
A Retargetable Compiler for ANSI C

Christopher W. Fraser
AT&T Bell Laboratories, 600 Mountain Avenue 2C-464, Murray Hill, NJ 07974

David R. Hanson
Department of Computer Science, Princeton University, Princeton, NJ 08544

Abstract

lcc is a new retargetable compiler for ANSI C. Versions for the VAX, Motorola 68020,
SPARC, and MIPS are in production use at Princeton University and at AT&T Bell Laborato-
ries. With a few exceptions, little about lcc is unusual — it integrates several well engineered,
existing techniques — but it is smaller and faster than most other C compilers, and it gen-
erates code of comparable quality. lcc’s target-independent front end performs a few simple,
but effective, optimizations that contribute to good code; examples include simulating regis-
ter declarations and partitioning switch statement cases into dense tables. It also implements
target-independent function tracing and expression-level profiling.

Introduction

Reprinted from SIGPLAN Notices 26, 10 (Oct. 1991), 29–43.
Copyright 1991, Association for Computing Machinery, Inc., reprinted by permission.

lcc is a new retargetable compiler for ANSI C [2]. It has been ported to the VAX, Motorola 68020,
SPARC, and MIPS R3000, and it is in production use at Princeton University and at AT&T Bell
Laboratories. When used with a compliant preprocessor and library, lcc passes the conformance
section of Version 2.00 of the Plum-Hall Validation Suite for ANSI C.1

Other reports describe lcc’s storage manager [13], intermediate language [8], code generator [7],
and register manager [9]. This report surveys the remaining features of lcc that may interest
some readers. Chief among these are its performance, some aspects of its design that support this
performance, and some features for debugging and profiling user code.

Design

With a few exceptions, lcc uses well established compiler techniques. The front end performs lexical,
syntactic, and semantic analysis, and some machine-independent optimizations, which are described
below. Both the lexical analyzer and the recursive-descent parser are hand-written. Theoretically,
this approach complicates both future changes and fixing errors, but accommodating change is less
important for a standardized language like ANSI C, and there have been few lexical or syntactic
errors. Indeed, less than 15 percent of lcc’s code concerns parsing, and the error rate in that code
is negligible. Despite its theoretical prominence, parsing is a relatively minor component in lcc as
in other compilers; semantic analysis, optimization, and code generation are the major components
and account for most of the code and most of the errors.

The target-independent front end and a target-dependent back end are packaged as single pro-
gram, tightly coupled by a compact, efficient interface. The interface consists of a few shared data
structures, 17 functions, and a 36-operator dag language. The functions emit function prologues,
define globals, emit data, etc., and most are simple. The dag language encodes the executable code

1The lcc front end and a sample code generator are available for anonymous ftp from princeton.edu. The file
README in the directory pub/lcc gives details. It also describes the current availability of lcc’s production code
generators.

29

generated
component code rules code generator

front end 968+7847

back-end support 114+741
VAX 35+170 178 5782
MIPS 40+378 104 2966
68020 42+190 145 8301
SPARC 40+290 128 3888

VAX+68020+SPARC
symbol table emitters 584

naive VAX
code generator 67+578

rule compiler 1285

Table 1: Number of Lines in lcc Components.

from a source program; it corresponds to the “intermediate language” used in other compilers, but
it is smaller than typical intermediate languages. Reference [8] describes the interface.

Code generators are generated automatically from compact, rule-based specifications [7]. Some
rules rewrite intermediate code as naive assembly code. Others peephole-optimize the result. They
are compiled into a monolithic hard-coded program that accepts dags annotated with intermediate
code, and generates, optimizes, and emits code for the target machine. Hard-coding contributes
significantly to lcc’s speed.

Table 1 shows the number of lines in each of lcc’s components. The notation h + c indicates h
lines of definitions in “header” files and c lines of C code. The “back-end support” is back-end code
that shared by four back ends, e.g., initialization and most of the register manager.

