poage, and Ivan P . Polonsky .
The SNOBOL4 Programming Language, 2nd ed . Prentice-Hall, Engle -
wood Cliffs, New Jersey . --1971.

2. Griswold, Ralph E ., David R. Hanson, and John T . Korb . A n
Overview of the SL5 Programming Language . SL5 Project Documen t
gTD , T Uiiversi 3r -g ona, Tucson, Arizona . October 18 ,
1977 .

3. Griswold, Ralph E . An Alternative to the Concept o f
"Pattern" in _String Process -in-J . Technical Report TR 78--4 ,
Department of Computer Science, The University of Arizona, Tuc -
son, Arizona . April 10, 1978 .

4. Griswold, Ralph E . User's Manual for the Icon Programming
Language . Technical Report TR 78214 ; Department of ompu e r
Science, The University of Arizona, Tucson, Arizona . Septembe r
29, 1978 .

5. Wetherell, Charles . Etudes for Programmers . Prentice-Hall ,
Englewood Cliffs, New Jersey . -1978 . pp . 30-31 .

6. Kernighan, Brian W . and P . J . Plauger . Software Tools .
Addison-Wesley, Reading, Massachusetts . 1976 .	

