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ABSTRACT

A new method for increasing confidence in software based on the premise
that competent programmers write correct or "nearly" correct software is pre-
sented. The envisioned system takes as input a program and a set of test
data. It produces and executes a set of perturbation programs, and generates
a list indicating which perturbation programs are indistinguishable from the
original program (with the given data). A non-empty list indicates that the
data is not adequate, that there exist equivalent programs in the list, or
that the original program is incorrect. An empty list indicates that the
original program is either correct or "far" from correct. While the set of
perturbation programs should be large enough to include many commonly made
errors, it appears that there is a coupling effect suggesting that errors not
present in the set of perturbation programs are still checked by this method.

Two examples of the use of the method are given.
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1. INTRODUCTION

It is well-known that the design and construction of reliable software is a
difficult task. The purpose of this paper is to present a new method that may
aid in constructing reliable software, and to illustrate the application of
this method to Fortran subroutines.

Current approaches to reliable software fall into three cateéories:

constraining, proving, and testing. By constraining we mean those methods

that place restrictions or constraints on programmers in an effort to force
them to design reliable software. The whole of structured programming [1]
with its restrictions on the use of data and control structures falls into
this category. Also included in this category are the attempts to create a
variety of methodologies, such as those of Parnas [2] and Wirth [3], that
enable programmers to avoid certain common errors. Although these methods
have met with encouraging success they by no means seem to solve the entire
problem.

Another approach is to rely on proving that a progranm satisfies certain
formal properties. These methods, which are usually referred to as verifica-
tion methods [4,5], hold the promise of correct software. However, for a
variety of reasons -- principally the difficulty of specifying software in
formal terms and the difficulty of the proofs [6] -- these methods are not yet
practical for "real" programs. Indeed, one significant problem is that while
verification techniques may work on "clean" languages such as Alphard [7]) and
Pascal [8], there has been little evidence that they will be successful on
"dirty" languages such as Fortran. Consequently, verification schemes do not
appear applicable to the large bulk of existing software, and their payoff may
be far in the future.

Program testing has long been in the paradoxical position of being the
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traditional method of checking real software and yet, until recently [9-14],
receiving 1little attention in the literature. Our belief is that program
testing, while not on the sound mathematical foundation of the other methods,
can be used to develop quite powerful and useful methods for constructing
reliable software.

Progranm testing consists of determining if some program P works correctly
on some given data I. The basic question is then "if P works on I, is P
correct?" The answer 1is, of course, not necessarily: P may work on I and
yet fail on all other input data. The central problem in program testing is
to find a way of determining whether I is an adequate test of P, not in any
formal sense but rather in an empirical sense. More precisely, testing is an
inductive process whereas other approaches, such as verification, are
deductive gpproaches.

The majority of work in program testing has been concerned with the use of
path analysis and symbolic execution to generate adequate test data [11].
These systems generate test data by solving a system of inequalities con-
structed by symboliéally executing all control paths of a program. Although
there is some evidence that the use of conditional statements in languages
such as Fortran often results in a linear system of inequalities, the general
problem of producing test data for all execution paths is an unsolvable prob-
lem [147].

All of the methods described above ignore the fact that programs produced
by competent programmers are usually "almost" correct. Our approach relies on
this observation and attempts to provide a comprehensive evaluation of both
the program and its associated test data. We assume that if a program is not
correct, then it is a small "perturbation" of the correct one. The basic idea

is to take a program and its associated test data and generate all the
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possible simple perturbations of that program, andrrun each one with the given
data. If all the perturbation programs give incorrect results, it is very
likely that the original program is correct. If some of the perturbation
programs yield correct results, the data is inadequate, there is an error, or
the perturbations are equivalent programs.

| Superficially, this method would appear capable of detecting only simple
errors such as typographical mistakes leading to undefined variables. How-

ever, there exists a coupling effect; test data that distinguishes all simple

perturbations is so sensitive that it also implicitly distinguishes complex
perturbations. This effect 1s due to the observation that competent program-
mers design programs that are very sensitive to even mild alterations.

The motivation for'this approach comes from the fault detection problem in
hardware theory. For example, I1f C 1s a circuit that forms the complement
of a 32-bit number, then to test an arbitrary circuit we need to check 232
inputs. But circuits, like programs, are highly structured objects, and if
there is an error in C, it is very likely to be a single fault error. By
comparing the original circuit with all possible perturbations of C invol-
ving single fault errors, it is possible to reduce the number of inputs from
232 to approximately 100. The basis for presuming that C 1s correct is that
thé probability of C containing a double fault is extremely small.

