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SUMMARY

1 cc is a retargetable, production compiler for ANSI C; it has been ported to the VAX, Motorola
68020, SPARC, and MIPS R3000, and some versions have been in use for over a year and a half.
It is smaller and faster than generally available alternatives, and its local code is comparable.
This paper describes the interface between the target-independent front end and the target-
dependent back ends. The interface consists of shared data structures, a few functions, and a
dag language. While this approach couples the front and back ends tightly, it results in efficient,
compact compilers. The interface is illustrated by detailing a code generator that emits naive
VAX code.
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1. INTRODUCTION

lcc is a retargetable compiler for ANSI C. 1 It has been ported to the VAX, Motorola 68020,
SPARC, and MIPS R3000. Its local code is comparable with that from other generally
available C compilers, but it runs up to twice as fast and is about half the size. lCc is in
production use at Princeton University and AT&T Bell Laboratories.

This paper describes the interface between the target-independent front end and the target-
dependent back ends. Good code-generation interfaces are hard to design. An inadequate
interface may force each back end to do work that could otherwise be done once in the front
end. Annotating frequently referenced variables for assignment to registers is an example.
If the interface is too small, it may not encode enough information to exploit new machines
thoroughly. If the interface is too large, the back ends may be needlessly complicated. These
competing demands require careful engineering of details, and re-engineering as new targets
expose flaws.

This paper reports the results of such experience. The detailed engineering is best presented
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by showing how is it used in an implementation. The interface is illustrated, therefore, by
most of a sample code generator for the VAX. This code generator emits naive code; i.e., it
uses only the ‘RISC subset’ of the VAX instruction set. It is nevertheless complete: when
used with a conforming preprocessor and library, the compiler with this code generator passes
the conformance section of Version 2.00 of the Plum Hall Validation Suite for ANSI C. The
production versions of lcc use the interface described here, but use back ends in which
instruction selection and optimization are generated automatically from a compact specifica-
tion. 2 The presentation does omit some trivial and repetitive constructs. Reference 3 gives
the complete sample.*

The interface consists of a few shared data structures, 18 functions, most of which are very
simple, and a 36-operator dag language, which encodes the executable code from a source
program. Table I summarizes the interface functions. The dag language corresponds to the
‘intermediate language’ used in other compilers, but it is smaller than typical intermediate
languages.

Table I. Interface Functions

Section Interface Function

5.1 void address (Symbol p, Symbol q, int n)
5.2 void blockbeg (Env *e)
5.2 void blockend (Env *e)
4 void defaddress (Symbol p)
4 void defconst (int ty, Value v)
4 void defstring (int len, char *s)
4 void defsymbol (Symbol p)
6.2 void emit (Node p)
4 void export (Symbol p)
5 void function (Symbol f, Symbol caller [],

symbol callee [] , int ncalls)
6.1 Node gen (Node p)
4 void global (Symbol p)
4 void import (Symbol p)
5. 1 void local (Symbol p)
3 void progbeg (int argc, char *argv [] )
3 void progend (void)
4 void segment (int s)
4 void space (int n)

*The lcc front end and the sample code generator are available for anonymous ftp from princeton.edu.
The file README in the directory pub/lcc gives details.
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2. BACKGROUND

lCC ’s interface consists of shared data structures and functions. The front and back ends are
tightly coupled in a single program. They are clients of one another. The front end calls on
the back end to generate and emit code. The back end calls on the front end to perform output,
allocate storage, interrogate types, and manage dags, symbols, and strings.
lcc ’s interface resembles others that pass structures, like trees, directly to the code gener-

ator. 4 This type of interface differs from abstract machines like EM, 5 P-code, 6 or U-code. 7

Abstract machine code resembles assembly or machine language for a fictitious computer 8

A front end emits a stream of instructions (in a text or compressed binary encoding) to a
logically separate back end.

Each approach has strengths and weaknesses. Abstract machine codes permit the front and
back ends, and perhaps an optimizer, to run as separate processes. Uni-process compilers
are generally faster, but multi-process compilers might run faster on some multi-processor
computers. If the compiler is complex, a multi-process compiler might simplify team devel-
opment.

Abstract machine code captures all required data in a single, monolithic encoding. lCC ’S

shared data structures include interface data in the same structure with data that is private to
the front and back ends. This problem, which cannot occur when front and back ends are
isolated, is managed by conventions that keep the front and back ends from interfering.

With abstract machines, a front end recodes its data structures into abstract machine code.
At a minimum, the back end reads and decodes the abstract machine code. It may also build its
own structures. lcc ’s shared structure avoids this overhead altogether. Its interface involves
no encoding, decoding, or, for multi-process compilers, I/O.

These differences can be reduced and even eliminated. For example, EM emitters have
been modified to generate machine code directly, 9 trading code quality for faster compilation.
And one of the back ends for lCC generates quadruples, which form an abstract machine. The
production lcc compilers, however, emit final assembly code faster than this back end emits
quadruples.

Some compilers use register transfers as an intermediate representation. 10,11 Register trans-
fers are most useful as a machine-independent representation of machine-specific instructions.
In particular, they are invaluable in machine-independent peephole optimizers. lCC ’S code
generators could use register transfers internally (an early one did), but the interface described
here is at a higher level, before the introduction of any target-specific data, except for the size
and alignment of the basic datatypes, which are required by the front end to compute field
offsets and structure sizes. 12 The interface described here is closer to the syntax trees used in
References  10 and 11 before register transfers are introduced.

3. CONFIGURATION

Target-specific configuration parameters specify the widths and alignments of the basic
datatypes and optionally define conditional compilation flags. They are defined in a ‘header’
file, config.h , which is included when a target-specific lCC is compiled.
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The sample type metrics and conditional compilation flags are defined as follows. Target-
specific fields of the shared data structures are defined in Sections  4 and 6.

