IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 1, JANUARY 1983 93

Measuring the Performance and Behavior
of lcon Programs

CARY A. COUTANT, RALPH E. GRISWOLD, AND DAVID R. HANSON, MEMBER, IEEE

Abstract—The importance of the ability to measure the performance
of programs written in high-level languages is well known. Performance
measurement enables users to locate and correct program inefficiencies
where automatic optimizations fail and provides a tool for understand-
ing program behavior. This paper describes performance measurement
facilities for the Icon programming language, and shows not only how
these facilities provided insight into program behavior, but also how
they were used to improve the implementation.

Index Terms—Icon, program measurement, storage management.

I. INTRODUCTION

HE importance of the ability to measure the performance

of programs written in high-level languages is well known
[12]. The most obvious advantage of measurement facilities
is the possibility of locating and correcting inefficiencies.
While compilers can perform many optimizations automat-
ically, there are also many situations in which user optimiza-
tions, based on measurement data, can improve program per-
formance where automatic techniques cannot. Measurement

Manuscript received September 10, 1980; revised August 13, 1982.
This work was supported by the National Science Foundation under
Grants MCS-7521757, MCS-7903890, and MCS-8101916.

C. A. Coutant was with the Department of Computer Science, Univer-
sity of Arizona, Tucson, AZ 85721. He is now with the Information
Systems Laboratory, Hewlett-Packard, Cupertino, CA 95014.

R. E. Griswold and D. R. Hanson are with the Department of Com-
puter Science, University of Arizona, Tucson, AZ 85721.

also provides an experimental tool for analyzing and under-
standing program behavior. In the case of complex algorithms
whose performance is sensitive to data load, analytic tech-
niques may be impractical and measurement may be the only
practical solution.

High-level languages, by their nature, present problems in
understanding performance and behavior that lower level
languages do not. A Fortran programmer, for example, can
usually relate Fortran language constructs to the machine
code produced by the Fortran compiler, and hence to the
basic operations of the computer. Most conventional com-
puters after all are “Fortran machines.” A SNOBOL4 or SETL
programmer, on the other hand, has no such ready mapping
between the source language and the operations of the com-
puter. This is, of course, the intent of such high-level lan-
guages: to provide language constructs suitable for formulating
solutions to complex problems that are unrelated to conven-
tional computer architecture.

Despite the evident importance of being able to measure the
performance of programs written in high-level languages, exist-
ing facilities typically are difficult to use and the results are
frequently misleading. Major shortcomings include inadequate
or incomplete resolution, inability to relate measurement data
to the source program, and excessive overhead.

Earlier work with the SNOBOL 4 programming language [17]
showed that measurement tools, as expected, can aid the pro-
grammer of a high-level programming language in improving

0098-5589/83/0100-0093$01.00 © 1983 IEEE

94 IEEE TRANSACTIONS ON SOFTWARE EMGINEERING, VOL. SE-9, NO. 1, JANUARY 1983

and understanding programs. They also can give insight into
the behavior of complex implementations, and, in fact, can
lead to improvements in implementations that cannot be
achieved by other means.

The work with SNOBOL4, however, required adding instru-
mentation to a long finished implementation. One of the con-
clusions of that work was that much better measurement tools
would have been possible if their design and implementation
were done concomitant with the implementation of the lan-
guage itself, as opposed to being ad hoc appendages (as is
typically the case).

This paper describes measurement tools developed for Icon,
a recently developed high-level programming language [5],
[7]. Since the measurement tools in Icon were designed and
implemented in conjunction with the implementation of the
language, they provided an opportunity to test the conclusions
drawn from the earlier work with SNOBOL4. In addition, Icon
has a number of unusual features for which the measurement
of program performance and behavior is, in itself, of interest.

Some of the instrumentation of Icon is conventional and is
not described here. An example is sampling in order to ob-
serve the behavior of the runtime routines. Such information
is easily obtained and is typical of measurements made by im-
plementors at the stage where implementation improvements
are being considered. This paper, however, is concerned with
less traditional approaches and techniques, particularly mea-
surement tools that give the user information on program be-
havior and performance directly related to the program test,
and the instrumentation of the storage management system to
aid in its development and improvement.

‘The next section gives an overview of Icon and its imple-
mentation. Section III reviews the major issues in the design
and implementation of performance measurement tools for
programming languages in general. In Section IV, the instru-
mentation of Icon is described and examples of the more
important measurement facilities are given. Some typical ex-
periences in the use of the measurement facilities are given in
Section V. Analysis of the storage management system in
Icon and its use to improve the implementation are the sub-
jects of Section V1.

II. THE IcoN PROGRAMMING LANGUAGE AND ITS
IMPLEMENTATION

The characteristics of the programming language being mea-
sured strongly affect the nature of the measurement facilities.
This is both inevitable and desirable—the user needs measure-
ment results that are easily related to the programming lan-
guage being used.

The organization of the Icon system and the way that it is
implemented affect program performance (but, hopefully, not
behavior). They also affect how instrumentation may be done
and, to some extent, what is measured. The relevant aspects
of Icon and its implementation are described in the following
sections.

A. Characteristics of the Icon Programming Language

Syntactically, Icon is an expression-based language in the
style of Algol 68 and Bliss [22] . and has most traditional con-

trol structures. The syntax of a language influences both the
selection of data to be measured and the methods of present-
ing it. There is a substantial difference in the approaches that
can be taken between a language whose syntax is hierarchical,
such as SNOBOL4 [16]. and a language with a recursive syntax
such as Icon. This matter is discussed in more detail in the
next section.

The major semantic characteristics of Icon, as they affect
program measurement are as follows:

1) automatic, dynamic storage management,

2) a variety of data types, including some unusual ones such
as character sets and SNOBOL 4-style tables,

3) lack of type declarations, with automatic type checking
and coercion in context,

4) goal-directed expression evaluation.

The first three characteristics of Icon are shared by other.
longer established languages like SNOBOL4. Goal-directed
evaluation is more novel, especially since it is a general feature
of Icon, instead of being limited to a particular part of the
language. as it is in SNOBOL4 pattern matching [6].