Target-specific files include a configuration header file, which defines parameters like the widths
and alignments of the basic datatypes, target-specific interface functions, e.g., those that emit func-
tion prologues, and code generation rules, from which the code generators are generated by the
rule compiler, which is written in Icon [11]. Retargeting lcc requires involves writing these three
back-end components, which vary from 377 to 522 lines in existing back ends. In practice, new back
ends are implemented by writing new rules and editing copies of an existing configuration and set
of interface functions.

All of lcc’s production back ends use the technology summarized above and detailed in Refer-
ence [7]. The interface between the front and back end does not depend on this technology; other
back ends that conform to the interface specification can be used. For example, Reference [8] details
a hand-written code generator that emits naive VAX code.

While lcc uses well established techniques, it uses some of their more recent incarnations, each
of which contributes to lcc’s efficiency as described below.

Lexical Analysis

The design of the input module and of the lexical analyzer and judicious code tuning of the lexical
analyzer contribute to lcc’s speed.

Input and lexical analysis use variations of the design described in Reference [20]. Since the
lexical analyzer is the only module that inspects every input character, the design avoids extraneous
per-character processing and minimizes character movement by scanning tokens directly out of a
large input buffer.

Input is read directly from the operating system into a 4096-character buffer as depicted in
Figure 1a, and cp and limit delimit the unscanned portion of the buffer. The next token is scanned

30

\n

6

cp

6

limit

6

fence

4096 characters� -

(b) After a read

\n

6

cp

6

limit

6

fence

4096 characters� -

(a) While cp < fence

Figure 1: Input Buffering.

by advancing cp across white space and switching on the first character of the token, *cp. cp is
advanced as the token is recognized.

Newlines, denoted by \n, cannot occur within C tokens, which explains the newline at *limit
shown in Figure 1. This newline terminates a scan for any token so a separate, per-character test
for the end of the buffer is unnecessary. When a newline is encountered, an input module function
is called to refill the input buffer, if necessary, and to increment the line number.

ANSI C stipulates a maximum line length of no less than 509, but few compilers insist on a
specific limit. Tokens, however, can be limited to 32 characters; string literals are an exception, but
they are handled as a special case.

In general, an input buffer ends with a partial token. To insure that an entire token lies between
cp and limit, the end of the buffer is moved to the memory locations preceding the buffer whenever
cp passes fence. Doing so concatenates a partial token with its tail after the next read as shown in
Figure 1b. Testing if cp has passed fence is done for each token after cp is advanced across white
space.

The important consequence of this design is that most of the input characters are accessed by
*cp and many are never moved. Only identifiers (excluding keywords) and string literals that appear
in executable code are copied out of the buffer into permanent storage.

Reference [20]’s algorithm moves partial lines instead of partial tokens and does so after scanning
the first newline in the buffer. But this operation overwrites storage before the buffer when a partial
line is longer than a fixed maximum. The algorithm above avoids this problem, but at the per-token
cost of comparing cp with fence.

Instead of actually using cp as suggested above, cp is copied to the register variable rcp upon
entry to the lexical analyzer, and rcp is used in token recognition. rcp is assigned to cp before the
lexical analyzer returns. Using rcp improves performance and makes scanning loops compact and
fast, e.g., white space is elided by

while (map[*rcp]&BLANK)
rcp++;

map[c] is a mask that classifies character c as suggested in Reference [20]; e.g., map[c]&BLANK is
non-zero if c is a white-space character (but not a newline). lcc generates four VAX instructions
for the body of this loop:

31

jbr L142
L141: incl r11
L142: cvtbl (r11),r5

bicl3 $-2,_map[r5],r5
jneq L141

rcp is register r11. Some optimizing compilers can make similar improvements locally, but not
across potentially aliased assignments and calls to other, irrelevant functions.

Keywords are recognized by a hard-coded decision tree, e.g.,

case ’i’:
if (rcp[0] == ’f’
&& !(map[rcp[1]]&(DIGIT|LETTER))) {

cp = rcp + 1;
return IF;

}
if (rcp[0] == ’n’
&& rcp[1] == ’t’
&& !(map[rcp[2]]&(DIGIT|LETTER))) {

cp = rcp + 2;
return INT;

}
goto id;

IF and INT are defined as the token codes for the keywords if and int, respectively, and id labels
the code that scans identifiers. This code is generated automatically by a 50-line C program and
included in the lexical analyzer during compilation.