#define VAX

/* type metrics: size, alignment, constants */
#define CHAR_METRICS 1,1,0
#define SHORT_METRICS 2,2,0
#define INT_METRICS 4,4,0
#define FLOAT_METRICS 4,4,1
#define DOUBLE_METRICS 8,4,1
#define POINTER_METRICS 4,4,0
#define STRUCT_ALIGN 1

#define LEFT_TO_RIGHT /* evaluate args left-to-right */
#define LITTLE_ENDIAN /* right-to-left bit fields */
#define JUMP_ON_RETURN 0

Type metrics give the size and alignment of the type in bytes and a flag. If the flag is 1
constants of that type cannot appear in instructions; the front end generates variables to hold
them.

Both the size and alignment for characters must be 1. To simplify the back end, unsigned
and long integers are assumed to have metrics identical to integer, and long doubles are
assumed to have metrics identical to double. The front end correctly treats all of these types
as distinct, however. POINTER_METRICS apply to all pointer types, and pointers must fit
in unsigned integers. The alignment of a structure is the maximum of the alignments of its
fields and STRUCT_ALIGN ; it is needed to conform with the layouts required by some target
systems.

If JUMP_ON_RETURN is non-zero, the front end generates a jump to a generated label for
each return statement and defines this label at the end of each function where the return
sequence must be emitted. Similar action is taken if the compiler is asked to generate data
for a debugger, because some debuggers assume a common exit point. Since the VAX does
returns with one instruction, its JUMP_ON_RETURN  is  0.

By default, the front end generates code that evaluates function arguments from right to left;
defining LEFT_TO_RIGHT yields the opposite order. A sequence of bit fields is laid out from
left to right in one or more unsigned values; defining LITTLE_ENDIAN yields a right-to-left
layout. The standard permits either argument evaluation or bit-field layout order.

The front end contains a few target-specific operations. These are protected by conditional
compilation on VAX, MIPS, MC, etc. Thus, VAX is defined above. During initialization, the
front end calls progbeg with those program arguments that it does not recognize, e.g., target-
specific options. At the end of compilation, the front end calls progend so the back end can
finalize its output.
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4. SYMBOLS

The front and back ends use symbol table entries to represent variables, constants, and labels.
They are represented by pointers to the following structure.

typedef struct symbol *Symbol;
struct symbol { /* symbol table entries: */

Xsymbol x; /* back end’ s type extension */
char *name; /* name */
unsigned char scope; /* scope level */
unsigned char class; /* storage class */
unsigned defined:1; /* 1 if defined */

unsigned temporary:1; /* 1 if a temporary */
unsigned generated:1; /* 1 if a generated identifier */
unsigned addressed:1; /* 1 if its address is taken */
Type type; /* data type */
union {

int label; /* labels: label value */
struct { /* constants: */

Value v; /* value */
symbol loc; /* out–of–line location */

} c;
int seg; /* globals statics: def segment */

} u;

};

The scope, class, and type fields give the symbol’s scope level, its storage class, and its
type, respectively. Most of the l-bit fields flag self-explanatory attributes for each symbol;
fields relevant only to the front end are elided above.

Scope values classify symbols as constants, labels, or variables. For labels, constants, and
some variables, afield of the union u supplies additional data.

Labels have a scope equal to the enumeration constant LABELS, and u.label is the
numeric value of the label. The name of a label is the string representation of u.label.
Labels have no type or class.

Constants havea scope equal to CONSTANTS, a class equal to STATIC, and a name equal
to th  estring representation of the constant. The actual value of the constant is stored in the
u.c.vfield, which is defined by

typedef union value { /* constant values: */
char sc; /* SIGNED/plain CHAR */
unsigned char uc; /* UNSIGNED CHAR */

short ss; /* SIGNED SHORT */

unsigned short us; /* UNSIGNED SHORT */
int i; /* INT */
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unsigned int u; /* UNSIGNED */
float f; /* FLOAT */

double d; /* DOUBLE */

char *p; /* POINTER to anything */
} Value;

If a variable is generated to hold the constant, u.c.loc points to the symbol table entry for
that variable.

Variables have a scope equal to GLOBAL, PARAM, or LOCAL + k for nesting level k. class
is STATIC , AUTO , EXTERN , or  REGISTER. The name of most variables is the name used in
the source code. For temporaries and other generated variables, name is a digit sequence.
temporary and generated are set for temporaries, and generated is set for other generated
variables, e.g., those that hold constants. For global and static variables, u.seg gives the
logical segment in which the variable is defined.

The type field for constants and variables points to a structure that describes types. The
size and align fields of this structure give, respectively, the size and alignment constraints
of the type in bytes.

The x field is an ‘extension’ in which the back end stores target-specific data for the symbol.
The sample requires only one field:

typedef struct {
char *name; /* name for back end */

} Xsymbol;

p- >name  identifies the symbol to the front end, but the back end may need to emit a different
‘name’. For example, the ‘name’ for locals is an offset from a frame pointer. p->x.name is
the back end’s name for the symbol.

Whenever the front end defines a new symbol for a constant, label, global, or static, it calls
defsymbol to give the back end an opportunity to initialize its Xsymbol fields. It is often
defined as a macro, e.g., for the sample defsymbol assigns the name field to the x. name
field. For parameters and locals, the Xsymbol fields are intialized by function and local,
respectively, and symbols that represent address expressions are initialized by address.
global emits code to define a global variable. The front end will follow the call to global

with any appropriate calls to the data initialization functions. global handles the necessary
alignment adjustments and the actual definition. The sample definition for global y is simply
_y: preceded by an alignment directive, if necessary:

void global (Symbol p) {
switch (p->type->align) {
case 2: print (" align 1; ") ; break;
case 4: print (" align 2; ") ; break;
case 8: print (" align 3; ") ; break;

}
print ("_%s : ", p->x. name) ;

}
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The underscore could be prefixed to y ’s  x.name when it is initialized instead of being included
in the back end’s output formats. print is a front-end function similar to the standard printf.
defconst (t y, v) emits the scalar v. t y is one of the values listed in the first seven lines

of Table II and indicates which field of  v  is to be emitted. These codes and the codes B and V
are also used for the dag operators, which are described in Section 6.