Associated with goal-directed evaluation in Icon are condi-
tional expressions that may succeed or fail (as in SNOBOL4)
and generators, which are expressions that may produce more
than one value, if this is required to achieve success (the
“goal”) in a larger surrounding expression. Comparison oper-
ations are typical of conditional expressions. For example,

x>y

succeeds if x is greater than y and fails otherwise. In Icon,

success and failure drive control structures, as in
ifx>y thenz :=xelsez =y

The concepts of success and failure, as opposed to Boolean
values, are more general in that they are transmitted to en-
closing expressions, so that any operation in Icon may fail
(if, for example, one of its operands fails).

One of the basic generators is alternation, el |e2, which
produces first one value and then another if the first value
does not lead to the success of the expression in which the
alternation is contained. An example the use of alternation is

if(x]y)>uthenz :=xelsex :=u

which assigns the value of x to z if ejther x or y is greater than
u; otherwise is assigns the value of u to x.
Another generator is
itojbyk

which generates successive integer values from i to j, inclu-
sive, using k as an increment. For example,

ifx=(0to 10 by 2)thenz :=0

assigns zero to z if the value of x is an even number between
zero and ten, inclusive.

There are many other generators in Icon, a number of which
are associated with string processing. For example,

find (s1, 52)

returns the position in 52 at which s occurs as a substring of

COUTANT er al.: PERFORMANCE AND BEHAVIOR OF ICON PROGRAMS 95

s2 (failing if there is no such position). Furthermore. it gen-
erates additional positions, as needed, from left to right, in
case sl occurs as a substring of s2 in more than one place.
Thus,

if i := find (51, §2) > 10 then write (i)

writes the first position at which sl occurs as a substring of
s2 at a position greater than ten, if there is such a position.

One important control structure in Icon causes generators
to produce all their values in sequence

every el doe2.
For every value produced by el, e2 is evaluated. For example,
every I = find (1. 52) do write (i)

writes all the positions at which s1 occurs as a substring of s2.
A knowledge of all features of Icon is not necessary to un-
derstand the examples given in this paper—most of the features
used in the examples are obvious. at least in their general
nature. For a more complete description of Icon, see [S]-[7].

B. The Implementation of Icon

The portable Icon system is written in Ratfor [11]. It has
been implemented on a number of computers. including the
CDC Cyber, Cray-1, DG MV8000, DEC-10, Honeywell 66/60,
IBM 370, PRIME 400. and VAX-11/780. lts instrumentation,
as part of the portable system is, also essentially portable. The
results described in this paper were obtained from the DEC-10
implementation.

The Icon system consists of two parts: a translator and a
runtime system. The translator converts an Icon program into
an executable code. This translated program, in turn. consists
primarily of calls to the runtime routines that carry out the
language operations. Because of language features like runtime
type checking and coercion, very little actual computation is
performed by the code produced by the translator. This im-
plementation strategy, which is used in a number of implemen-
tations of SNOBOL4 [2]. is not actually interpretive, since the
translated program is executable. However, the translated pro-
gram is primarily a driver and most prograrn execution occurs
in the runtime system.

A major component of the runtime system consists of stor-
age management routines [8]. Because of the importance of
storage management in Icon and its effect on the overall per-
formance of the language, storage management is an important
issue in itself. In fact. Icon programmers, like SNOBOL4 pro-
grammers, are often forced to consider the utilization of stor-
age, even though it is not part of the semantics of the language
per se.

The Icon storage management system consists of allocation
routines and regeneration (garbage collection) routines. Allo-
cation is a simple and fast process. Space is allocated con-
tiguously within a region. A pointer to the beginning of free
space is incremented to provide the space specified in an allo-
cation request. Storage regeneration, which occurs when there
is not enough space remaining to satisfy an allocation request.
is a complicated and relatively slow process that involves dis-

tinguishing data that must be saved from data that may be
discarded, relocation of saved data. and so on.

There are four regions in which data are allocated, corre-
sponding to the nature of the data: integer, string, qualifier,
and heap. Integers are allocated because the Fortran virtual
machine model does not allow any spare bits to differentiate
between words that contain integers and those that contain
pointers and such. A level of indirectness is therefore needed
to differentiate types. The string region contains character
data, while the qualifier region contains pointers into the
string regions that identify specific strings. Miscellaneous
objects, such as lists. records, and character sets are allocated
in the heap region.

Each region has its own allocation routine and regeneration
routine. There are provisions for enlarging regions and relocat-
ing adjacent regions if necessary.

IIl. TEcHNICAL PROBLEMS IN THE DESIGN OF
MEASUREMENT FACILITIES

There are a number of problems related to the design and
implementation of programming language measurement facil-
ities. General discussions of the problems and various ap-
proaches to solving them are given in [12], [18], and [20].
Examples of measurement facilities for specific languages are
given by [12], [21], [14] for Fortran, [18] for Algol-W, [15]
for Pascal. and [1] and [3] for Algol 68-R. This section pro-
vides a brief survey of the following major issues:

1) methods of measurement,

2) selection of activities to be measured,

3) charge back of activity to program function,

4) instrumentation,

5) space and time artifact,

6) presentation of the results.

A. Measurement Methods

There are several methods of measurement that are com-
monly used. One is periodic sampling, in which the measure-
ment facilities are activated by external interrupts from a
system clock. When an interrupt occurs, measurement rou-
tines gain control and generate measurement data such as the
location at which the interrupt occurred. If enough samples
are taken, the measurement data resemble randomly selected
data and, on the average, give an approximation to the actual
behavior of the program. For example, average times for the
execution of an operation can be approximated from the per-
centage of samples in which that operation is active. This
technique is the standard way of generating program histo-
grams and similar data [9] . [10].

There are several problems with periodic sampling. The
clocks available to the user typically lack resolution—a 60 Hz
frequency is common. With such a low sampling rate, a pro-
gram must run for a long period of time in order to produce
enough samples to give a meaningful picture of program ac-
tivity. For fast CPU's such long periods of program execution
may be inordinately expensive or may require artificial tech-
niques (such as multiple runs) to obtain enough samples to
measure real programs.

