
An Alternative to the Use of Patterns
in String Processing

RALPH E. GRISWOLD and DAVID R. HANSON

University of Arizona

~v

SNOBOL4 is best known for its string processing facilities, which are based on patterns as da~:
objects. Despite the demonstrated success of patterns, there are many shortcomings associated with,
their use. The concept of patterns in SNOBOL4 is examined and problem areas are discussed. A~.
alternative method for high-level string processing is described. This method, implemented in thg
programming language Icon, employs generators, which are capable of producing alternative value~
Generators, coupled with a goal-driven method of expression evaluation, provide the string processing-
facilities of SNOBOL4 without the disadvantages associated with patterns. Comparisons betwee~
SNOBOL4 and Icon are included and the broader implications of the new approach are discussed. ;~

Key Words and Phrases: pattern matching, string processing, programming languages, SNOBOL4 ;a
CR Categories: 4.2, 4.20, 4.22 ~

'.F

1. INTRODUCTION -~

S N O B O L 4 is cer ta in ly bes t k n o w n for its p a t t e r n - m a t c h i n g facilities [21]. A m o n g
readi ly avai lable high-level languages, S N O B O L 4 is v i r tual ly un ique in provid ing
powerfu l facilities for s t r ing analysis. P roposa l s have been m a d e for ex tending
the p a t t e r n - m a t c h i n g facilities of S N O B O I A to include synthes is as well a~
analysis [6], and p rocedura l m e c h a n i s m s for imp lemen t ing pa t t e rn s are a cent ra l
issue in a subsequen t language, SL5 [13, 17, 22]. ~

P a t t e r n s in a style s imilar to S N O B O L 4 have been inco rpo ra t ed or p roposed in
a n u m b e r o f o the r l anguages or language var ian t s [27, 32]. Artificial intelligend~
languages in pa r t i cu la r have increasingly inc luded pa t t e rn s and pa t t e rn m a t c h i n g
as cen t ra l facilities [2, 28], and p a t t e r n m a t c h i n g has been i m p o r t a n t in som~
recen t appl ica t ions of artificial intel l igence t echn iques [8]. Finally, the re has als~
been subs tan t ia l theore t ica l in teres t in s t r ing p a t t e r n m a t c h i n g [3, 7, 23, 30].

Cons ider ing the impor t ance a t t r i bu t ed to pa t te rns , and to s t r ing pa t t e rn s m
pa r t i cu la r [7], it is wor thwhi le to m a k e a crit ical eva lua t ion of high-level l anguage
facilities for p a t t e r n match ing . Th i s pape r eva lua tes the p a t t e r n - m a t c h i n g facil,~ ~-
ties of S N O B O L 4 . In par t icular , the use of pa t t e rn s as da t a objects is considered,
concen t r a t i ng on thei r character is t ics , the i r advan t ageous and disadvantageot~s

Permission to copy without fee all or part of this material is granted provided that the copies are nqt
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission. 0
This work was supported by the National Science Foundation under Grants MCS75-01307 and
MCS79-03890.
Author's address: Department of Computer Science, University of Arizona, Tucson, AZ 85721. ~
© 1980 ACM 0164-0925/80/0400-0153 $00.75 A

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980, Pages 153-172. 3A

154 R.E. Griswold and D. R. Hanson

attributes, and the degree to which they are essential as a mechanism for
embodying search and backtrack facilities. An alternative to patterns that pro-
vides most of their advantages without the associated disadvantages is suggested.
While other defects in SNOBOIA, such as lack of traditional control structures
and the absence of high-level synthesis facilities, are not considered here, solutions
to these problems are provided as a by-product of the new approach.

2. PATTERNS IN SNOBOL4

In SNOBOIA, patterns are data objects constructed during program execution.
The repertoire of pattern-construction functions and operators provides a variety
~f patterns and permits the construction of relationships among them. During
pattern matching, a focus of attention (cursor position) is maintained in the string
being examined (the subject). As pattern components successfully match, the
cursor is advanced and subsequent pattern components are applied. If a pattern
component fails to match, alternative components are applied. If no alternative
succeeds, backtracking to an earlier state is at tempted to seek alternatives to a
formerly successful match. For descriptions of the matching process, see [10, 11,
13, 15, 21].