Table II. Type Suffixes

ty v  field type

C v.uc
S v.us
I v.i
U v.u
P v.p
F v.f
D v.d
B
V

character
short
int
unsigned
any pointer type
float
double
structure or block
void

The sample defconst is

void defconst (int ty, Value v) {
switch (ty) {
case C: print (" .byte %d\n", v.uc ); break;
case S: print (". word %d\n", v.us ); break;
case I : print (" . long %d\n", v.i ); break;
case U: print (" . long Ox%x\n", v.u ) ; break;
case P: print (" .long Ox%x\n", v.p ) ; break;
case F:

print (" .long Ox%x\n", ( (unsigned *) &v.f) [0]) ;

break;
case D:

print (" .long )X%X, Ox%x\n", ( (unsigned *) &v.d) [0] ,
((unsigned *) &v.d) [1]);

break;

}
}

In the production compilers, defconst accommodates cross-compilation, correcting for
different representations and byte orders.
defconst cannot leave the encoding of floating-point constants to the assembler, because

the assembler cannot cope with the effect of casts; few assemblers can. For example, the
correct initialization for
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double x = (float) 0.3;

is . long 0x999a3f 99, 0x0. The more natural directive . double 0.3 is wrong; it initial-
izes x to the equivalent of

long 0x99993 f99, 0x0999a9999

because it cannot represent the effect of the cast.
defstring (len, s) emits code to initialize a string of length len to the characters in s.

The front end converts escape sequences, like \n  , into the corresponding ASCII characters.
defaddress (p) emits the address denoted by p and space (n) emits code to allocate n zero
bytes.

Modules import identifiers defined elsewhere, and they export identifiers for use elsewhere.
The front end identifies an exported or imported symbol by calling export or import.

The front end announces a segment change by calling segment (s) wheres is one of CODE,
BSS, DATA, and LIT. The front end emits executable code into the CODE segment, uninitialized
variables into the BSS segment, initialized variables into the DATA segment, and constants
into the LIT segment. segment maps the logical segments onto the segments provided by
the target machine. The CODE and LIT segments can be mapped to read-only segments; the
others must be mapped to read/write segments.

5. FUNCTIONS

The front end completely consumes each function before passing any part of the function to the
back end. This organization permits certain optimization. For example, only by processing
complete functions can the front end identify the locals and parameters whose address is not
taken; only these variables may be assigned to registers.

The front end accumulates functions into private data structures. At the end of each function,
it calls function to generate and emit code. The typical f

void function (Symbol f, Symbol caller
Symbol callee [] , int ncalls) {
. . . initialize
gencode (caller, callee) ;
. . . emit prologue
emitcode ( ) ;
. . . emit epilogue

}

orm of function is

[],

gencode is a front-end routine that traverses the front end’s private structures and passes each
dag to the back end’s gen (see Section 6.1 ), which selects code, allocates registers, annotates
the dag to record its choices, and returns a dag pointer. emitcode is a front-end routine that
traverses the private structures again and passes each of the pointers from gen to emit (see
Section 6.2 ), which emits the code.
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This organization offers the back end flexibility in generating function prologue and epilogue
code. Before calling gencode , function initializes the Xsymbol fields of the function’s
parameters, as described below, and does other per-function initializations, if necessary. After
calling gencode, the size of the activation record, or frame, the number of registers used, etc.
are known; this information is usually needed to emit the prologue. After calling emitcode
to emit the code for the body of the function, function emits the epilogue.

The argument f to function is the pointer to the symbol table entry for the current
function, and ncalls  is the number of calls it makes. ncalls is useful on targets like the
SPARC where ‘leaf’ functions get special treatment.
caller and callee are zero-terminated arrays of pointers to symbol table entries. The

symbols in caller are the function parameters as passed by a caller; those in callee are the
parameters as seen within the function. For most functions, the symbols in each array are the
same, but they can differ in both class and type. For example, in

foo (x) float x; { . . . }

the ANSI standard specifies that actual arguments to foo be passed as doubles, but within
foo.x is a float. Thus, caller [0] ->type is double and callee [0] ->type is float.
And in

int strlen (register char *s) { . . . }

caller [0] ->class is AUTO and callee [0] –>class is REGISTER. Even without register
declarations, the front end assigns REGISTER class to frequently referenced parameters and
sets callee ’s class accordingly. This assignment is made only when there are no explicit
register locals to avoid interfering with the programmer’s intentions.
caller and callee are passed to gencode. lf caller [i] ->type is not equal to

callee [i] –>type or if caller [i] –>class is not equal to callee [i] –>class , then
gencode generates an assignment of caller [ i ] to callee [ i ]. If the types are not equal,
this assignment may include a conversion; for example, the assignment to x in foo truncates
a double to a float. For REGISTER parameters, function must assign a register and initialize
the x. name accordingly, or change the callee ’s class to AUTO.
function could also change callee [i] ->class from AUTO to REGISTER if it wished

to assign a register to that parameter. On the MIPS, for example, some of the parameters
are passed in registers, so function assigns those registers to the corresponding callees in
leaf functions. If, however, callee [i] - >addressed is set, the address of the parameter is
taken in the function body, and it must be stored in memory on most machines.

Initialization of the Xsymbol fields of the symbols in caller and callee depends on the
frame layout, which is target specific. Figure 1 shows the layout of the VAX frame; following
the standard reference, 13 the stack grows towards lower addresses and towards the top of the
page.

Arguments are referenced by displacement-mode addressing with positive offsets from
register ap , so the first argument is at address 4 ( ap ) . Locals are referenced via negative
offsets from f p , e.g., the first local is at - 4 ( f p ). The ‘argument build area’ is used to store
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sp
argument build area

locals

0 . fp
PSW

previous ap
previous fp
previous pc

saved registers

argument count ap

actual arguments

Figure 1. VAX Frame Layout

arguments to functions that are called by the current function. The front end ‘ un-nests’ calls
as required by back ends for targets that pass some arguments in registers. The argument
build area can thus be used for all calls and must be large enough to hold the largest argument
list. When a function is called, the caller’s argument build area becomes the callee’s ‘actual
arguments’.