In some cases, other uses of the clock may bias or invalidate

96 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 1, JANUARY 1983

the results of sampling. For example. if the operating system
and a measurement routine use the same clock for different
purposes, there may be effects that violate the underlying as-
sumptions on which the interpretation of measurement data
are based. For example. on the DEC-10, which uses the clock
for scheduling, programs running on a heavily loaded system
may be timed as taking as much as 20 percent longer than
when run under light load conditions. These kinds of prob-
lems, which depend strongly on hardware and operating sys-
tem characteristics, reduce the accuracy of and confidence in
sampling measurements and make comparisons between runs
virtually useless.

The other commonly used method of measurement is event
monitoring. In this technique. selected program activities
trigger measurement routines. For example. a garbage collec-
tion may cause a measurement routine to be called. Thus data
can be gathered on specific events or on classes of activities.
This method is strongly influenced by the properties of the
language being measured and by the characteristics of its
implementation.

B. Selection of Activities for Measurement

The selection of activities to be measured and the actual data
to be produced is an interesting and complex problem and is
strongly influenced by the information that the user seeks. At
one extreme, specific aspects of program activity, such as stor-
age allocation. can be selected for measurement. At the other
extreme, a measurement facility may attempt to provide data
on all aspects of program behavior. While there are clearly lim-
itations to this approach, an approximation to it is an appeal-
ing starting point. especially for high-level languages. since
a priori assumptions about the most important aspects of pro-
gram behavior are suspect.

One of the first problems to resolve is the viewpoint from
which measurements are to be taken. Measurement may be at
the source-language level, in terms of the syntax and semantics
of a program: elementary operations, statements, blocks, pro-
cedures. and so forth. Measurement may also be in terms of
categories of program behavior, such as input/output, storage
allocation, structure referencing, and so forth. Progressing
farther from the source language, measurement may be in
terms of the specific implementation characteristics. such as
interpretive overhead and garbage collection for languages like
Lisp and SNOBOL4. For the implementor, information on
activity of the translated program or on the utilization of run-
time routines may be of interest.

The data that are to be produced when program activity is
sampled or when an event occurs must be determined. For the
most complete measurement, a record of relevant data, per-
haps including the time, may be produced for each sample
or event. For any significant amount of measurement, such
ecords cannot be kept in memory and must be written to
external storage. Other kinds of data, such as the total counts
for particular activities, usually can be kept in memory.

C. Charge Back

Charge back is concerned with the attribution of measure-
ment data to components of a program. The fact that a par-

ticular routine is called frequently may not be as interesting
as are the program activities that the routine causes. For ex-
ample. an operation that allocates storage may cause a garbage
collection. As with the selection of activities to be measured,
charge back may be related to the hierarchical structure of the
program itself, to categories of behavior, or to implementation
specifics.

D. Instrumentation

Instrumentation to obtain measurement data is an imple-
mentation matter and of less direct interest here than prob-
lems related to the selection and interpretation of the data.
Furthermore, instrumentation varies widely with the details of
the implementation being measured, as well as with hardware
and operating system architecture.

There are, however, two significantly different types of in-
strumentation: external and internal. External instrumenta-
tion does not require modification of the system being in-
strumented. As such, it is generally easier to implement, but
often cannot provide the desired data. Internal instrumenta-
tion, consisting of modifications to the implementation itself.
requires considerable knowledge of the system being instru-
mented. Internal instrumentation is. of course, much easier to
include as part of the original language implementation than
after the implementation is complete. In fact, consideration
of the desired characteristics of internal instrumentation may
allow instrumentation to be accommodated easily in the early
stages of language implementation, while such instrumentation
may be impractical if provisions are not made for it in advance.

The type of instrumentation depends on the type of mea-
surement. Periodic sampling can generally be done primarily
by external instrumentation, while event monitoring usually
requires internal instrumentation. Most instrumentations have
both internal and external components. although the former
may be minor. For example. periodic sampling may. in itself,
only require an external interrupt routine. Interpretation of
the data, especially charge back, may require some internal
modification. For example. relating the value of the pro-
gram counter to the appropriate program activity may re-
quire insertion of entry points not present in the original
implementation.

E. Measurement Artifact

The artifact of measurement—additional computational
resources that are needed for the measurement process—is
important. For measurement to be useful. its artifact must
be tolerable. Execution-time artifact can generally be kept
within acceptable ranges. Some forms of measurement can
be accomplished with less than a 10 percent increase in pro-
gram running time, although 30 percent is more typical. Mem-
ory space artifact similarly is usually in manageable ranges.
unless the system being measured is already using most of
the available memory. Artifacts of 5-20 percent are typical,
depending on the instrumentation.

External storage requirements often pose the most serious
problem, especially when “historical” measurement data are
needed. [f the measurement facility tends toward the “‘com-
plete,” it may be necessary to write dozens or even hundreds

COUTANT er al.. PERFORMANCE AND BEHAVIOR OF ICON PROGRAMS

of words for each sample or event measured, which can
quickly get out of hand.

Behavioral artifact also deserves consideration. In some sys-
tems, notably those with dynamic storage management sys-
tems. performance may be sensitive to the environment.
Measurement systems may. unintentionally, affect the system
they measure. For example. a measurement tool that uses
significant amounts of memory may produce misleading re-
sults for a system that relies on dynamic memory allocation.
This problem may be subtle and it usually requires analytical
treatment and a clear understanding of the implementation
and its sensitivity to, for example, the amount of memory
available to it.

F. Presentation of Measurement Results

Perhaps the most challenging aspect of the design and im-
plementation of measurement facilities is the presentation
of the results in a meaningful and useful manner. Common
measurement tools simply present a histogram of program
location counters, displayed against a program load map [12].
While such displays may be of some use in lower level lan-
guages. such as Fortran, they are essentially useless in a higher
level language such as Icon.

Selection is a basic difficulty in presentation. Most measure-
ment facilities are capable of generating enormous amounts
of data. Those that generate historical data are prone to this
problem. Programmers, however, need measurement data that
are related to the program in a meaningful way. Moreover, in
order to gain insight and isolate problems. the relevant aspects
of the data must be sharply focused.