The VAX code generated for this fragment follows; again, r11 is rcp.

L347: cmpb (r11),$102
jneq L348
cvtbl 1(r11),r5
bicl3 $-13,_map[r5],r5
jneq L348
addl3 $1,r11,_cp
movl $77,r0
ret

L348: cmpb (r11),$110
jneq L226
cmpb 1(r11),$116
jneq L226
cvtbl 2(r11),r5
bicl3 $-13,_map[r5],r5
jneq L226
addl3 $2,r11,_cp
movl $5,r0
ret

Thus, the keyword int is recognized by less than a dozen instructions, many less than are executed
when a table is searched for keywords, even if perfect hashing is used.

As in other compilers [1], strings that must be saved (identifiers and string literals) are hashed
into a table in which a string appears only once, which saves space. For performance, there are
variants for installing strings of digits and strings of known length. After installation, strings are
known by their addresses and the characters are accessed only for output. For example, looking a
name up in the symbol table is done by hashing on the address of the name; string comparison is
unnecessary.

32

Symbol Tables

Fast symbol table manipulation also contributes to lcc’s speed. It took several versions of the
symbol table module to arrive at the current one, however.

Symbols are represented with structures defined by

struct symbol {
char *name; /* symbol name */
int scope; /* scope level */
...

};

The symbol table module uses hash tables for symbol tables; the initial version used a single table
for all scopes, i.e.,

struct entry {
struct symbol sym; /* this symbol */
struct entry *link; /* next entry on hash chain */

};
struct table {

struct entry *buckets[HASHSIZE]; /* hash buckets */
};

Symbols are wrapped in entry structures to keep the linkage information private to the symbol
table module.

Scope entry required no code. Each new symbol was added to the head of its hash chain and
thereby hid symbols with the same names, which appeared further down on the same chains. At
scope exit, however, entries at the current scope level, indicated by the value of level, were removed
from the table *tp by the code

for (i = 0; i < HASHSIZE; i++) {
struct entry *p = tp->buckets[i];
while (p && p->sym.scope == level)

p = p->link;
tp->buckets[i] = p;

}

Measurements revealed that this code accounted for over 5 percent of lcc’s execution time on typical
input. This code scanned the hash buckets even for scopes that introduce no new symbols, which
are common in C.

The second version of the symbol table module used a separate hash table for each scope level:

struct table {
struct table *previous; /* table at lower scope */
struct entry *buckets[HASHSIZE]; /* hash buckets */

};

Searching for a symbol took the same number of comparisons, but also required a traversal of the
list of separate tables, e.g.,

struct symbol *lookup(char *name, struct table *tp) {
struct entry *p;
unsigned h = ((unsigned)name)&(HASHSIZE-1);

do
for (p = tp->buckets[h]; p; p = p->link)

if (name == p->sym.name)
return &p->sym;

33

while (tp = tp->previous);
return 0;

}

Notice that symbol names are compared by simply comparing addresses as explained in the previous
section. Despite the conventional wisdom about hashing functions [16], using a power of two for
HASHSIZE gave better performance; using a prime instead and modulus in place of masking slowed
lcc.

This variation reduced the scope exit code to

tp = tp->previous

for table *tp. Unfortunately, scope entry then required allocation and initialization of a table:

struct table *new = (struct table *)alloc(sizeof *new);
new->previous = tp;
for (i = 0; i < HASHSIZE; i++)

new->buckets[i] = 0;
tp = new;

So, the time wasted at scope exit in the first version was traded for a similar waste at scope entry
in the second version.