2.1 Advantages of the Pattern Approach

The richness of the SNOBOIA pattern facil i ty is i l lustrated by the pattern-
~onstrdcting operations and the corresponding processes that occur during pat-
kern matching. There are 16 operations that construct patterns. Of these, five are
-g~ncerned with positions in the subject:

~EN(N) match N characters
TAB(N) move cursor to position N
RTAB(N) move cursor to position N from right end
:pOS(N) match if cursor is at position N
,RPOS{N) match if cursor is at position N from right end

~Four operations construct "lexical" patterns, whose actions depend on the char-
.~cter structure of the subject:

~NY(S) match any character in S
NOTANY(S) match any character not in S
BREAK(S) match up to (but not including)
~,, any character in S
SPAN{S) match through characters in S

'There are three operations that construct patterns that perform assignments:
3.:
@V assign cursor value to V
P $ V assign substring matched by P to V
~P. V assign substring matched by P to V
9~ if entire match succeeds
; - c

.JPatterns that control the application of other patterns are constructed by three
operations:

be
P1] P2 apply P1 or apply P2
P1 P2 apply P1 then apply P2
ARBNO(P) apply pattern P an arbitrary number of times

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

An Alternative to the Use of Patterns in String Processing 155

These operations allow the composition of patterns, and hence the construction
of more complex patterns out of simpler ones.

The unevaluated expression operation, *X, defers the evaluation of the expres-
sion X until pattern matching. This feature allows the effect of recursive pattern
matching as well as computation during pattern matching.

There are seven built-in patterns. Three are concerned with specific types of
matching:

ARB match an arbitrary string
BAL match a parenthesis-balanced string
REM match remainder of subject

Four built-in patterns are concerned with control of the matching process:

ABORT terminate matching with failure
FAIL fail to match
FENCE abort during backtracking
SUCCEED succeed during backtracking

Finally there are two key words that control global aspects of pattern matching.
&ANCHOR determines whether patterns must match at the first character of
the subject. &FULLSCAN controls the use of heuristics designed to improve the
efficiency of pattern matching.

Patterns,as data objects also provide an abstraction mechanism. For example,
if the value of LETTERS is a string of all alphabetic characters,

GETWORD = BREAK(LETTERS) SPAN(LETTERS). WORD

is a pattern that locates a "word" and assigns the result to WORD. Used in
pattern matching, this pattern operates as an abstraction much like a function.
For example,

TEXT GETWORD :S(YES)F(NO)

identifies a word in TEXT, if there is one.
A large part of the usefulness of pattern matching lies in the automatic

bookkeeping that is provided. A focus of attention in the subject is maintained as
matching progresses without the need for explicit specification by the user. While
the value of this automatic bookkeeping may appear to be minor, it has the
practical effect of freeing the programmer from one of the most error-prone
aspects of programming--complex nested indexing. An important consequence of
automatic bookkeeping lies in the suppression of notational detail. Since each
pattern match applies only to a single subject and since the cursor changes
automatically, neither of these variables has to be specified in the pattern. Thus
complex operations can be expressed concisely. This characteristic is evident in
the example above; the specification for GETWORD requires no reference to the
string to which it is applied nor to where in this string the first letter is found.

The process of pattern matching, i.e., the application of a pattern to a string,
embodies a powerful search and backtrack algorithm that the programmer need
not understand beyond an abstract functional level, much less implement. The
algorithm includes the maintenance of state information and the reversal of
effects during backtracking. Thus the programmer can specify a desired construc-
tion without ha ,ving to program the algorithm for applying it. For example,

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

156 R.E. Griswold and D. R. Hanson

KEY-- ("re" I "trans") ("form" I "port") ("er" I "s")

is a pat tern tha t matches strings such as "reformer", "reforms", "transforms",
and so on. The pattern-matching algorithm assures tha t the application of this
pat tern will match any of the eight possibilities, regardless of where the pat tern
occurs in the subject. In this simple example, a matching algorithm is obvious.
However, KEY can be used in more complex contexts such as

KEYWORD -- (POS(0) I) KEY (ANY(",.;:!?") I RPOS(0))

and so on. Regardless of the complexity of the pattern, the pat tern-matching
algorithm exhaustively searches for all alternatives.

