L

.f'

A%

Volume 11. number 4,3

CODE IMPROVEMENT VIA LAZY EVALUATION

David R. HANSON

INFORMATION PROCESSING LETTERS

12 December 1980

Deparrment of Computer Science, The University of Arizona, Tucson, AZ 85721. U.S.A.

Received 6 May 1980 revised version received 26 August 1980

Code generation. lazy evaluation. peephole optimization

I. Introduction

Many computers have "polymorphic’ instructions
that can be used with different forms of operands.
Different forms typically correspond to difterent
addressing ‘'modes’. Examples of common operand
forms are direct operand. in which the address of the
operand is given. indexed operand. in which the loca-
tion of the operand is indicated by an offset and the
contents of a base register. and immediate operand.
in which the address is the operand. These kinds of
operand variations appear on several commonly used
computers — the DEC-10 and the PDP-11 series are
prime examples — as well as an increasing number of
emerging microprocessors.

Operand variations permit more compact (and
hence faster) code for some constructs. For example.
consider the expression

a=b+c.

Taking the DEC-10 as the target computer, naive code
for this expression is

move 1.b: load b into register |
move 2.c: load c into register 2

add 1.2; compute sum in register 1
movem l.a: storesumina.

This kind of code is simple to generate and illustrates
the typical approach used in naive code generators of
placing operands in registers because almost all instruc-
tions can operate on registers. (Similar comments
apply to the PDP-11. for example.) The add instruc-
tion can operate on either registers or memory. how-

ever. so that better code is

move 1.b:
add I.c
movem 1.a;

load b into register 1
compute sum in register 1
store sumina.

A similar situation arises when constants are involved
in an expression. In that case. the use of immediate
operands can result in significant savings. Consider,
for example, the expression

a=b+5.
Naive code generation results in

move 1.b: load b into register 1
move 2. [S]: load $ into register 2

add 1.2: compute sum in register 1
movem l.a: storesumina

where the brackets indicate the address of a word
containing what they enclose. This code occupies 3
words on the DEC-10. Both the move and add instruc-
tions can be used with immediate operands. Thus
better code is

move |.b: load b into register |
movei 2.5: load 5 into register 2

add 1.2: compute sum in register 1
movem].a: store sumina

and even better code is

load b into register 1
compute sum in register J
store sum ina.

move 1.b:
addi I,5:
movem 1.a;

Code improvement of the tvpe described above is

163

Volume 11, number 4.5

usually considered ‘peephole’ optimization [1.11]
and. in fact, can be performed routinely using more
recent generalized approaches to peephole optimiza-
tion [2 4]. The disadvantage of relying solely on a
separate optimization phase for such code improve-
ment is that the optimization phase is invariably the
last part of the compiler fo be done, and. in the inter-
im, poor code may discourage use.

The remainder of this note describes how ‘lazy
evaluation’ can be used to improve the code pro-
duced by naive generators. Experimental results sug-
gest that its use can reduce the size of the generated
code for expressions by 135 to 20%. For example. it
produces the short three-instruction sequence for the
example given above. The attractive aspect of the
technique is that it is easy to implement. thereby
making it possible to get reasonable code out of a
naive code generator with very little additional effort.

2. Lazy evaluation

Lazy evaluation is a technique often used in the
evaluation of programming language constructs [5.6.
12.13]. Its basic idea, often presented in a Lisp frame-
work, is to defer actual evaluation of an expression
until the value is really needed. e g. for output. In
this scheme. evaluation of an expression results in a
‘suspension’ or “closure’ that represents the expression.
Only when an attempt is made to use the value of the
suspension is the expression actually evaluated. Among
other advantages. lazy evaluation permits the represen-
tation of infinite structures and. in some cases. results
in more efficient computation.

The concepts underlying lazy evaluation apply
equallv well to code generation. The basic idea is to
defer generating code for operands until an operand is
really needed. e.g. in an instruction.

Code generation for the “leaves’ of an expression
tree, e.g. references to constants and variables,
amounits to building a suspension that represents the
reference. Only when the value of the suspension is
needed in an instruction is code generated for refer-
encing the operand. if necessary. The key point is that,
since code for referencing the operand has not been
generated. the addressing modes that best suit the

operands can be used when the instruction is produced.