Typical VAX calling sequences can handle nested calls, so using an argument build area is
not strictly necessary. But other targets, such as the MIPS, require this approach, so it is used
here to illustrate the technique. This approach also has the advantage that stack overflow can
occur only at function entry, which is useful on targets that require explicit prologue code to
detect stack overflow.

The sample version of function  is

static int frame size; /* size of

static int offset; /* current

static int argbuildsize; /* size of

activation record */

frame offset */

argument build area */

void function (Symbol f, Symbol caller [] ,

Symbol callee [] , int ncalls) {

int i;

offset = 4;

for (i = 0; caller [i] && callee [i] ; i++) {

offset = roundup (offset, caller [i] –>type–>align) ;

callee [i] ->x. name = caller [i]–>x. name = stringd (offset) ;
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offset += caller[i] –>type–>size;
callee[i]->class = AUTO;

}
usedmask = argbuildsize = framesize = offset = O;
gencode(caller, callee);

%s:.word Ox%x\n", f->x.name, usedmask&˜0x3f);print ("_
framesize += 4*nregs + argbuildsize;
print("sub12 $%d,sp\n", framesize);
if (instruct (freturn(f–>type) ))

print ("movl r1,-4(fp)\n");
emitcode() ;

}

The VAX calls instruction saves the general registers specified by the entry mask, ap , fp ,
and the return address, pc , as shown in the frame figure above. function computes the size
of the locals and argument build area, given by framesize and argbuildsize , respectively.

The first part of function initializes the x.name field of each caller and callee
symbol to the appropriate offset. The running offset is rounded up to the alignment for
each argument. roundup(n,m) is a front-end macro that returns n rounded up to the next
multiple of m. Depending on the type metrics, the size of an argument may not be a multiple
of longwords (e.g., 3-byte structures), but the front end ensures that the minimum alignment
for each caller[i] is that for integers, which keeps the VAX stack longword-aligned.
stringd(n) is a front-end function that returns the string representation of the integer n.
The appropriate base register, ap or fp, appears in instruction templates instead of appearing
in x.name.

This version of function does not support register declarations, so each callee ’s storage
class is set to AUTO.

During code generation, argbuildsize is increased as code for each argument is gen-
erated (see Section 6.1 ), offset is adjusted in response to the definition of locals and
block boundaries, and framesize records off set’s maximum. Before calling gencode,
function clears usedmask, which records the registers used in the function body, and clears
argbuildsize, framesize, and  offset.

After gencode returns, usedmask and framesize hold the information needed to generate
the prologue. framesize is adjusted to include the argument build area and space for saving
all of the registers. This space, which is in addition to that specified by the register save mask,
is used to save registers across those instructions that destroy fixed registers, like the character
copy instruction movc3. The subl2 instruction allocates the remainder of the frame.

The last instruction of the prologue is emitted only for functions that return structures.
For a function type ty, freturn (ty) gives the type of the value returned by the function,
and isstruct(ty) is true if ty is a structure or union type. Section 6 explains returning
structures.
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5.1 Locals

During the execution of gencode , the front end calls local to announce locals and
temporaries. local must initialize p ’s Xsymbol fields. That is, it must set p->x. name to
a stack offset or register number, depending on the availability of registers and on p ’s type
and class.

For each block, the front end first announces locals with explicit register declarations, in
order of declaration, to permit programmer control of register assignment. Then it announces
the rest, starting with those that appear to be most frequently referenced. It assigns REGISTER
class to even these locals if their address is never taken and if their estimated frequency
of use exceeds two, which approximates the cost of saving and restoring a register. This
announcement order and class override collaborate to put the most promising locals in
registers even if no registers were declared. As with parameters, local could assign a
register to p and change p->class from AUTO to REGISTER, but it should do so only if
p->addressed is not set.

If p->class is REGISTER, local can decline to allocate a register by setting p->class to
AUTO and initializing p->x. name to the appropriate frame address. This choice is illustrated
by the sample version:

void local (Symbol p) {
offset = roundup (offset + p–>type–>size, p–>type–>align) ;
offset = roundup (offset, 4) ;
p->x. name = stringd(–offset) ;
p->class = AUTO;

}

The second roundup keeps offset and hence the stack aligned on longwords.
The front end folds constant expressions, but it cannot fold those with symbolic operands

completely. These are announced by calling address (q, p, n) to initialize q ’s Xsymbol
fields to represent an address of the form x + n, where, x is the address represented by p. The
sample address is

void address (Symbol q, Symbol p, int n) {
q->x. name = stringf ("%s%s%d", p->x.name,

n > 0 ? "+" : "", n);

}

which sets q->x.name to p–>x. name concatenated with +n or –n. stringf returns a
pointer to a string formatted as specified by its print -style arguments. For example, in

struct node { struct node *link; int count; } a;
f() { int b[10]; b[4] = a.count; . . . }

suppose a and b point to the symbols for a and b, respectively. a–>x. name is set to “a”
by defsymbol, and b->x.name is set to "-40" by local. address (q1, a, 4) is called
with q1 representing the address of a. count, and q1–>x. name is set to "a+4". Likewise,
address (q2, b, 16) sets q2–>x. name to "-40+16" , which is the address of b[4].
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5.2 Compound Statements

Source-language blocks bracket the lifetime of locals. gencode announces the beginning
and end of a block by calling blockbeg (e) and blockend (e), respectively. The argument 
e points to a target-specific Env structure, which holds the data necessary to reuse registers
and frame space associated with the block. The sample Env is

typedef struct {

unsigned rmask;

int offset;

} Env;

The fields save the values of rmask and offset at the beginning of a block so that they can
be restored on the end of the block. The sample blockbeg and blockend are thus

void blockbeg(Env *e) {
e–>rmask = rmask;

e–>offset = offset;

}

void blockend(Env *e) {

if (offset > frame size)

framesize = offset;

offset = e–>offset;

rmask = e–>rmask;

}

blockend also updates framesize if the locals for the current block require more space
than previous blocks. The sample could do without the rmask field, but if its local assigned
registers to locals, it would need the field to release those registers.