One of the special aspects of pat terns lies in their ability to characterize
properties of strings in a manner similar to the way in which context-free
grammars characterize context-free languages. Pat terns viewed in this way pro-
vide an easy method for emulating static grammatical characterizations and, for
example, for constructing recognizers without the need to know how the recog-
nition process is carried out. This use also illustrates the value of pat terns as data
objects. Pat terns can be composed from simpler ones using construction operators
tha t parallel the grammatical concepts of subsequent and alternate. Recognizers
for complicated grammars can be built in a bottom-up fashion, starting with
simple components and fashioning more complex ones. The almost direct corre-
spondence between productions of a context-free grammar and corresponding
SNOBOIA patterns is particularly appealing. A simple example is given by the
grammar

(vat) : :=xl Yl z
(addop) ::= + I -
(mulop) ::-- * I /
(term) ::--(var) I ((exp)) I (term)(mulop)(var)
(exp) ::= (term) I (exp) (addop) (term)

For which the corresponding SNOBOIA patterns are

V A R = " x " I "y" I "z"
ADDOP--"+" I " - "
MULOP--"*" I " / "
TERM -- VAR I "C *EXP ")" I *TERM MULOP VAR
EXP -- TERM I *EXP ADDOP TERM

Note the use of deferred evaluation to handle the forward ("recursive") references
to T E R M and EXP. Since a pat tern is a data object, the effect of a loop is
obtained by deferring reference to these components until after the pat tern is
constructed. The forward references are computed by the evaluation of T E R M
and EXP during pat tern matching.

In fact, a direct translation between context-free grammars and patterns can
be made by deferring evaluation of all patterns [9, 14]. Using this device for the
example above, the patterns are

VAR--"x" I "y" I "z"
ADDOP--"+" I " - "
MULOP--"*" I " /"
TERM -- *VAR I "(" *EXP ")" I *TERM *MULOP *VAR
EXP = *TERM I *EXP *ADDOP *TERM

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

An Alternative to the Use of Patterns in String Processing • 157

Patterns can also be constructed in a top-down fashion, although this technique
is less frequently used. For the example above, this amounts to reversing the
order of construction and the use of deferred evaluation for forward references:

EXP = *TERM I *EXP *ADDOP *TERM
TERM -- *VAR I "(" EXP ")" I *TERM *MULOP *VAR
MULOP = "*" I "/"
ADDOP="+" I " - "
VAR="x" ["y" I "z"

SNOBOIA allows greater expressive power than most grammar systems. Thus

VAR = ANY("xyz")
ADDOP = ANY("+-")
MULOP -- ANY("./")

are both more concise and more efficient than the alternation of individual
characters. Of course SNOBOIA allows thespecification of context-sensitive
constructions and in general provides a much richer expressive facility than
context-free grammar systems.

2.2 Disadvantages of the Pattern Approach

The problems with patterns are closely related to their virtues. While the pattern-
matching facility of SNOt~OIA has a richness of expressive power, it also has a
corresponding verbosity. The large vocabulary of pattern-construction operations,
built-in patterns, and matching modes presents the programmer with a formidable
repertoire to master [30].

Similarly, while the implicit pattern-matching algorithm is helpful in formulat-
ing complex string analysis, programmers frequently lack confidence in the
correctness of complicated patterns. Hidden intricacies of the matching algorithm
may baffle the programmer trying to find the source of a bug. In circumstances
where knowledge of the details of pattern matching is necessary, the programmer
must master an arcane discipline. Some aspects of pattern matching are so
obscure that even the designers and implementers of the language are forced to
resort to listings of the system for answers.