To be effective. it is necessary to express hasic ma-

164

INFORMATION PROCESSING LETTERS

12 December 1980

genopioper, v1. 52y |
case kind of 51 suwpension |
reRister -
LOP = ‘register number’
‘canstam”
if constant iy smeall and opec can accepr immediate operand then
LOP = ‘immediate convant’
che |
vrtput loud for consiant
LOP = ‘register number’
I
address
if oper cannor accepr adidress as first operand then |
cutp:t load for 7
LOP = “regisicr number®
]
else
LOP = ‘addrsy’
|
case kind of 31 suspension |
register
ROP = ‘register nunther
“constant -
i constun: o small and oper can aoccpt immedials operand then
ROP - ‘imimediate conssuni’
else |
ouip? loud for constant
ROP — ‘register nuimber’
!
‘address’
if aper canmot agecept Lddiess as second operend then |
output doad for s=
ROFP = “register number’
t
che
ROP - ‘adiresy
!
outpur “oper LOP. ROP
relurn suspension representing result, eg |register. LOPY

Fig. 1.

chine operations as ‘generalized’ instructions that
accept any of the possible operand forms. The genera-
tion of the specific form is deferred until it is output,
since the form depends on the operands. Moreover,
generation of the specific instruction is localized to
the final output routine. which is the lazy evaluator,
and is therefore performed tor all generated code
sequences.

To clarify the mechanics of the technique. con-
sider a situation in which there are three kinds of
operands: registers. constants. and addresses. The
heart of the code generation routine is genop{oper,
s1.s52). which generates an instruction sequence that
carries out the application of oper on the suspensions
51 and s2. The operation of genop is outlined in Fig. 1
in which the suspension construction is indicated by
brackets. Assuming the code generator is driven by a
tree representing the expression, the code for

a=b+c

is generated as follows. Working from the leaves of the

N

\(‘

R

Volume 11. number 4.5

tree up toward the root. suspensions representing b
and c are produced:

sl = [address’, b},
52 = [address’. c}:

genop is called to generate code for the addition:
s3 =genop(add.sl, s2).

which. in the process. emits code to load b

move 1.b: load b into register |

followed by the addition:

add 1.¢:

compute b + ¢ in register 1.

At this point. genop returns a suspension representing
its result:

s3 = [register’, 1] .
Finally. similar actions for the assignment produce
movem 1.a: storesumina.

Applying a similar process to the expression
a=b->3
yields the suspensions

5] = ['address’, b]
s2 = [‘constant”, 5]

followed by the emission of

move 1.b: load b into register |
subi 1.5: compute b —35 in register 1
movem 1.,a: storeina.

The suspension for the final result is s3. given above.
If the constant in the previous example had been too
large to use as an immediate operand.

sub 1.]5]

would have been generated in place of the subi.

By generalizing the instruction set even further,
lazy evaluation can simplify other aspects of code
generation. For example. if type information is placed
int suspensions, genop can use that information to
select the appropriate instruction. Continuing with
the initial example used above. suppose that b and ¢
are floating point variables. Calling genop (add. s/, 52)
specifies a generic addition that. by inspecting the type
information in s/ and s2. results in the specific instruc-

INFORMATION PROCESSING LETTERS

12 December 1980

tion for floating point addition:

move 1.b: load b into register |
fadr 1l.c: compute floating point sum in registerI.

Mixed mode operations can be handled in a similar
fashion. Suppose b is an integer and ¢ is a floating
point requiring that the value of b be converted to
floating point prior to the addition. The need for the
conversion can be detected in genop by inspecting the
operation and the types of the operands resulting in
the following code:

fltr 1.b:
fadr 1.c:

load and convert b
compute floating point sum in register 1.

Note that if b and ¢ are integers and a is floating
point. the resulting code is

move 1.b: load b into register |

add l.¢; compute sum in register 1
fltr 1.1: convert sum to floating point
movem l.a: storeina.

The type of the suspension returned after the addi-
tion is integer. which triggers conversion to floating
point prior to the assignment to a.

3. Discussion

In addition to better code. the payoff from the
lazy evaluation approach is that it is easy to imple-
ment. It has been used in the code generator for the
Y programming language [6]. which is a simple sys-
tems programming language derived from Ratfor [8 9]
and C [10]. The first version of the Y code generator
was the typical naive code generator. Revision to use
lazy evaluation took about 2 days and yielded a 15 to
20% reduction in code size for expressions. (Program-
ming time would have been even less had the lazy
evaluation technique been used initially.) Programs
typically ran within 10% of the speed of equivalent
Fortran programs. which were compiled using the
standard DEC-10 Fortran compiler [3]. The techni-
que fits very well into the naive approach to code
generation. making its inclusion negligible compared
to its benefits.