Temporaries — locals with temporary set — to which local assigned registers live only
for the expressions in which they are used. They are announced by local as usual, but are
used only in the dags passed to next call on gen (see Section 6.1 ). gen can thus release all
registers assigned to temporaries.

6. DAGS

Executable code is specified by dags. A function body is a sequence of forests of dags, each
of which is passed to the back end via gen. Dag nodes, or simply nodes, are defined by

typedef struct node *Node;

struct node { /* dag nodes: */

Opcode op; /* operator */

short count; /* reference count */

symbol syms [MAXSYMS] ; /* symbols */
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Node kids [MAXKIDS]; /* operands */
Node link; /* next dag in the forest */
Xnode x; /* back-end’s type extension */

};

The kids point to the operand nodes. Some operators also take symbol table pointers as
operands; these appear in the syms array. The default and minimum allowable value for both
MAXKIDS and MAXSYMS is 2 ; larger values can be defined for the back end’s convenience in
the configuration file. count holds the number of references to this node from kids in other
nodes.  link points to the root of the next dag in the forest.

The x field is the back end’s ‘extension’ to nodes. The configuration defines the type Xnode
to hold the per-node data that the back end needs to generate code. The sample Xnode is

typedef struct {
unsigned visited: 1; /* 1 if dag has been linearized */
int reg; /* register number */
unsigned rmask; /* unshifted register mask */
unsigned busy; /* busy regs */
int argoffset; /* ARG: argument offset */
Node next; /* next node on emit list */

} Xnode;

Section  6.1 describes the fields.
The op field holds an operator. The last character of each is a type suffix from Table II. For

example, the generic operator ADD has the variants ADDI , ADDU , ADDP , ADDF , and ADDD.
Table III lists each generic operator, its valid type suffixes, and the number of kids and

syms that it uses; multiple values for kids indicate type-specific variations, which are detailed
below. For most operators, the type suffix denotes the type of operation to perform and the
type of the result. The operators for assignment, comparison, arguments, and some calls
return no results; their type suffixes denote the type of operation to perform.

The leaf operators yield the address of a variable or the value of a constant. syms [0]
identifies the variable or constant. The unary operators accept and yield a number, except for
INDIR, which accepts an address and yields the value at that address. The binary operators
accept two numbers and yield one. Exceptions are ADDP, in which the first integer operand is
added to the second pointer operand, and SUBP, which subtracts the second integer operand
from the first pointer operand.

The type suffix for a conversion operator denotes the type of the result. For example,
CVUI converts an unsigned ( U ) to an signed integer ( I ). Conversions between unsigned and
short or character are unsigned conversions; those between integer and short or character are
signed conversions. For example, CVSU converts an unsigned short to an unsigned while
CVSI converts an signed short to a signed integer.

To minimize the number of operators, the front end composes conversions to form those
not in the table. For example, it converts a short to a float by first converting it to an int and
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Table III. Node Operators
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syms kids operator type suffixes operation

1 0
1 0
1 0
1 0

1
1
1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2
2
2

01 2
1 2
1 2
1 2
1 2
1 2
1 2

2 1

ADDRF
ADDRG
ADDRL
CNST

BCOM
CVC
CVD
CVF
CVI
CVP
CVS
CVU
INDIR
NEG

ADD
BAND
BOR
BXOR
DIV
LSH
MOD
MUL
RSH
SUB

ASGN
EQ
GE
GT
LE
LT
NE

ARG
12 CALL
01 RET

1 JUMP
1 0 LABEL

P
P
P

CSIUPFD

U
IU
I F

D
C S U D

U
IU

CSI P
CSI PFDB
I FD

IUPFD
U
U
U
IU FD
IU
IU
IU FD
IU
IUPFD

CSI PFDB
IU FD
IU FD
IU FD
IU FD
IU FD
IU FD

I PFDB
I FDBV
I F D V

V
V

address of a parameter
address of a global
address of a local
constant

bitwise complement
convert from char
convert from double
convert from float
convert from int
convert from pointer
convert from short
convert from unsigned
fetch
negation

addition
bitwise AND
bitwise inclusive OR
bitwise exclusive OR
division
left shift
modulus
multiplication
right shift
subtraction

assignment
jump if equal
jump if greater than or equal
jump if greater than
jump if less than or equal
jump if less than
jump if not equal

argument
function call
return from function

unconditional jump
label definition
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then a double. The 16 conversion operators are represented by arrows in Figure 2. Composed
conversions follow the path from the source type to the destination type.

Figure 2. Conversions

There is no CVUD: conversion of an unsigned u to a double is done by the equivalent of the
expression

(int)u >= 0 ? (double) (int)u : (double) (int)u + x + 1

where x is the maximum value for an unsigned. Likewise, there is no CVDU ; conversion of a
double d to an unsigned is done by the equivalent of

d >= x +1 ? (unsigned) (int) (d- ( x +1) ) + x +1 : (unsigned) (int)d

where x is the maximum value for a signed integer.
ASGN stores the value of kids [ 1 ] in the cell addressed by kids [0] . ASGNB implements

structure assignment and other ‘block moves’ (e.g., initialization of automatic arrays). For
ASGNB, syms [ 0 ] points to a symbol for an integer constant that gives the number of bytes to
be moved.

For the comparisons, syms [ 0 ] points to a symbol table entry for the label to jump to if the
comparison is true. JUMPV is an unconditional jump to the address computed by kids [0].
LABEL defines the label given by syms [ 0 ] and is otherwise a no-op.

Function calls have a CALL node preceded by zero or more ARG nodes. The front end
‘un-nests’ function calls, so ARG nodes are always associated with the next CALL node in the
forest. ARG nodes establish the value computed by kids [ 0 ] as the next argument. syms [ 0 ]
and syms [ 1 ] point to symbol table entries for integer constants that give the size of the
argument and its alignment, respectively.