Section 2 describes the perturbation method in more detail and indicates
the type of simple perturbations we are considering. Two examples are given
in section 3. The first example illustrates the application of the method to
a correct program, and the second illustrates its application to a program
containing a complex error. This second example demonstrates the coupling
effect. Section U4 describes how the method can be incorporated into a system

and be used by both programmers and managers in large software projects.
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2. DESCRIPTION OF THE METHOD

Let P be a program and let I be a set of data. We wish to determine if
I 1is an adequate set of test data. (We do not mean that P 1is guaranteed to
be correct, but rather that there is empirical evidence that P 1is correct --
remembering that P 1s not a "random" program but has been constructed by a
competent programmer.) Our method relies the construction of a set of
perturbation programs P,,...,P.. 1Initially, each P; can be thought of as
corresponding to one of all possible errors that could be made in constructing
P. Ve will see, however, that a coupling effect suggests that this is an
unnecessarily conservative view. The set of data I 1is adequate if

(1) P works correctly on I, and

(1) none of the P, works correctly on I.
Clearly, if I 1is adequate then P is correct or the set of perturbation'
programs was improperl} constructed.

There are two‘reasons to believe that this method of considering only sim-
ple perturbations should work. First, there is empirical evidence that most
programming errors ;re relatively simple. For example, Youngs [15] found that
15% of all non-syntax errors were merely instances of the use of the wrong
variable. Most of the errors studied by Gannon [16], which were used to di-
rect language design, were also relatively simple. Indeed, there are numerous
stories about large software systems failing because of incredibly simple
errors.

Second, we have evidence that checking only simple perturbation programs
will force the test data to be so sensitive that even more complex errors will
be checked. The significance of this coupling effect is that the potential
exists for catching a wide range of errors while only testing for simple ones.

An example of this effect is given below in connection with Hoare‘s FIND

program [17].
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Errors of the type found by Youngs and Gannon might be called terminal
errors. This type of error provides a starting point for the construction of
the programs P; by making perturbations to P. Let G be a context-free
grammar for the language L. For program P in L define term(Q) to be
all programs Q in L such that the parse tree of Q differs from the parse
tree of P only at the leaves. For example, if S 13 a Fortran IF state-

ment, then term(S) would contain only IF statements. If S 1is the state-

ment
IF (A .EQ. C) B =2
then the statements
IF (A .NE. C) B = 1
IF (A .EQ. B) C = 2 B

are members of term(s).

If some P, differs from P by at most k terminal symbols, then P; 1is
called a k-terminal perturbation of P. The set of k-terminal perturbations
of P 1is denoted by nggk(P),

There are simple errors that are not k-terminal. For example, an error in
the parentheses structure of a Fortran arithmetic expression is not
k-terminal. Errors of this typg, however, are caught during compilation since
P 1is no longer in L. Permuting the order of program statements and failure
to initialize a variable are other examples of errors that are not k-terminal.
A more sophisticated system than the one described here could examine the
structure of a program and produce perturbations that reflect the permutation

of statements, variations of loop boundaries, and changes in the flow of con-

irol.
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3. TWO EXAMPLES

In this section, two experiments are described to illustrate the perturba-

tion method.

3.1 MAX
The first example involves the MAX program analyzed by Naur [18]. The

problem is to set R to the index of the first occurrence of the maximum

element in the array A(1),...,A(N). The following Fortran subroutine per-

forms this operation.

SUBROUTINE MAX(A, N, R)
INTEGER A(N), I, N, R

1 R=1

2 DO3I-=2, N, 1

3 IF (A(I) .GT. A(R)) R =1
RETURN
END

For this subroutine, the following three classes of 1-terminal perturba-
tions were considered.
Relational operator: Replace the relational operator .GT. in statement 3 by
all the alternatives selected from the set of relational éperators {.EQ.,
.NE., .LE., .LT., .GE., .GT.}.
Constants: Replace the three occurrences of constants by members of the set
{o, 1, 2}.
Variables: Replace the seven occurrences of variables by members of the set
{R, I, N, A(I), A(R)}.