The symbol table module in actual use avoids this waste by lazy allocation and initialization of
tables. Tables include their associated scope level:

struct table {
int level; /* scope level for this table */
struct table *previous; /* table at lower scope */
struct entry *buckets[HASHSIZE]; /* hash buckets */

};

New tables are allocated and initialized only when a symbol is installed:

struct symbol *install(char *name, struct table **tpp) {
unsigned h = ((unsigned)name)&(HASHSIZE-1);
struct table *tp = *tpp;
struct entry *p = (struct entry *)alloc(sizeof *p);

if (tp->level < level) {
int i;
struct table *new = (struct table *)alloc(sizeof *new);
new->previous = tp;
new->level = level;
for (i = 0; i < HASHSIZE; i++)

new->buckets[i] = 0;
*tpp = tp = new;

}
p->sym.name = name;
p->sym.scope = tp->level;
...
p->link = tp->buckets[h];
tp->buckets[h] = p;
return &p->sym;

}

Since few scopes in C, which are delimited by compound statements, declare new symbols, the lazy
allocation code above is rarely executed and entry to most scopes is nearly free. The scope exit code
must check before discarding a table, but remains simple:

34

if (tp->level == level)
tp = tp->previous;

This design also simplifies access to separate tables. For example, the table that holds globals is
at the end of the list of identifier tables; by making it the value of globals, symbols can be installed
into it directly. In the initial implementation, a global declared at a nested scope had to be inserted
in the middle of its hash chain.

Storage Management

Allocation and deallocation in early versions of lcc accounted for a significant portion of the total
execution time. Replacing the naive use of malloc and free reduced total execution time by about
8–10 percent. As detailed in Reference [13], allocation is based on the lifetime of the objects allocated,
and all objects with the same lifetime are freed at once.

This approach to storage management simplified lcc’s code. Initially, each object type had
explicit deallocation code, perhaps replicated at several points. Some of this code was intricate, e.g.,
involving complex loops or recursive data structure traversals. Allocation incurred an obligation to
provide the necessary deallocation code, so there was a tendency to use algorithms that avoided
allocation, perhaps at the expense of time, complexity, and flexibility. And it was easy to forget
deallocation, resulting in storage leaks.

The current scheme eliminated nearly all explicit deallocation code, which simplified the com-
piler and eliminated storage leaks. More importantly, it encouraged the use of simple applicative
algorithms, e.g., in rewriting trees. The replacements cost space, but not time, since allocation and
deallocation are nearly free. Besides contributing to fast compilation, the other visible benefit of this
approach is that lcc imposes few arbitrary limits on its input; e.g., it permits any number of cases
in switch statements, any number of parameters and locals, block nesting to any depth, expressions
of arbitrary complexity, initializations of arbitrary size, etc. These quantities are limited only by
the memory available.

Optimization

lcc is not properly called an “optimizing” compiler because it does no global optimization, per se.
Its front end does, however, perform some simple, target-independent transformations that help its
back ends generate good local code.

The front end eliminates local common subexpressions, folds constant expressions, and makes
numerous simple transformations that improve the quality of local code [12]. Many of these im-
provements are simple tree transformations that lead to better addressing code.

The front end lays out loops so as to reduce the number of unconstructive branches [3], e.g., the
code for

for (e1; e2; e3) S

has the form
goto L1

L2: S
L3: e3
L1: if (e2) goto L2

The goto L1 is omitted if e2 is initially non-zero. In addition, the front end eliminates branch chains
and dead branches.

The selection code for switch statements is generated entirely by the front end. It generates a
binary search of dense branch tables [5], where the density is the percentage of non-default branch
table entries. For example, with the default density of 0.5, a switch statement with the case values
1, 2, 6–8, 1001–1004, and 2001–2002 has the following VAX selection code. Register r4 holds the
value of the switch expression, L3–15 label the statements for the case values above, and L1 is the
default label.