In CALL nodes, kids [ 0 ] computes the address of the callee. CALLB calls functions that
return structures; kids [ 1 ] computes the address of a temporary local variable to hold the
returned value. There is no RETB; the front end uses a RETV preceded by an ASGNB to
the structure addressed by the first local. The CALLB code and the function prologue must
collaborate to store the CALLB ’s kids [ 1 ] into the callee’s first local. function , local , and
the code emitted below for CALLB illustrate such collaboration. CALLB nodes have a count
of 0 because the front end references the temporary wherever the returned value is referenced.

In RET nodes, kids [ 0 ] computes the value returned, except for RETV nodes, which are
childless.
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To accommodate typical calling conventions, character and short integer arguments are
always promoted to the corresponding integer type even in the presence of a prototype. To
adhere to the standard, the promoted values are converted back to the intended type upon
entry to the function. The front end accomplishes this conversion by specifying the intended
types for the callee. For example, the body for

f (char c) { f (c) ; }

becomes two forests, which are shown in Figure 3. In Figure 3, the linearized form for each
dag is listed to the left of its graphical form; the syms column lists the x.name fields. The first
forest holds one dag, which converts the actual argument to the intended type. The second
forest holds two dags. The first (nodes 1-4) promotes c to pass it as an integer, and the second
(nodes 5 &6) calls f.

ASGNC

# op
1. ADDRFP
2. ADDRFP
3. INDIRI
4. CVIC
5. ASGNC

1. ADDRFP
2. INDIRC
3. CVCI
4. ARGI
5. ADDRGP
6. CALLI

count
1
1
1
1
0

1
1
1
0
1
0

kids

2
3
1 4

1
2
3

5

syms
4
4

4

4 4
f
4

ADDRFP CVIC
c

INDIRI

ADDRFP
c

ARGI       CALLI

CVCI ADDRGP
f

INDIRC

ADDRFP
c

Figure 3. Forest for f (char c) { f (c) ; }

Unsigned variants of ASGN , INDIR , ARG , CALL, and  RET were omitted as unnecessary.
Signed and unsigned integers have the same size, so the corresponding signed operator is used
instead. Likewise, there is no CALLP or RETP. A pointer is returned by using CVPU and RETI.
A pointer-valued function is called by using CALL I and CVUP.

In Table III, the operators from ASGN on are used for their side-effects. They always appear
as roots in the forest of dags, and they appear in the order in which they must be executed.
Except for CALLD , CALLF and CALLI , their reference counts are always zero. Even these
CALL nodes have zero reference counts when their values are unused.

6.1 Generating Code

The front end calls gen to select code. It passes gen a forest of dags. For example,
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int i, *p; fo { i = *p++; }

yields the forest shown in Figure 4. This forest consists of three dags, rooted at nodes 2,5, and
8. The INDIRP node, which fetches the value of p , comes before node 5, which changes p ,
so the original value of p is available for subsequent use by node 7, which fetches the integer
pointed to by that value.

# op count kids syms
1. ADDRGP 2
2. INDIRP 2 1
3. CNSTI 1
4. ADDP 1 2 3
5. ASGNP 0 1 4
6. ADDRGP 1 i
7. INDIRI 1 2
8. ASGNI 0 6 7

Figure 4. Forest for i = *p++

gen traverses the forest and selects code, but it emits nothing because it may be necessary
to determine, for example, the registers needed before the function prologue can be emitted.
So gen merely annotates the nodes to identify the code selected, and it returns a pointer that
is ultimately passed to the back end’s emit to actually output the code. Once the front end
calls gen it does not inspect the contents of the nodes again, so gen may modify them freely.

The sample code generator emits naive code, so gen concerns itself mainly with register
allocation. The sample gen

Node gen (Node p) {
Node head, *last;

for (last = &head; p; p = p->link)
last = linearize (p, last, 0) ;

for (p = head; p; p = p->x. next) {
ralloc (p) ;
if (p–>count == 0 && sets (p) )

putreg (p) ;

}
return head;

)

linearizes each dag in the forest, in execution order, and then allocates registers for each
node. If the node sets a register, but no subsequent node references it, which is indicated by a
reference count of 0 , gen releases the register. Finally, it returns the linearized node list for
traversal by emit.
gen linearizes the dags before allocating registers to simplify the insertion of spills and

reloads. 14 The back end’s function
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static Node *linearize (Node p, Node *last, Node next)

linearizes the dag at p and inserts it into the growing list of nodes between *last and next.
ralloc handles register allocation for a single node.

static void ralloc (Node p) {
switch (generic (p->op) ) {
case ARG:

argoffset = roundup (argoffset, p–>syms [1] ->u. c.v. i) ;
p->x.argoffset = argoffset;
argoffset += p–>syms[O]->u. c.v. i;
if (argoffset > argbuildsize)

argbuildsize = roundup (argoffset, 4);
break;

case CALL:
argoffset = 0;
break;

}
putreg(p->kids [0]);
putreg(p->kids [1]);
p->x.busy = rmask;
if (needsreg(p))

getreg(p);
}

generic strips the type suffix from an operator and thus simplifies the switch. ralloc calls
putreg to release the registers allocated for the node’s children and then it calls getreg to
allocate a register for the node itself if it needs one. It sets the node’s x.busy to record the
busy registers; emit needs this information for a few operators. The register state is encoded
in rmask ; rmask& (1<<r) is 1 if register r is busy, for r from 0 to 11. rmask is initialized
to 1.
CALL and ARG nodes require extra steps. ARG nodes produce no result; instead, they store

the value computed by kids [0] into the next location in the argument build area. syms [ 0]
and syms [ 1 ] point to constant symbols that give the size and alignment of the argument.
argoffset is the running offset into the argument build area. argoffset is rounded up to
the appropriate alignment boundary, saved in the node’s x.argoffset for use in emit , and
incremented by the size of the argument. argbuildsize tracks the maximum argoffset
needed by the current function. The case for CALL nodes clears argoffset for the next set
of ARG nodes.
getreg accepts a node and allocates a register for it:

static void getreg (Node p) {
int r, m = optype (p–>op) == D ? 3 : 1;
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for (r = 0; r < nregs; r++)
if ( (rmask& (m<<r) ) == 0) {

p->x. rmask = m;
p->x. reg = r;
rmask |= sets(p) ;
usedmask |= sets(p) ;
return;