1t should be made clear what lazy evaluation. in the
form presented here. is not. It cannot. for example.
detect short instruction sequences that can be replaced

165

Volume 11, number 4, 5

by shorter sequences. which can be done through
peephole optimization [2]. For example. the expres-
sion

a=a+l

produces

move 1.a; load a into register I
addi 1.1 increment it

movem |.a: storesumina

which can be replaced in a peephole optimizer by
aos l.a: incrementa.

The reason lazy evaluation cannot be used to detect
such sequences is that it deals only with operands of

a single instruction. not with sequences of instructions.

Lazy evaluation. in its simplest form. is also not a
register allocation scheme. Its primary purpose is to
defer putting operands in registers instead of remem-
bering what is in registers. It is more like register
assignment rather than register allocation [1]. As
such. it cannot, for instance. be easily used to detect
redundant loads and stores. For example. the expres-
sions

a=b+ec

b=a+3

produce

move 1.b: load b into register |

add 1.c: compute b + ¢ in register 1
movem |.a: storesumina

move 1.a: load ainto register |

addi 1.5: computea+ 5 in register |
movem 1.b: storesuminb

which contains a redundant load of a.

In analyzing the behavior of the initial lazy evalua-
tion implementation, it was observed that suspensions
represent not only what needs to be done. but can also
record the current state of the machine. Consider
again the expression

a=b+c.

The references to b and c result in suspensions as
described in the previous section, and calling genop to
generate the addition causes interrogation of the sus-
pension for b. which causes emission of

move 1.b: load b into register 1.

166

INFORMATION PROCESSING LETTERS

12 December 1980

At this point. instead of discarding the suspension for
b. it can be modified to reflect the fact that b is in
register 1. After the rest of the code is emitted:

add l.c: compute b + ¢ in register 1
movem |.a: storeina

the suspension for a can be modified to indicate that
a is now in register 1 and the suspension for b is
restored to its original state. Current efforts are
directed toward handling the suspensions in this fash-
ion and viewing them as a cache. Preliminary results
suggest that this generalization of the lazy evaluation
technique might permit it to handle some kinds of
peephole optimizations as well as register allocation.

Acknowledgment

This work has benefited greatly from discussions
with Chris Fraser. Jack Davidson. Peter Downey, and
Ravi Sethi. This work was supported by the National
Science Foundation under Grant MCS7802545.

References

[1] A.V. Aho and J.D. Ullman. Principles of Compiles De-
sign (Addison-Wesley. Reading. MA. 1977).

[2] J.W. Davidson and C.W. Fraser, A retargetable peephole
optimizer and its application to code generation. ACM
Trans. Progr. Languages and Systems 2 (2) (1980).

[3] Fortran-10 Language Reference Manual, Pub. DEC-10-
LFORA-B-D. 2nd ed. (Digital Equipment Corp..
Maynard, MA, 1974).

[4] C.W. Fraser. A compact. machine-independent peephole
optimizer, Conference Records Sixth ACM Annual Sym-
posium on the Principles of Programming Languages.
San Antonio (Jan. 1979) 1-6.

[5] D. Friedman and D.S. Wise, CONS should not evaluate
its arguments. in: S. Michaelson and R. Milner, Eds.,
Automata. Languages and Programming (Edinburgh
Univ. Press, Edinburgh, 1976) 257 -284.

[6] D.R. Hanson. The Y programming language. SIGPLAN
Notices, to appear.

[7] P. Henderson and J.H. Morris, A lazy evaluator, Confer-
ence Records Third ACM Annual Symposium on the
Principles of Programming Languages. Atlanta (Jan.
1976) 95-103.

(8] B.W. Kernighan. Ratfor — a preprocessor for a rational
Fortran, Software — Practice and Fxperience 5 (4)
(1975) 396-406.

[9] B.W. Kernighan and P.J. Plauger, Software Tools (Addi-
son-Wesley, Reading, MA. 1976).

"F

Volume 11, number 4. 5 INFORMATION PROCESSING LETTERS 12 December 1980

{10] B.W. Kernighan and D M. Ritchie. The C Programming recursion in a simple programming language. J. Comput.
Language (Prentice-Hall, Englewood Cliffs, NJ, 1978). System Sci. 9 (3) (1974).

{11] W.M. McKeeman, Peephole optimization, Comm. ACM [13] C. Wadsworth. Semantics and pragmatics of the Lambda-
8 (7) (1965) 443444 calculus. Ph. D. Dissertation. Oxford (1971).

[12] J. Vuillemin, Correct and optimal implementations of

167