Applying these perturbations to MAX yields 39 perturbation programs, P

1

through P39, whose characteristics are summarized in table 1. Fourteen of
these programs can be eliminated from further consideration by inspection.
Four programs do not compile, seven lead to subscript errors due mainly to the

use of uninitialized variables, and three have ill-formed loops. The initial
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Table 1
The MAX Experiment
program data 1 data 2 data 2 1,243 data 4 1,2,3&k4
perturbation line name (1,2,3) (1,3,2) (3,1,2) (2,2,1)
GT. -> .EQ 3 P1 M
.GT. -> .NE 3 P2 M
GT. -> .LT 3 P3
GT. -> .LE 3 Pu
GT. -> .GE 3 P5 M M M M
1->0 1 P6 M M
1->2 1 P7 M M
2->0 2 P8
2 -> 1 2 P9 M M M M M M
1->0 2 P10
1 ->2 2 P11 M M M
R->1 %1 P12
R->N LA P13
R -> A(I) * 1 P1u
R -> A(R) ¥ 1 P15 {
I->R ' 2 P16
I->N ® 2 P17
I ->A(I) *2 P18
I ->A(R) * 2 P19
N->1 ® 2 P20
N -> R 2 P21 M M M
N -> A(I) * 2 P22
N -> A(R) 2 P23 M M M
A(I) > 1 3 P M M M M '
A(I) -> R 3 P25 M M
A(I) -> N 3 Po M M M M
A(X) -> A(R) 3 P27 M M
A(R) > 1 3 P28 M M M
A(R) -> R 3 P29 M M
R->1 3 P32
R ->N ¥ 3 P33
R -> A(I) 3 P3u M M
R -> A(R) 3 P35 M M
I->R 3 P36 M M
I ->N 3 P37 M M M
I->AI) 3 P38 M M M
I -> A(R) 3 P M M M

- . ——————— T - . A P T ——— - — ——— == = e T = = R T = e T T = S R P M e e S S A e -

® jndicates that the perturbation was eliminated before execution.
M indicates that the execution results are the same as for MAX.
X =-> y represents substituting y for x 1in the indicated line.
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test data consisted of three cases; a three-element vector in which the maxi-
mum is varied over the three positions.

The initial set of test data eliminates all but perturbations PS’ Pg, Poy,
and P26' That is, these perturbation programs gave the same results as the
original version of MAX. The presence of P5 indicated that the inadequacy
of the test data might be due to the absence of repeated array elements.

Hence a fourth case was added to the test data to resolve this inadequacy.

The results of this test are given in the rightmost column of table 1, which
shows that all perturbations except Pg khave been eliminated. P9 as formed
by a change of constants -- the DO loop is started at 1 instead of 2. Al-
though this change results in a slightly longer execution time, close examina-
tion reveals that Pg and MAX are functionally equivalent programs. There is
no test data that can be used to distinguish these two programs. Consequent-

ly, MAX has passed the 1-terminal analysis.

3.2 FIND

The second example, which is described in less detail, involves Hoare°‘s

. FIND program [17]. FIND has two input parameters: an integer array A and an

LS
array index F. FIND is to transform A -such that A(I) < A(F) for all

I <F and A(I) > A(F) for all I > F. This problem is of particular inter-
est because a subtle 2-terminal perturbation of FIND, called BUGGYFIND, has
been extensively analyzed by SELECT [19], a system that generates test data.
The subtle change is as follows. In FIND the elements of A are interchanged
depending on a conditional of the form

X .LE. A(F) .AND. A(F) .LE. Y
Since A(F) may itself be exchanged, the effect of this test is preserved by
setting a temporary variable R = A(F) and using the conditional

X .LE. R .AND. R .LE. Y
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In BUGGYFIND, the temporary variable R 1s not used and the first form of the
conditional 1is used to determine whether the elements of A are exchanged.
The SELECT system derived the test case A = (3, 2, 0, 1) and F = 3, on
which BUGGYFIND fails. The authors of SELECT observed that BUGGYFIND fails on
only 2 of the 24 permutations of (0, 1, 2, 3) indicating that the error is
very subtle. (We found that BUGGYFIND failed only on one case; namely, A =
(3, 2, 0, 1) and F = 3).

Taking BUGGYFIND as the original program, consider the following 1-terminal

perturbations.

o)

F1: the conditional is X .LE. A(F) .AND. R .LE. Y.

o]

F2: the conditional is X .LE. R .AND. A(F) .LE. Y. .

The results of running these programs on all permutations of (0, 1, 2, 3) are
listed in table 2. Observe that in all cases BUGGYFIND, BF1, and BF2 produce
identical results. Consequently, since BF1 and BF2 cannot be eliminated,
BUGGYFIND must be viewed with some suspicion. The important point of this
example is that a 2-terminal error was detected using only 1-terminal pertur-
bations. This illustrates the coupling effect, which indicates that simple

perturbations are capable of detecting more complex errors.

y, IMPLEMENTATION CONSIDERATIONS

We envision a system in which there is some offline programmer-system in-
teraction. The programmer submits a "well-analyzed" program and test data to
the system. The system returns a list of perturbation programs that are in-
distinguishable from the original progam using the given data. If the list is
long, the programmer may wish to simply enrich the data and try again. If the
list is short -- on the order of 10 prégrams -- the programmer may analyze the

perturbations by hand to determine whether they are equivalent programs or
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Table 2
The Find Experiment, F = 3

A FIND BUGGYFIND BF1 BF2

there is reason to suspect the original program. The key point is that all
perturbation programs thought to be equivilent to the original program must be
"signed off" by the programmer before the program is accepted. Thus by having
the system generate reports indicating who has signed off various programs,
subsequent failure of a program can be readily attributed to the proper
source.