}
r = spillee(p, m) ;
spill (r, m, p) ;
getreg(p) ;

}

optype(op) returns the type suffix of operator op. m is set to the mask 012 if the result of

p->op needs an ordinary register and 112 if it needs a double register. getreg loops over
the registers. If it finds one that’s free, it sets the node’s x .reg field to the register allocated
and the x.rmask field to the mask. It also updates usedmask, which is used to generate
the prologue; sets (p) returns p->x. rmask<<p->x. reg. If no registers are free, getreg
spills a register and calls itself recursively to try again. Reference 14 describes spills.

putreg releases registers:

static void putreg (Node p) {
if (p && --p-> count <= 0)

rmask &= ˜sets(p);

}

Dags can use result registers multiple times, so put reg decrements the reference count and
frees the register only when the last reference is removed.

6.2 Emitting Code

emit emits the linearized forest. The sample walks down the list and switches on the
opcode to identify the code to emit:

void emit (Node p) {
for (; p; p = p->x. next) {

Neck a = p->kids [0] , b = p->kids[l] ;

int r = p->x. reg;

switch (p->op) {

case CNSTC: case CNSTI : case CNSTP:

case CNSTS: case CNSTU:

print ("movl $%s, r%d\n", p->syms [0]–>x. name, r) ;

break;

case ADDRGP: case ADDRFP: case ADDRLP:
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print ("moval %s, r%d\n", asmname(p–>syms[0] ) , r) ;
break;

. . .
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}

The individual cases emit naive code for a single operator. The CNST cases above emit a
VAX instruction that loads a constant into a register. defsymbol stored the constant string in
p->syms [0] ->x. name, and ralloc stored the result register name p->x.reg. The ADDR
cases above emit a VAX instruction that moves the address of a variable into the result register.
The back end’s asmname returns an assembler operand for the variable, e.g., for global x it
returns "_x" and for the first argument it returns "4 (ap) ".

Most of the unary operators share a common pattern, e.g.,

case BCOMU: print ("mcoml r%d, r%d\n", a–>x. reg, r) ; break;

case CVCI: print ("cvtbl r%d, r%d\n", a–>x. reg, r) ; break;

case CVCU: print ("movzbl r%d, r%d\n", a->x. reg, r) ; break;
. . .

Most of the binary operators and all of the comparisons are handled similarly:

case ADDI: case ADDP: case ADDU:
print ("add%c3 r%d, r%d, r%d\n", suffix(P) ,

b–>x. reg, a–>x. reg, r) ; break;
. . .
case GEU:

print ("cmpl r%d, r%d; jgequ L%s\n",
a–>x. reg,

case GED: case
print ( "cmp%c

a–>x. reg,
. . .

b–>x. reg, p->syms [0] ->x. name) ; break;
GEF : case GE I :
r%d, r%d; jgeq L%s\n”, suffix(p),
b->x. reg, p->syms [0]->x. name) ; break;

The macro suffix gives the VAX type suffix character. The cases

case INDIRC: case INDIRD: . . .
print ("mov%c (r%d), r%d\n", suffix(p),

a–>x. reg, r) ; break;
case ASGNC: case ASGND: . . .

print ("mov%c r%d, (r%d)\n", suffix(p) ,
b->x. reg, a->x. reg) : break;

emit code to indirectly load and store memory cells. The cases
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case ARGD: case
print ( "mov%c

a->x. reg,
break;
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ARGF: case ARGI: case ARGP:
r%d, %d(sp)\n", suffix(p),
p->x.argoffset) ;

case CALLD: case CALLF: case CALLI: case CALLV:
save (p–>x.busy&0x3e) ;
print("calls $0, (r%d)\n", a->x.reg);
if (p->op != CALLV)

print("mov%c r0,r%d\n", suffix(p), r);
restore (p–>x.busy&0x3e) ;
break;

case RETD: case RETF: case RETI:
print("mov%c r%d,r0; ret\n", suffix(p), a–>x.reg);
break;

case RETV:
print("ret\n") ;
break;

emit code to move an argument onto the stack, to call a procedure, and to return a value. The
ARG cases use x.argoffset, into which ralloc stored the stack offset for the argument.
Procedures may destroy registers l–5, so the CALL cases use

static void save(unsigned mask) {
int i;

for (i = 1; i < nregs; i++)
if (mask& (l<<i))

print("movl r%d,%d(fp)\n", i,
4*i - framesize + argbuildsize);

)

to emit code to save any of those registers that are busy; restore is similar. The RET cases
merely copy any return value into register 0 and return.

Several binary operators require special handling. For example, no instructions directly
implement unsigned right shift or division, so emit uses a field-extraction instruction for the
first and a library call for the second, and a%b is computed by a-(a/b)*b:

case RSHU:
print ("subl3 r%d, $32, r0; extzv r%d, r0,r%d, r%d\n"r

b->x. reg, b->x. reg, a->x. reg, r);
break;

case DIVU:
save (p–>x. busy&0x3e) ;
print ("pushl r%d; pushl r%d; calls $2rudiv; movl r0,r%d\n",
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b–>x. reg, a->x. reg, r) ;
restore (p->x. busy&0x3e) ;
break;

case MODI:
print("divl3 r%d,r%d,r0; mull2 r%d,r0; subl3 r0,r%d,r%d\n”,

b->x.reg, a–>x.reg, b->x.reg, a->x.reg, r);
break;