Less obvious to the programmer is the unnecessary processing that may result
because of the exhaustive search-and-backtrack algorithm. While the programmer
benefits from the built-in algorithm, the lack of control over this algorithm may
result in hidden but substantial inefficiencies in processing. This issue has, of
course, been of considerable concern in artificial intelligence languages [31]. A
simple example of the problem in SNOBOIA is illustrated by the application of
the pattern KEY to a subject consisting of "reforming". The first and second
components of the pattern match "reform", but when "er" and "s" fail to match,
the algorithm backtracks to the second component to try the alternative "port"
which obviously cannot match, since a different literal string has already been
found in this position. While there is an obvious solution in this case and there
are classes of related problems that can be treated easily [6], the general difficulty
remains. SNOBOIA does provide a few source-language mechanisms for control-
ling the matching algorithm, but these are rarely used and tend to aggravate the
problem of understanding the processes that go on during matching.

One of the most difficult concepts for the beginning SNOBOIA programmer to

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

158 R.E. Griswold and D. R. Hanson

grasp is that pattern construction and pattern matching are separate and distinct
processes. Furthermore, since patterns can be constructed at their site of use, the
existence of the two processes is not always evident. For example, in

LOOP LIST BREAK(",").KLEN(1) = :F(DONE)

the two processes are not apparent, although both occur. However, in

ITEM = BREAK(","). K LEN(1}

LOOP LIST ITEM = :F(DONE)

the first statement clearly constructs a pattern, while the last statement just as
clearly applies this pattern. The sophisticated SNOBOIA programmer knows
that the second approach is more efficient in most implementations of SNOBOIA,
since the pattern is constructed only once, while the first approach requires that
the pattern be constructed for each execution of the statement labeled LOOP.
Pattern construction uses two resources, time and space. In the first approach
above, time and space are used for each construction of the pattern. After the
execution of this statement, this pattern is no longer accessible. Most SNOBOIA
systems eventually "garbage collect" such transient objects to reclaim the space,
but since this takes time as well, creation of transient objects eventually imposes
an additional time penalty. (Some implementations of SNOBOIA recognize
constant in-line patterns during compilation and place them out of the line of
actual program execution [5].)

Patterns cause many problems in program structuring. The necessity of using
side effects is particularly troublesome. The assignment to WORD in the pattern
GETWORD given above illustrates this problem.

From the point of view of program structure, an in-line pattern provides
evidence of its function at the site of use, whereas an out-of-line pattern, being
physically separated from its site of use, must be located to determine its actual
function. Well-chosen mnemonics help, but can hardly substitute for the pattern
itself. The issue tends to defeat the use of patterns as an abstraction mechanism.
Furthermore, patterns, unlike functions, cannot be given arguments at the site of
application. The need for parameterization frequently results in the use of a
number of similar, but distinct patterns. For example, if words are to be identified
at several places in a program, but different identifiers are needed for assignment
of the words, the pattern GETWORD given above cannot be used, since the
identifier WORD is an integral part of the pattern and cannot be specified when
GETWORD is applied. Similarly, unlike functions, patterns have no local iden-
tifiers and hence must operate by side effects on global variables, as illustrated in
the example above. If a pattern is not constructed at its site of use, the difficulty
with side effects is aggravated.

One of the most serious linguistic problems with pattern matching in SNOBOL4
is the fact that the pattern-matching facility constitutes an essentially distinct
sublanguage imbedded in SNOBOL4. The kinds of operations that occur during
pattern matching are significantly different from those that occur outside pattern
matching. Some pattern operations, such as ANY(S), have no counterpart outside
pattern matching, while others have similar, but significantly different, parallels
inside and outside pattern matching. For example, there are three forms of
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

An Alternative to the Use of Patterns in String Processing 15~J

assignment inside pattern matching and only the standard assignment operation
outside. Similarly, expressions are executed sequentially outside pattern match-
ing, while inside pattern matching their execution may involve backtracking. Fo~
instance, outside pattern matching P1 P2 denotes string concatenation, while
inside it results in sequential application of P1 and P2 with search for alternatives
and backtracking. =:

In a very real sense, SNOBOIA is composed of two languages, a basic languag6~
Lfand a pattern-matching language ~. This linguistic dichotomy produces a totat:
vocabulary that is large and forces the programmer to think differently in the
two languages, to xlse different approaches and phraseology, to decide which~
language to use to accomplish a particular task, and to change frames of referende~
frequently. The effect is a "linguistic schism."