It is typical to use postprocessing programs to display
measurement data. This technique provides flexibility—a
particularly important commodity—that is not feasible to
incorporate in the instrumentation of a processor itself. Post-
processing artifact cannot be ignored. A large amount of
measurement data combined with complex postprocessing can
easily take longer to process than it takes to collect the data in
the first place. It is not only the cost of this processing that is
important—the user of the program may be discouraged from
using a measurement tool that significantly adds to the time
and cost of program development.

IV. THE INSTRUMENTATION AND MEASUREMENT OF ICON

The design of measurement tools for Icon presented an
interesting problem. Some unusual aspects of the language,
especially generators and goal-directed evaluation. raised
questions about the type of measurement data that would be
useful. Furthermore, there was little experience with some of
the techniques used in the implementation. As a result, several
measurement tools were developed. The more traditional
tools, such as sampling, are not described here.

A. Choice of Measurement Tools

One problem is relating measurement data to the syntax of
Icon. In SNOBOL4, statements provide clearly delimited syn-
tactic units that are also natural semantic units. In Icon, ex-
pressions may be nested to an arbitrary depth: unlike SNO-
BOL 4. there is no fixed hierarchy of program structure except

97

the procedure. Therefore. it was decided to associate measure-
ment data with elementary ‘‘tokens —literals, identifiers. func-
tion calls, operators, structure references, and so on. An ex-
ample is given by the following program segment. in which the
beginning of each token is identified by an arrow:

sum ‘=sum + 1

L R B

line := process (read (f))
t ottt " t
count[n] =0

L b i

A procedure call, such as process (x), involves both runtime
access of the procedure name and its invocation. Hence, there
is a token both for the procedure name and for the left paren-
thesis. For the call of a built-in function, like read (f), there
is only a single token.

The usefulness of tallying program activities has long been
recognized [12]. This method. which has a low artifact, also
provi‘des detail—an important issue with respect to the be-
havior of generators and goal-directed evaluation. The two
most important Kinds of data that are obtained for the tokens
in a program are

1) activity—tallying each activation of a token,

2) allocation—keeping track of the amount of storage allo-
cated by each token (not all types of tokens cause allocation).

The results of such measurements are simply totals: how
many times each token is activated or how many words of
storage are allocated by each token.

The major advantages of this scheme are that measurement
data can be kept in memory during execution and written out
at program termination, rather than continually writing during
execution. Furthermore, the amount of data is small com-
pared to that required for historical records. The artifact is
thus reduced in all ways: running time, disk storage, and post-
processing. The penalty, of course, is that less information is
obtained by tallying than for historical records. The data are
continually integrated, and the instantaneous details of pro-
gram behavior are lost. The use of tallying constituted. in
part, an experiment to determine if that technique was suf-
ficiently useful to compensate for the loss of information.
Conclusions concerning the usefulness of tallying are given in
Section VII.

B. Instrumentation Techniques

To support the various kinds of tallying, the Icon translator
was modified to generate, conditionally, extra code to post
token numbers and save and restore them as necessary during
operations that change program context. As a byproduct of
translation, a file relating token numbers to their position in
the source program is produced. This file is used by post-
processing programs that produce displays of measurement
data. Counts are kept in internal arrays during execution—
one each for token activity and one for allocation. The size
of these arrays is proportional to the number of tokens in the
program. At the end of program execution, these arrays are
written to files that are used by postprocessing programs.

98 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 1, JANUARY 1983

C. Displays of Measurement Data

There are two basic forms of displays: tallies and averages.
Tallies simply give the total count for the program tokens—
activity or allocation. Averages are more useful for per-token
allocation.

Fig. 1 shows a portion of a typical display of tallying token
activity. The leftmost digit of each value is aligned under the
leftmost character of the token. Values are written on suc-
cessive lines where there is inadequate space between tokens
to place the values on the same line. Counts show the num-
ber of times each token is activated. For example, the every
loop in Fig. 1 was executed 100 times. A total of 6750 posi-
tions of the string “ab™ were found in line. The additional
100 activations of find occurred for each of the 100 times
*ab”" was not found. Note that in goal-directed evaluation,
the generator is repeatedly activated without reevaluating the
arguments [7].

Program activity gives insight into program behavior such as
the number of times a loop is entered. Token activity may
also show interesting characteristics of familiar computations.
Fig. 2 shows the activity resulting from the computation of
Ackermann’s function. The call that produced these results
was acker (3, 5).

An example of the number of words allocated per token
is shown in Fig. 3. This procedure constructs “meandering
strings,” strings that contain all substrings of a given length
from a specified alphabet of characters [4].

V. EXPERIENCE WITH USE OF THE MEASUREMENT
FACILITIES

The use of periodic sampling to locate “hot spots’ is well
established [12]. In high-level programming languages, such
measurements are less meaningful than they are in lower level
languages, since complex processes may be associated with
apparently simple language constructions and it may be in-
correct to assume that the performance of a program in a high-
level language can be improved by concentration of the areas
of the program where most of the time is spent. It is often dif-
ficult to determine if such “hot spots™ are due to inefficient
coding, unusual amounts of storage allocation (possibly indi-
cating inappropriate data representation), poor algorithms, or
a combination of causes. The following examples, taken from
real experiences using the various performance measurement
tools described in this paper, illustrate the range of possibilities.