An apparent drawback to this method is the potentially explosive number of
perturbation programs, even at the 1-terminal level. The brute-force approach
leads to a large number of programs to be compiled and executed. There seems

to be 1little that can be done to reduce the executlion time necessary to run
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all interesting perturbations. However, considering the enormous amount of
time currently spent on ad hoc testing and debugging techniques, the amount of
CPU time required does not seem excessive. '

For example, the Fortran version of FIND consists of about 30 statements.
This size is typical for a module in a well-structured system. Asssuming that
it requires 0.01 seconds to run a test case for a four-element array, running
all 24 permutations described above requires 0.24 seconds. There are approxi-
mately 1000 1-terminal perturbations in the Fortran version of FIND. Thus a
complete analysis of 1-terminal perturbations requires less than 5 minutes of
CPU time.

There are several ways to reduce the number of the programs to be executed.
A significant number of perturbations will be rejected by the compiler. The
techniques of some current program validation systems can be applied to fur-
ther reduce the number of programs. For example, the DAVE system [20] can be
used to eliminate programs having uninitialized variables. Presumably, the
competent programmer rarely makes such errors. The set of perturbation pro-
grams may be further reduced by using a symbolic execution system to eliminate
programs containing non-executable statements or unreachable paths.

A more serious problem arises when a perturbation program does not halt.

To handle this, we assume that the original program completes in at least ¢t
seconds. The system then stops any perturbation program that runs longer than
ct seconds, where c¢ 1is some constant supplied by the programmer. These
non-halting programs have not been eliminated; rather,.they are reported to
the programmer who must decide to either eliminate them by hand or increase

the value of ¢ and try again.
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5. CONCLUSIONS

The system described in this paper represents a practical approach to pro-
gram testing. The method rests on the validity of the coupling effect, that
is, that simple perturbations are sufficient to catch more complex errors than
actually tested by the simple perturbations. Although the coupling effect is
mathematically unprovable, initial experience -- as demonstrated by BUGGYFIND
-- suggests its validity. The perturbation approach also offers the possibil-
ity of testing existing programs, while mcst of the other approaches to soft-
ware validation, such as program verification, the design of new languages, or
specialized methodologies, are applicable only to new programs or programs
written in a specific language.

In addition, by the appropriate choice of perturbations, the method in-
cludes several other testing schemes as subcases. For example, given a pro-
gram and its test data we can determine if a given statement is executed by
simply changing that statement to one that divides by zero. If the program
does not halt due to a divide-by-zero error, the statement is not executed
using the given data. Similar techniques can be used to determine if certain
control paths are traversed or if a given variable is referenced before its
definition. —

The system described here is also useful as a management tool. The soft-
ware manager can use the reports generated by such a system to monitor and
control the development of the modules in a large project. As mentioned
above, a module P might be considered acceptable if its associated test data
distinguished it from all its perturbations Pir or in the event that some
small number of P, were indistinguishable from P, the programmer responsi-
ble for P certified that those Pi were equivalent programs. If P subse-

quently failed, the perturbations of P that were thought to be equivalent
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could provide an indication of why P failed. The manager might also use
this information in evaluating programmer performance.

Recent research in programming language design [16] and programming method-
ology [9]) indicates that better languages and specialized methodologies can
significantly improve software reliability. Empirical data obtained by test-
ing programs using the perturbation scheme may also offer some insight into
what specific kinds of language features and methodologies actually reduce
errors. For example, a high incidence of a particular error that causes cer-
tain perturbations to be consistently indistinguishable from the original
program would suggest that the language be changed to prevent that error. The
undistinguishable perturbations would point to the undesirable language fea-
ture. In addition, the method might show the presence of deficiencies in
module specifications, which, in turn, would suggest deficiencies in the pro-
gramming methodology used. Again, the perturbation programs would help deter-
mine the nature of the deficiency.

Finally, as with any system that collects empirical data, the possibility
exists for self-improvement. Initially, the perturbations of a program are
produced without any real knowledge of which ones will be helpful in correc-
ting errors. Continued use of the system, however, would provide data on
which types of perturbations are most useful. Such data could then be used to

"tune" the system for better performance.
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