Unsigned modulus is handled similarly.
Only the structure instructions remain:

case INDIRB:
print ("moval (r%d),r%d\n”, a->x.reg, r);
break;

case ASGNB:
save (p->x.busy&Ox3f) ;
print("movc3 $%s, (r%d), (r%d)\n”, p->syms [0]->x.name,

b->x.reg, a->x.reg) ;
restore (p->x.busy&0x3f) ;
break;

case ARGB:
save (p->x.busy&0x3f) ;
print ("movc3 $%s, (r%d),%d(sp)\n”, p–>syms [0]->x.name,

a->x.reg, p->x.argoffset);
restore (p->x.busy&0x3f) ;
break;

The scalar INDIR s and ASGN s  load and store values directly, but structures won’t fit in
registers, so their instructions manipulate addresses instead. ASGNB uses a block move
instruction, which needs the size from p->syms[0]->x.name; it also destroys registers 0-5,
so emit arranges to save and restore their values. ARGB operates similarly, but copies the
structure into the stack instead. Finally,

case CALLB:
save (p–>x.busy&Ox3e) ;
if (a->x.reg == 1) {

print("movl r1,r0\n");
a->x.reg = 0;

}
if (b–>x.reg != 1)

print ("movl r%d,r1\n", b->x.reg);
print("calls $0, (r%d)\n", a->x.reg);
restore (p->x.busy&Ox3e) ;
break;
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is like an ordinary call, but it also passes the address at which to store the return value in
register 1; if the address of the function is already in register 1, it is first moved out of the way
into register 0, which is not otherwise allocated.

7. DISCUSSION

lCC ’S code generation interface is compact because it omits the inessential and makes sim-
plifying assumptions. These omissions and assumptions do, however, limit the interface’s
applicability to other languages and machines.

The datatype assumptions detailed in Section  3, e.g., that unsigneds, integers, and long
integers all have the same size, make it possible to have only 9 type suffixes and 111 type-
specific operators. Relaxing these assumptions would increase this vocabulary; e.g., adding a
suffix for long doubles would also add at least 19 more operators.

The interface assumes that all pointer types have the same representation, which precludes
its use for word-addressed machines. Differentiating between character and word pointers
would add another suffix and at least 13 more operators.

The operator repertoire omits some operators whose effect can be synthesized from simpler
ones. For example, bit fields are accessed with shifting and masking instead of specific
bit-field operators, which may complicate thorough exploitation of machines with bit-field
instructions. The front end special-cases one-bit fields and generates efficient masking dags,
which often yields better code than code that uses bit-field instructions.

The front end implements switch statements completely. It generates a binary search of
dense branch tables; inline comparisons replace small tables. 15 It fabricates the tables and
indirect jumps using the functions global and defaddress and the JUMPV operator. This
decision prevents back ends from using larger ‘case’ instructions, which usually combine a
bounds check and an indirect branch through a table, but these instructions are increasingly
rare, and some don’t suit C anyway. For example, the branch table for the VAX’s casel
instruction is limited to 16-bit offsets.

The interface has gone through several revisions and has been simplified each time by
moving functionality into the front end or by pruning the interface vocabulary. For example,
earlier versions included a separate interface function to lay out branch tables. And there were
more operators, e.g., SWTCH, which identified switch expressions, and CVUD. Each revision
made writing a back end simpler.

Nonetheless, blemishes remain. They complicate writing a back end or at least invite bugs.
For example, ASGN , CALL , and RET have type-specific variants that take different numbers of
operands. This variability complicates decisions that otherwise could be made by inspecting
only the generic operation. Operators that always generate trivial target code are another
example. A few operators generate nothing on some targets, but some, like CVUI and CVIU,
generate nothing on all current or conceivable targets. In the sample, these operators generate
vacuous register-to-register moves. In production back ends, however, such moves must
be either avoided or eliminated. Similarly, the ‘narrowing’ conversions CV{UI} × { CS } are
vacuous on all targets and might well be omitted.
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There are also several conventions that, if not obeyed, can cause subtle bugs. An example
is the interaction between local , function , and CALLB for functions that return structures;
failure to obey the convention in at least three different places in the back end results in bad
code. The front end could deal with such functions completely, but doing so would exclude
some established calling sequences. The tradeoff for generating compatible code is a more
complex code generation interface.

Sharing data structures between the front end and the code generator is manageable because
there are few such structures. A disadvantage of this approach, however, is that the structures
can be more complex than they might be in other designs, which comprises simplicity. For
example, symbols represent all identifiers across the interface. Symbols have many fields,
but some are relevant only to the front end and access to them can be regulated only by
convention. Some symbols use only a few of the fields; labels, for example, use only the
name  and u.label fields.

C shares the blame for this complexity: specifying all of the possibilities requires a type
system richer than C’s. Some of the complexity might be avoided by defining separate
structures, e.g., one for each kind of symbol and another for private front-end data, but
doing so increases the data structure vocabulary and hence complexity. Type systems with
inheritance simplify defining variants of a structure without also complicating uses of those
variants. Oberon has perhaps the minimum inheritance machinery required,  16

The interface was designed for use in a monolithic compiler: it complicates separating the
front and back ends into separate programs. Some of the interaction is two-way; the upcalls
from function to gencode and emitcode are examples. These upcalls permit the front
end to generate conversion code required at function entry; if the back end is made a separate
program, it may have to implement such conversions. The back end examines few fields in
the source-language type representation; it uses front-end functions like isstruct to query
types. If the back end is made a separate program, type data must be transmitted to answer
such queries.

The interface is designed to support only code generation; it has no direct support for
building a flow graph and other structures that facilitate global optimization. More elaborate
versions of function and gen could collaborate to build the relevant structures, perform
optimization, and invoke the simpler gen. The front end’s gencode and emitcode traverse
an approximation of a flow graph; current work on a machine-independent optimizer edits
this graph while preserving the current interface.

To date, the interface has been used only for ANSI C. But it has little that is specific to C,
and it could be used for similar languages and perhaps for languages with features like nested
procedures, objects, and exception handling. Existing compilers for some object-oriented
languages with these features, such as C++, Modula-3, and Eiffel, generate C, so, in principle,
the interface could be used for these languages.
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