A. Automatic Type Coercion

A potential inefficiency in Icon relates to automatic type
coercion. For the Icon programmer, not having to worry
about whether a value is a string or a character set. for ex-
ample, is a convenience—but a potentially expensive one. If
a value happens to be a character set that is used in an opera-
tion requiring a string, the coercion is performed automatically
and the program works the same way it would if the value
were a string. The cost may be high, indeed, if the coercion is
performed in an inner loop. For each iteration of the loop.
there is both the cost of the coercion itself and the space al-
located for the string. Periodic sampling may show the loop to
be time-consuming, but not show the cause (if the operation is

every i ;= find("ab", line) do write (i)
100 100 &S0 100 [0 8750 615
(320 6750

Fig. 1. An example of tallying token counts.

procedure acker(n,m)
if n =0 then return m + 1

1208 443 N6 11096
42438 2109¢
2240 21096
it m = 0 then return acker(n — 1,1)
MYV IR IR TR FY M1 W
nwe ur w1
NRY}) p3
return acker{n — 1.acker(n.m = t}}
NS DIWS s 2es 09 Z109S
NI 24095
2498 21098
11085 21095
end

Fig. 2. Computation of Ackermann’s function.

procedure meander (aipha.n)
locats. t,i.c. k
i =K := gize (alpha)
t=1-n
X))
s := repi(alpha[i].n — 1)
175 lao
while ¢ = aiphali] do |
199
if tind (section(s.t) (| ¢.)
028 im
200
theni:=i—telse{s=s||cii=K]
ME

i
return s
end

Fig. 3. An example of average allocation.

while line := read() do
97
write(lfile.map(line,ucase,lcase))
9.78 x50 XS0

Fig. 4. Average storage allocation showing type conversion.

a high-level one, the programmer may assume that the opera-
tion itself is consuming the time). Measurement of average
storage allocation, however, makes the problem clear.

Consider Fig. 4, in which the line of code in the inner loop
copies an input file to an output file. converting uppercase
letters to lowercase letters. Here lcase and ucase are character
sets containing the upper and lowercase letters, respectively.
The function map, however, requires its arguments to be
strings. The allocation measurement shows a clear problem,
since there is allocation associated with the arguments as a
result of conversion of characters sets to strings. This section
of code runs about one-third faster if lcase and wucase are
coerced to strings outside the loop, eliminating the allocation
resulting from coercion within the loop.

Examples such as this have led to the development of coding
caveats for Icon programmers. Such examples also suggest
possible heuristics for the implementation and even potential
changes in the design of the language.

B. Ordering Program Components

In some programs, the order in which tests are made or in
which processing is done is optional, but the choice may affect
program performance. The best order may be impossible to
determine analytically if it depends on data. Here token
counting proves useful.

COUTANT er al.: PERFORMANCE AND BEHAVIOR OF ICON PROGRAMS 99

An example occurred in a typesetting program in which
formatting codes in the input document select processing func-
tions through a very large case expression. In Icon, case selec-
tors are examined linearly. Originally, the case selectors were
arranged alphabetically (a logical choice and one that is useful
for program development). Unfortunately, alphabetical order
was far from optimal in terms of case selection and the prob-
lem was obvious, even if the optimal order was not.

One method of obtaining a more nearly optimal order is to
analyze existing documents. This requires writing an auxiliary
program to do the analysis, and in some situations may be im-
practical since representative documents may not be accessible
to the author of the typsetting program. Tallying, however,
provides the data as the program is actually used and shows
unexpectedly frequent use of some formatting codes. A re-
ordering of the case selectors to reflect this empirical data
resulted in an 8 percent improvement in overall program per-
formance, and considerably more in some situations.

C. Algorithm Design

‘Whether an algorithm is “good” or ‘bad” often depends on
the data it processes. This was shown dramatically in a pro-
gram for determining transitive closure of a graph. In this
program, graph nodes are represented by single characters
and arcs by character pairs. For example, AB represents an
arc from node A to node B. A graph is then represented by
a list of two items. one consisting of the nodes and the other
consisting of a string of its arcs. One frequently used pro-
cedure, successors(n,g) determines the set of successors of a
set of nodes n in graph g. There are basically two alternative
approaches to computing the required set:

1) examine every odd position to determine if it is a mem-
ber of the set n,

2) examine every position in which a member of n occurs to
determine if it is odd.

Method 1 was the one used when the program was initially
written. On examination of token activity, it was immediately
obvious that this was the wrong choice. When method 2 was
selected, the entire program ran two to five times faster, de-
pending on the graph! Figs. 5 and 6 clearly show why.

It might be argued that method 2 should have been used in
the first place. While that may be true, it is nonetheless a fact
that the program was written using method 1 and the source
of inefficiency was discovered by examining token activity.
Furthermore, information from token sampling, as opposed to
token activity, is open to different interpretations (such as
possible disparities in timings for different operations). It is
also interesting to note that the most efficient choice actually
depends on the data: for graphs that are very dense, method 1
is more efficient: for sparse graphs, method 2 is more efficient.

D. Behavior of Generators

As indicated earlier, generators and goal-directed evaluation
are important components of Icon. In particular, they allow
concise and natural formulations for many kinds of computa-
tions. For example.

find(s1.s2) > find (s3.54)

procedure successors(n.g)
local i, arcs, t

arcs 1= g2}
67 8787

61
every i := 1 to size{arcs) by 2 do
a? 61 a1 67 67 67

1), 7] 1
11859
if upto(n.arcs[i}) then t :=t || arcs[i+1]
U N M2 1
(TR AT E, » I b) M an m
12 m
[M]]
return cset(t)
LY a7 #?

end

Fig. 5. Token counts for method 1.

procedure successors(n,g)
tocal i, arcs, t
arcs = g[2)
Y 67 A7
o7
87
n ;= cset(n)
a1 a7 87
67

every i = upto(n.arcs) do
a? 67 119 o7 123
1" a7
it mod(i.2) = 1 then t 1=t || arcs(i+1]
"2y 1231123 moanoamom
02 123 un 171 m
m (M}
(3]
return cset(t)
Y 8 87
end

Fig. 6. Token counts for method 2.

succeeds provided that s1 occurs as a substring of s2 at a posi-
tion that is greater than an occurrence of s3 as a substring of
s4. With generators and goal-directed evaluation, this compu-
tation occurs automatically; without them, the programmer
must provide loops and auxiliary identifiers.

In such expressions, the goal-directed evaluation mechanism
of Icon “searches” for a solution and the programmer need
not be concerned with the details. Such searches, however,
may involve significant computation and the combinatorial
possibilities in complex expressions are a potential cause for
concern. The same situation exists in SNOBOL4, where a
backtracking pattern-matching routine may perform time-
consuming searches in apparently innocuous situaticns [6].
The greatest sources of inefficiency occur when a search is
conducted in an inappropriate way or unnecessarily.