35

cmpl r4,$1001
jlss L17
cmpl r4,$1004
jgtr L16
movl _18-4004[r4],r5
jmp (r5)

_18: .long L8, L9, L10, L11
L17: cmpl r4,$1

jlss L1
cmpl r4,$8
jgtr L1
movl _21-4[r4],r5
jmp (r5)

_21: .long L3, L4, L1, L1, L1, L5, L6, L7
L16: cmpl r4,$2001

jlss L1
cmpl r4,$2004
jgtr L1
movl _24-8004[r4],r5
jmp (r5)

_24: .long L12, L13, L14, L15

The density can be changed by a command-line option; e.g., -d0 yields a single branch table for
each switch statement, and -d1 requires that all branch tables be fully populated.

Finally, the front end simulates register declarations for all scalar parameters and locals that are
referenced at least 3 times and do not have their addresses taken explicitly. Locals are announced
to the back ends with explicitly declared register locals followed by the remaining locals in the
order of decreasing frequency of use. Each top-level occurrence of an identifier counts as 1 reference.
Occurrences in a loop, either of the then/else arms of an if statement, or a case in a switch statement
each count, respectively, as 10, 1/2, or 1/10 references. These values are adjusted to account for
nested control structures. The next section describes how these estimated counts may be replaced
with counts from an actual profile.

This scheme simplifies register assignment in the back ends, and explicit register declarations
are rarely necessary. For example,

strcpy(char *s1, char *s2) { while (*s1++ = *s2++); }

yields the VAX code

_strcpy:.word 0x0
movl 4(ap),r4
movl 8(ap),r5

L26: movb (r5)+,(r4)+
jneq L26
ret

Features

lcc provides a few noteworthy features that help users develop, debug, and profile ANSI C programs.
For example, an option causes lcc to print ANSI-style C declarations for all defined globals and
functions. For instance, the code (adapted from Section 6.2 of Reference [14])

typedef struct point { int x,y; } point;
typedef struct rect { point pt1, pt2; } rect;

36

point addpoint(p1, p2) point p1, p2; {
p1.x += p2.x;
p1.y += p2.y;
return p1;

}
int ptinrect(p, r) point p; rect r; {

return p.x >= r.pt1.x && p.x < r.pt2.x
&& p.y >= r.pt1.y && p.y < r.pt2.y;

}

generates the declarations

extern point addpoint(point, point);
extern int ptinrect(point, rect);

Editing such output can simplify conversion to ANSI C.
Another option causes lcc to issue warnings for declarations and casts of function types with-

out prototypes. These include pointers to functions, which are easy to overlook when updat-
ing pre-ANSI code. For example, it is likely that char *(_alloc)() should be updated to be
char *(_alloc)(size_t).

Debugging

lcc supports the standard debugger symbol tables on VAXes and Suns. It also has two options of
its own to assist in program debugging.

Dereferencing zero pointers is a frequent C programming error. On some systems, execution
continues until the consequences cause a fault somewhere unrelated to the actual point of error. To
help catch such errors, an option causes lcc to generate code to test for dereferencing zero pointers.
If a zero pointer is detected, the offending file name and line number are reported on the standard
error, e.g.,

null pointer dereferenced @foo.c:36

and the program terminates by calling the standard library function abort.
Some languages provide built-in facilities for tracing function calls and returns [11]. An option

instructs lcc to generate calls to printf (or a user-specified equivalent) just after entry to each
function and just before each return. The entry code prints the arguments and the return code
prints the value returned. For example, calling the functions shown above would elicit messages like

addpoint#2(p1=(point){x=0,y=0},p2=(point){x=10,y=10}) called
addpoint#2 returned (point){x=10,y=10}
...
ptinrect#1(p=(point){x=-1,y=-1},

r=(rect){pt1=(point){x=10,y=10},pt2=(point){x=310,y=310}}) called
ptinrect#1 returned 0

(Long lines have been folded to fit this page.) As illustrated by this output, the messages show the
full details of the arguments, including structure contents. The numbers that follow function names,
e.g., #2, are activation numbers and can help locate a specific call and its return.

These debugging options are implemented entirely in the front end and thus are available on all
of lcc’s targets.

37

Profiling

lcc supports prof-style (viz. [6, prof command]) and gprof-style [10] execution profiling on VAXes
and Suns. These profilers sample the location counter periodically to obtain an estimate of the
percentage of total execution time spent in each function, and they report the number of calls to
each function.