The activity of tokens shows such situations clearly, since
each time a generator is activated to produce a value, that
activation is tallied. An example is given in Fig. 7, which
shows the results of measuring a loop that counts all the oc-
currences of the character ¢t between positions 10 and 20 in
a text file. This measurement shows an excessively large num-
ber of activations of the

10 to 20

expression. The problem with this naive use of generators is
that the position of every instance of ¢ is compared with each
of the values from 10 to 20, instead of using a range check.
Furthermore, the comparison continues even after the posi-
tions become greater than 20:

100 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 1, JANUARY 1983

count =0
| [
while line := read() do
) LTI) 00
wi
every fing("t" line) = (10 to 20) do
W TN W0 M0 M 0sd N2
M A
count = count + 1
(KO I M "
1 n

Fig. 7. A use of generators.

count =0
1 [
while line := read() do
! LT w
0l
every i ™= hng("t" line) do |
0 M0 $9 W00 300 M9

we
if i < 10 then next
349 97

u9
iti > 20 then break
280082 120
252
count ;= count + 1
[N [N [R>)
BN 132

Fig. 8. An alternative approach.

The results of a more reasonable coding technique are shown
in Fig. 8. This approach is about twice as fast as the former
one for typical data files.

Thus, tallies of token activity may show not only "‘hot
spots” due to the inappropriate use of generators, but also
indicate the causes of the unnecessary computation.

V1. INSTRUMENTATION OF STORAGE MANAGEMENT
IN IcoN

The management of storage in high-level programming lan-
guages presents many problems. It is particularly important
to be able to measure particular storage management tech-
niques in the environment of the running program [13].
Earlier work on the measurement of the storage management
system of an implementation of SNOBOL4 [17] indicated that
performance analysis could give new insights and suggest im-
provements. even to well-established systems. In particular, it
was discovered that some heuristics, which appeared to be
sound in the abstract. either did little to improve performance
or actually degraded it. Similarly, measurement suggested new
heuristics that produced significant performance improve-
ments. That work produced the following recommendations.

1) A basically simple strategy for storage management
should be chosen for the initial implementation.

2) A measurement facility should be incorporated in the
design from the beginning.

3) Using this measurement facility, sources of inefficiency
should be sought and heuristics or more complex strategies
should be added only as there is evidence of the need for them
and their utility in practice.

A. Measurement of Storage Management

Icon provided an ideal opportunity to test these recom-
mendations. The Icon storage management system must sup-
port the allocation of many kinds of objects for a language
with which experience was lacking. The storage requirements
of Icon were sufficiently different from those of SNOBOL4
that details of earlier work were not directly applicable. Finally,

the implementation of storage management in Icon could
be modified easily if the results of measurement suggested
changes.

There were two specific a priori concerns about storage man-
agement in Icon. One was the issue of allocating integers.
Integers are also allocated in the MACRO SPITBOL imple-
mentation of SNOBOLA [2]. While the allocation of integers
appears to have no significant impact on the overall perfor-
mance of MACRO SPITBOL, there is no quantitative data to
verify this [19].

Another issue was ‘“thrashing,” which may occur when the
available space in a storage region is small compared to the
amount needed. In this situation, an allocation request may
result in a regeneration of storage with very little excess space
being recovered beyond the amount that was requested. Asa
result. storage regenerations may occur very frequently.

Following the recommendations given above, the storage
management system made no a priori provision for handling
these two issues. Rather, instrumentation was added and
measurements were performed.

This instrumentation simply accumulates, in memory. the
following information for each storage region:

1) the number of allocation requests.

2) the number of elements allocated (the number of words
per element is machine dependent and varies from region to
region),

3) the number of storage regenerations,

4) the time, in milliseconds, required for storage regeneration,

5) the number of times a region must be expanded,

6) the time, in milliseconds. required for expansion,

7) the final size of each region.

The accumulated information is printed when program ex-
ecution is completed. Fig. 9 shows a typical summary of
storage management activity. The CPU time is the total time
required for program execution, which may, for example, be
compared with the time required for storage regenerations.
Fewer integers are allocated than requested, since some fre-
quently used integers are preallocated (see Section VI-B).

The time required for allocation is not given, since it is so
small that the measurement artifact would be unacceptably
large. Allocation time, however, can be computed from
analysis of the code in the allocation routines and the num-
ber and amount of allocation shown in the summary. Re-
generation time, however, depends very much on the history
of program execution and the configuration of memory
when regeneration occurs and is not amenable to analytic
approaches.

The summary in Fig. 9 is for a program that does a great deal
of string processing, but in which most of the data is of a tran-
sient nature. As indicated. storage regeneration reclaims space
for continued processing without the need for expanding the
storage regions. To illustrate how much storage management
may vary from program to program, storage activity for the
computation of Ackermann’s function is shown in Fig. 10.

B. Results

Measurement confirmed that while integer allocation is not
a major source of inefficiency in most programs, significant

COUTANT et al.: PERFORMANCE AND BEHAVIOR OF ICON PROGRAMS

CPU time: 396600 ms

String Qual.
Allocations 60008 60011
Elements alloc. 20160222 60011
Regencrations W76 307
Elements recov. 2159352 5992
Regen. time 16559 11637
Fxpansions "0 0
Expan. time 0 0
Final size 999 200

101

int. Heap Total
10002 n

9901 653

102 0

9894 0

1126 0 29122
0 0

0 0 [1]

200 653

Fig. 9. Summary of storage management activity.

CPU ume: 42906 ms

String Qual.
Allocations s 3
Etements alloc. 139 8
Regenerations 0 0
Elements recov. 0]
Regen. time 0 0
Expansions 0 0
Expan. time 0 0
Finalsize 999 200

Int. Heap Total
63537 16

11954 609

n 0

11649 0

2041 [2041
] 1]

56 0 56
416 609

Fig. 10. Summary of storage management for Ackermann’s function.

improvement could be made for some programs by special
casing commonly occurring integers and preallocating them.
The effects of preallocation are reflected in Figs. 9 and 10.
This heuristic helps to reduce the number of integer alloca-
tions for loop indexes, for example. The improvement ranged
from 5 percent for most programs to 30 percent for programs
that allocated many transient integers, such as the program in
Fig. 10. Measurement also guided the implementation of this
heuristic; beyond a certain value, permanent allocation of in-
tegers did not result in significant improvement. At present,
the integers 0-100 are preallocated.

The most dramatic improvement was obtained by adding a
dynamic ‘‘breathing room’ heuristic [8]). This heuristic allows
storage areas to adapt their expansion requirements to the
demands that are experienced by the running program. By
performing measurements and experimenting with heuristics,
an average improvement of over 50 percent in the overall run-
ning speed of Icon programs was obtained, and some programs
run five times faster than before. (Figs. 9 and 10 show times
after the heuristic was added.) While some improvement was
expected. the magnitude of the effect was a surprise.

VII. CONCLUSIONS

Few of the instrumentation techniques used in Icon are
novel. It is unlikely, however, that the instrumentation for
tallying could have been incorporated if it had not been antic-
ipated in the early stages of the implementation. This illus-
trates the value of incorporating measurement facilities as part
of the implementation design. A measurement system added
onto an existing implementation of Icon would probably have
had quite different characteristics, dictated by the problems of
modifying a completed implementation.

A. Usefulness of Measurement Tools to Programmers

Experience has shown that performance measurement facil-
ities for high-level programming languages can be useful in aid-
ing the programmer to improve the efficiency of programs, to
locate errors, and to understand program behavior. Informa-
tion gained from studying measurement data may lead to

better programming techniques in general, especially in the use
of language features that have no correspondence in conven-
tional machine architecture. Algorithmic inefficiencies, es-
pecially in cases where performance depends on data. can also
be detected by use of performance measurement. Similarly.
data representation can be improved by experiments in situa-
tions where analysis is intractable.

Tallying proved to be remarkably useful. The low artifact
makes the tools easy and economical to use and the informa-
tion obtained is adequate for most purposes. While historical
records have the inherent appeal of providing detail and also
for showing the way performance and behavior may change
during the time a program executes, experience with the use
of the tools described here, compared with those developed
earlier for SNOBOL4 [16], [17], suggests that simplicity and
economy are often more desirable than completeness and
detail.

Measurement of program activity at the token level proved
unexpectedly useful, both in locating performance problems
and in understanding program behavior. Much of the useful-
ness of activity measurement stems from its exact nature.
While timings may have numerous interpretations, tallies of
activations do not. Furthermore, program activity, reflected in
such tallying, whether at the token level or some other, is
relevant in almost all programming languages and should be
given greater attention.

A relatively unexplored area in Icon is the measurement of
token activity to illuminate the processes that go on during
goal-directed evaluation. The combinatorial aspects of gen-
erators deserve study, especially as they relate to the relative
efficiency or inefficiency of searches. Icon allows concise pro-
gramming techniques using goal-directed evaluation without
exposing potential combinatorial problems that would be self-
evident in more traditional loop-oriented paradigms. On the
other hand, goal-directed evaluation often allows more effi-
cient computation by internalizing loops. A simple illustra-
tion is given by the activity shown in Fig. 1.

Despite the success of the measurement tools, there are lim-
itations to the usefulness of performance measurement in Icon

102 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 1, JANUARY 1983

as well as in other high-level programming languages. The
most fundamental problem is the inherent conflict between
measurement and the motivation for high-level languages. In
a lower level language such as Fortran, a programmer can
readily relate measurement data to the program and see direct
ways of making improvements. One of the motivations for
high-level languages, however, is to get closer to the problem
domain and farther from the constraints of conventional com-
puter architecture. Program constructs are phrased in terms
that the programmer can relate to the problem to be solved
and not in terms of machine instructions. As a result, mea-
surement data related to the machine on which a high-level
program is run may be essentially meaningless to the pro-
grammer. On the other hand. if the measurement data are
related to the high-level constructs, it is hard for the pro-
grammer to detect inefficiencies or to see how to correct
them.

In fact, the user of a high-level language may need to have
an expert understanding of its implementation in order to use
measurement data to its best advantage. This, however, is in
conflict with the motivation for high-level languages—that the
programmer not have to know about what is going on, but
rather may concentrate on the problem domain and the con-
cepts appropriate to it. This conflict appears fundamental and
unreconcilable.

B. Usefulness of Measurement Tools to Implementors

The implementors of high-level programming languages
may be able to make better use of such facilities than the
programmers that use the languages. In a number of instances
program measurement has highlighted an implementation
problem—either a bug or an inefficiency. Whether or not it
should be the case, it is clear that implementors of high-level
languages rely on conventional wisdom, experience (perhaps
imperfectly verified), and on intuition, especially in the design
of systems to support high-level processes such as automatic
storage management. Instrumentation and measurement re-
veals the actual situation and replaces conjecture by fact.
There appears to be no better method to dispel myths in this
complex and difficult area.

Experience with Icon highlights the importance of incor-
porating measurement facilities in the initial design of an
implementation rather than waiting until the implementation is
complete. It is usually very difficult to add measurement facil-
ities to a completed implementation. Even if they can be
added, it may be necessary to make compromises that would
not have been necessary if they had been considered in the
design. Since a major benefit of performance measurement
of high-level languages appears to be in improving the quality
of implementations, measurement tools and their instrumenta-
tion should be an integral part of the initial design and should
be used while there is still time to modify the implementation,

ACKNOWLEDGMENT
J. Davidson, T. Korb, and S. Wampler all made contributions
to the work described in this paper. The suggestions of the
referees were also very helpful.

REFERENCES

[1] D. F. Brailsford, E. Foxley, K. C. Marder, and D. J. Morgan,
“Runtime profiling of Algol 68-R programs using DIDYMUS and
SCAMP,” SIGPLAN Notices, vol. 12, pp. 27-33, June 1977.