Heeding long-standing advice [15, 17], lcc also supports frequency-based profiling. An option
causes lcc to emit counters that record the number of times each expression is executed, and the
values of these counters are written to the file prof.out when the program terminates. A companion
program, bprint, reads prof.out and prints the source code annotated with execution counts, e.g.,

...
4 main()
5 <1>{
...
12 <1>queens(0);
13 return <1>0;
14 <1>}
15
16 queens(c)
17 <1965>{
18 int r;
19
20 for (<1965>r = 0; <15720>r < 8; <15720>r++)
21 if (<15720>rows[r] && <5508>up[r-c+7] && <3420>down[r+c]){
22 <2056>rows[r] = up[r-c+7] = down[r+c] = 0;
23 <2056>x[c] = r;
24 if (<2056>c == 7)
25 <92>print();
26 else
27 <1964>queens(c + 1);
28 <2056>rows[r] = up[r-c+7] = down[r+c] = 1;
29 }
30 <1965>}
...

Execution counts are enclosed in angle brackets. The counts on the outermost braces for queens give
the number of calls. Line 21 shows the benefit of associating a count with each expression instead
of each line; the counts reveal that up[r-c+7] was tested only slightly more than one-third of the
number of times the if statement was executed. Conditional expressions are annotated similarly.

Users sometimes report an “off-by-one” bug when they see that r < 8 in line 20 was executed
the same number of times as r++. These counts are a consequence of the way lcc lays out for loops
and eliminates the test before the first iteration, as described above.

Data in prof.out accumulates, so it is possible to execute a program repeatedly and then have
bprint display the cumulative frequencies. This method is particularly useful for developing test
data that exercises all parts of a program: <0> highlights untested code.

Another option causes lcc to read prof.out and use the counts therein to compute the frequency
of use of each identifier instead of using the estimates described in the previous section. Doing so
may reduce the number of uses for identifiers that appear in loops that rarely executed more than
once, and increase the number of uses for those that appear in then/else arms that are executed
most of the time.

Complex preprocessor macros can obscure bprint’s presentation. It necessarily uses post-
expansion source coordinates to annotate pre-expansion source files.

Profiling code also records the number of calls made from each call site, which can be used to
reconstruct the dynamic call graph. bprint prints a line for each edge, e.g.,

38

1 queens from main in 8q.c:12.8
1964 queens from queens in 8q.c:27.11
92 print from queens in 8q.c:25.10

This output shows that all but one of the calls to queens was from the call at character 11 in line 27.
This kind of data is particularly helpful in identifying hot spots that are caused by inappropriate
calls to a function instead of inefficiencies within the function itself. Such data can also help identify
functions that might profitably be replaced with two functions so that one can handle the common
case more efficiently [4, Sec. 5.3].

Expression execution frequency profiling is implemented entirely by the front end. The only
machine dependency is the name of the ultimate termination function in the revised exit function
that writes prof.out at program termination.

The implementation is a machine-independent variation of the method described in Refer-
ence [21]. The front end generates an array of counters for each file and starts each expression
with code to increment the appropriate counter. In also builds a parallel array that holds the
source coordinates corresponding to each counter. At the entry point of each function, the front end
generates the equivalent of

if (!_yylink.link) {
extern struct _bbdata *_bblist;
_yylink.link = _bblist;
_bblist = &yylink;

}
_prologue(&callee);

A _bbdata structure is generated for each file:

static struct _bbdata {
struct _bbdata *link;
unsigned npoints;
unsigned *counts;
unsigned *coords;
struct func *funcs;

} _yylink;

The counts and coords fields point the arrays mentioned above, which each have npoints entries.
The entry point code uses the link field to add each file’s _bbdata structure to the list headed by
_bblist, which the revised exit function walks to emit prof.out.