[2] R. B. K. Dewar and A. P. McCann, “MACRO SPITBOL-A
SNOBOL4 compiler,” Sofrwere—Practice and Experience, vol.
7, pp. 95-113, Jan. 1977.

[3] E. Foxley and D. J. Morgan, “Monitoring the runtime activity

- of Algol 68-R programs,” Software—Practice and Experience,
vol. 8, pp. 29-34, Jan. 1978.

[4] J. F. Gimpel and W. Keister, ‘‘Minimal meandering strings,” Bell
Labs,, Holmdel, NJ, Tech. Rep., July 1970.

[5] R. E. Griswold, D. R. Hanson, and J. T. Korb, *The icon pro-
gramming language: An overview,” SIGPLAN Notrices, vol. 14,
pp. 18-31, Apr. 1979.

{6] R. E. Griswold and D. R. Hanson, “‘An alternative to the use of
patterns in string processing,”” ACM Trans. Programming Lan-
guages and Systems, vol. 2, pp. 153-172, Apr. 1980.

[7) R. E. Griswold, D. R. Hanson, and J. T. Korb, “Generators in
Icon,” ACM Trans. Programming Languages and Systems, vol. 3,
pp. 144-161, Apr. 1981.

[8] D. R. Hanson, “A portable storage management system for the
Icon programming language,” Software—~Practice and Experience,
vol. 10, pp. 489-500, June 1980.

[9] D. Ingalls, “The execution time profile as a measurement tool,”

in Design and Optimization of Compilers, R. Rustin, Ed. Engle-

wood Cliffs, NJ: Prentice-Hall, 1972, pp. 107-128.

S. Jasik, “Monitoring program execution on the CDC 6000 series

machines,” in Design and Optimization of Compilers, R. Rustin,

Ed. Englewood Cliffs, NJ: Prentice-Hall, 1972, pp. 129-136.

B. W. Kernighan and P. L. Plauger, Sofrware Tools. Reading,

MA: Addison-Wesley, 1976.

D. E. Knuth, “An empirical study of Fortran programs,” Soft-

ware—Pracrice and Experience, vol. 1, pp. 105-133, Apr. 1971.

B. W. Leverett and P. G. Hibbard, ““An adaptive system for dy-

namic storage allocation,” Software—Practice and Experience,

vol. 12, pp. 543-556, June 1982,

G. Lyon and R. B. Stillman, “Simple transforms for instrument-

ing Fortran programs,” Software—Practice and Experience, vol.

5,pp. 347-358, Oct. 1975.

S. Matwin and M. Missala, “A simple, machine independent tool

for obtaining rough measures of Pascal programs,” S/IGPLAN

Notices, vol. 11, pp. 42-45, Aug. 1976.

[16] G. D. Ripley, “Program perspectives: A relational representation

of measurement data,” JEEE Trans. Software Eng., vol. SE-3, pp.

296-300, July 1977.

G. D. Ripley, R. E. Griswold, and D. R. Hanson, “‘Performance

measurement of storage management in an implementation of

SNOBOL4,” IEEE Trans. Software Eng., vol. SE-4, pp. 130~

137, Mar. 1978.

E. Satterthwaite, “Debugging tools for high level languages,”

Software—Practice and Experience, vol. 2, pp. 197-217, July

1972,

D. Shields, private communication, 1979.

R. L. Sites, “Programming tools: Statement counts and pro-

cedure timings,” S/GPLAN Norices, vol. 13, pp. 98-101, Dec.

1978.

W. M. Waite, “A sampling monitor for applications programs,”

Software—Practice and Experience, vol. 3, pp. 75-79, Jan. 1973.

W. A. Wulf, D. B. Russell, and A. N. Habermann, “BLISS: A

language for systems programming,” Comm. ACM, vol. 14,

780-790, Dec. 1971.

(10]

[11]
(12]
(13]

[14]

(15]

(17]

(18]

[19]
120]

21]

122]

Cary A. Coutant was born in Chicago, IL, in
1956. He received the B.S. degree in physics in
1977 from Furman University, Greenville, SC,
and the M.S. degree in computer science in
1979 from the University of Arizona, Tucson.

He is presently a Development Engineer in
the Information Systems Laboratory, Hewlett-
Packard, Cupertino, CA. His areas of interest
are programming languages, operating systems,
and document preparation systems.

Mr. Coutant is a member of the Association
for Computing Machinery.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 1, JANUARY 1983

Ralph E. Griswold was born in Modesto, CA, on May 19, 1934, He
received the B.S. degree in physics in 1956, and the M.S. and Ph.D.
degrees in electrical engineering in 1960 and 1962, respectively, all
from Stanford University, Stanford, CA.

From 1962 to 1971, he was a member of the Technical Staff of Bell
Laboratories, where he was head of the Programming Research and
Development Department. He is presently Professor in the Department
of Computer Science, University of Arizona, Tucson. His research
interests include programming language design and implementation,
nonnumeric computing, programming methodology, and software
engineering.

Dr. Griswold is a member of the IEEE Computer Society, the Asso-
ciation for Computing Machinery, and the Association for Computa-
tional Linguistics.

103

David R. Hanson (M'72) was born in Oakland, CA, in 1948. He re-
ceived the B.S. degree in physics from Oregon State University, Cor-
vallis, and the M.S. degree in optical sciences in 1972, and the Ph.D. in
computer science in 1976, both from the University of Arizona, Tucson.

From 1970 to 1973, he was 2 member of the Research Staff at the
Western Electric Engineering Research Center, Princeton, NJ, where he
did applied research initially in laser physics and then in computer
science. From 1976 to 1977, he was an Assistant Professor of Com-
puter Science at Yale University, New Haven, CT. He is presently
Associate Professor of Computer Science and Head of the Department
of Computer Science at University of Arizona, Tucson. He is also an
Editor of Sofrware—Practice and Experience and a consultant for
several industrial laboratories. His areas of interest include program-
ming language design and implementation, software engineering, docu-
ment preparation systems, and operating systems.

Dr. Hanson is a member of the Association for Computing Machinery
and the IEEE Computer Society.