_prologue accumulates the dynamic call graph. It is passed one of the func structures — one
for each function — that appear on the list emanating from _yylink.funcs:

struct func {
struct func *link;
struct caller {

struct caller *link;
struct callsite *caller;
unsigned count;

} *callers;
char *name;
unsigned coord;

};

The name and coord fields give the function’s name and beginning source coordinate, respectively.
callers points to a list of caller structures, one for each call site. Each caller structure records
the number of calls from the caller’s callsite:

39

struct callsite {
char *file;
char *name;
unsigned coord;

};

caller structures are allocated at execution time and point to callsites, which are generated by
the front end at compile time.

Just before each call, the front end generates an assignment of a pointer to a callsite structure
to the global variable _caller. _prologue uses _caller to record an edge in the dynamic call
graph. If a record of the caller already exists, its count is simply incremented. Otherwise, a caller
structure is allocated and prefixed to the callee’s list of callers.

_prologue(struct func *callee) {
static struct caller callers[4096];
static int next;
struct caller *p;

for (p = callee->callers; p; p = p->link)
if (p->caller == _caller) {

p->count++;
break;

}
if (!p && next < sizeof callers/sizeof callers[0]) {

p = &callers[next++];
p->caller = _caller;
p->count = 1;
p->link = callee->callers;
callee->callers = p;

}
_caller = 0;

}

Profiling can be restricted to only those files of interest. The counts printed by bprint will be
correct, but some edges may be omitted from the call graph. For example, if f calls g calls h and f
and h are compiled with profiling, but g is not, bprint will report that f called h. The total number
of calls to each function is correct, however.

Performance

lcc emits local code that is comparable to that emitted by the generally available alternatives.
Table 2 summarizes the results of compiling and executing the C programs in the SPEC bench-
marks [18] with three compilers on the four machines listed above. Configuration details are listed
with each machine. cc and gcc denote, respectively, the manufacturer’s C compiler and the GNU C
compiler from the Free Software Foundation. The times are elapsed time in seconds and are the
lowest elapsed times over several runs on lightly loaded machines. All reported runs achieved at
least 97 percent utilization (i.e., the ratio of times (user + system)/elapsed ≥ 0.97).

The entries with -O indicate compilation with the “default” optimization, which often includes
some global optimizations. lcc performs no global optimizations. The gcc and gcc -O figures for
gcc1.35 on the MIPS are missing because this benchmark did not execute correctly when compiled
with gcc.

lcc is faster than many (but not all [19]) other C compilers. Table 3 parallels Table 2, but shows
compilation time instead of execution time. Except for the MIPS, the times are for running only the
compiler proper; preprocessing, assembly, and linking time are not included. Two times are given
for the MIPS because the manufacturer’s cc front end consists of two programs; the first translates

40

benchmark
compiler 1. gcc1.35 8. espresso 22. li 23. eqntott

VAX: MicroVAX II w/16MB running Ultrix 3.1
lcc 1734 2708 7015 3532
cc 1824 2782 7765 3569
gcc 1439 2757 7353 3263
cc -O 1661 2653 7086 3757
gcc -O 1274 2291 6397 1131

68020: Sun 3/60 w/24MB running SunOS 4.0.3
lcc 544 1070 2591 567
cc 514 1005 3308 619
gcc 426 1048 2498 591
cc -O 428 882 2237 571
gcc -O 337 834 1951 326

MIPS: IRIS 4D/220GTX w/32MB running IRIX 3.3.1
lcc 116 150 352 111
cc 107 153 338 100
gcc 188 502 132
cc -O 92 130 299 70
gcc -O 145 411 112

SPARC: Sun 4/260 w/32MB running SunOS 4.0.3
lcc 196 370 790 209
cc 203 381 1094 275
gcc 186 411 1139 256
cc -O 150 296 707 183
gcc -O 127 309 788 179

Table 2: Execution Time for C SPEC Benchmarks in Seconds.

41

benchmark
compiler 1. gcc1.35 8. espresso 22. li 23. eqntott

VAX:
lcc 792 237 69 36
cc 1878 576 174 79
gcc 1910 637 192 86

68020:
lcc 302 90 28 15
cc 507 168 52 29
gcc 599 196 56 27

MIPS:
lcc 97 195 35 63 10 24 6 16
cc 318 177 104 68 40 26 24 19
gcc 320 391 88 118 28 42 13 24

SPARC:
lcc 103 38 12 8
cc 175 60 18 11
gcc 313 100 31 16

line counts 79102/250496 25717/58516 7070/22494 2680/6569

Table 3: Compilation Time for C SPEC Benchmarks in Seconds.

compiler VAX 68020 MIPS SPARC
lcc 181 244 280 276
cc 256 306 616 402
gcc 378 507 777 689

Table 4: Sizes of Compiler Executables in Kilobytes.

C to “u-code” and the second generates object code. Generating assembly language costs more than
generating object code, so Table 3 gives both times for all compilers. The last row in Table 3 lists
the number of non-blank lines and the total number of lines in each benchmark after preprocessing.

lcc is smaller than other compilers. Table 4 lists the sizes of the three compilers in kilobytes.
Each entry is the sum of sizes of the program and data segments for the indicated compiler as
reported by the UNIX size command.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, MA, 1986.

[2] American National Standards Institute, Inc., New York. American National Standard for In-
formation Systems, Programming Language C ANSI X3.159–1989, 1990.

[3] F. Baskett. The best simple code generation technique for while, for, and do loops. SIGPLAN
Notices, 13(4):31–32, Apr. 1978.

[4] J. L. Bentley. Writing Efficient Programs. Prentice Hall, Englewood Cliffs, NJ, 1982.

42

[5] R. L. Bernstein. Producing good code for the case statement. Software—Practice and Experi-
ence, 15(10):1021–1024, Oct. 1985.

[6] Computer Science Division, Department of Electrical Engineering and Computer Science, Uni-
versity of California, Berkeley, CA. UNIX User’s Manual, Reference Guide, virtual VAX-11
version edition, Mar. 1984.

[7] C. W. Fraser. A language for writing code generators. Proceedings of the SIGPLAN’89 Confer-
ence on Programming Language Design and Implementation, SIGPLAN Notices, 24(7):238–245,
July 1989.

[8] C. W. Fraser and D. R. Hanson. A code generation interface for ANSI C. Software—Practice
and Experience, 21(9):963–988, Sept. 1991.

[9] C. W. Fraser and D. R. Hanson. Simple register spilling in a retargetable compiler. Software—
Practice and Experience, 22(1):85–99, Jan. 1992.

[10] S. L. Graham, P. B. Kessler, and M. K. McKusick. An execution profiler for modular programs.
Software—Practice and Experience, 13(8):671–685, Aug. 1983.

[11] R. E. Griswold and M. T. Griswold. The Icon Programming Language. Prentice Hall, Englewood
Cliffs, NJ, second edition, 1990.

[12] D. R. Hanson. Simple code optimizations. Software—Practice and Experience, 13(8):745–763,
Aug. 1983.

[13] D. R. Hanson. Fast allocation and deallocation of memory based on object lifetimes. Software—
Practice and Experience, 20(1):5–12, Jan. 1990.

[14] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall, Englewood
Cliffs, NJ, second edition, 1988.

[15] D. E. Knuth. An empirical study of FORTRAN programs. Software—Practice and Experience,
1(2):105–133, Apr. 1971.

[16] R. Sedgewick. Algorithms. Addison-Wesley, Reading, MA, 1988.

[17] R. L. Sites. Programming tools: Statement counts and procedure timings. SIGPLAN Notices,
13(12):98–101, Dec. 1978.

[18] Standards Performance Evaluation Corp. SPEC Benchmark Suite Release 1.0, Oct. 1989.

[19] K. Thompson. A new C compiler. In Proceedings of the Summer 1990 UKUUG Conference,
pages 41–51, London, July 1990.

[20] W. M. Waite. The cost of lexical analysis. Software—Practice and Experience, 16(5):473–488,
May 1986.

[21] P. J. Weinberger. Cheap dynamic instruction counting. Bell System Technical Journal,
63(8):1815–1826, Oct. 1984.

43