The dichotomy is particularly troublesome because there is little facility fo~
communication between £0 and ~. In ~, patterns for ~ are constructed. When ,h-
pattern match is invoked in ~, control is transferred to ~, where the matching:
procedures for the pattern are then executed. Thus ~cf has the operations nece~,,
sary for describing programs in ~, but not for carrying out their actions. Patterr~
construction is essentially the compilation of such programs for ~. In typical'
SNOBOIA programs, programs for 2~ are continually compiled and executed.'.i
Note that the vocabulary of Lf is increased by having to describe programs in
and that compilation of programs for ~ during the execution of ~q~is an inherentl~
expensive process.

Pattern matching is not extensible in the same fashion as the rest of tlx~
language is. While SNOBOIA has a facility for programmer-defined functions'
and data types in ~, there is no facility for programmer-defined matchir~
procedures, i.e., procedures in ~. While complex patterns can be composed fron~
simpler ones, there is no mechanism for introducing new methods of matching,

In ~, operations of Zf are inaccessible except through the interface of unevai~-,'
uated expressions. This interface is awkward at best. Consider, for example, the'
problem of determining whether the first comma in a string is at least K
characters from the beginning. Numerical computation is part of £fbut not of ~
On the other hand, .L# has no facilities for locating characters in strings. There ard
several possible approaches to this problem. (The existence of such alternatives
is, in itself, indicative of a difficulty.) If this problem is given to a typical
SNOBOL4 programmer, the most likely type of solution is

Y¢

S BREAK(",") . T :F(NO) c.
GE(SIZE(T),K) :S(YES)F(NO) :a

• . [3 Here, the solution is divided into two parts. One part is performed m ~ to get the
substring up to the first comma. The second part is performed in Zf to test tl~e~
length of this substring. ""

The more sophisticated (or involuntionally minded) SNOBOIA programme~
might produce the following solution: ~•.:

S BREAK(",") $ T *GE(SIZE(T),K) :S(YES)F(NO)

Here the solution is accomplished in one statement (a doubtful virtue) by havin~
interface ~ through an unevaluated expression to perform the necessa~

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980~

1-_60 R.E. Griswold and D. R. Hanson

.numerical computation. A better solution along these lines is

S: BREAK(",") @N *GE(N,K) :S(YES)F(NO)

T:he advantage of this solution is that the formation of a substring and the
computation of its length is avoided. However, all of these solutions have evident
p~oblems. Each of them requires assignment to a global variable as a side effect
in order to have the information necessary to do a simple computation in ~.
~j The real problem here is that there are frequently times when both £z and

a~e inadequate, individually. In such cases, the typical result is obscure, refractory,
a~.d poorly structured.

2.3 SNOBOL4 Patterns in Perspective

To summarize the preceding sections, string patterns as embodied in SNOBOIA
l~ave a number of valuable aspects:

(:[) Powerful and extensive facilities for string analysis.

~) An abstraction mechanism.
) Automatic bookkeeping.

~) A built-in search and backtrack algorithm.
) Natural characterization of languages.

On the other hand, patterns present many problems:

(~) An excessively large vocabulary.
(~) Complexity of the pattern-matching algorithm.
~3) Unnecessary backtracking and lack of control over the pattern-matching
;: algorithm.
(~) Confusion between pattern construction and pattern matching.
($) Difficulties with program structuring, especially the necessity for using side
~:~ effects.
"x:(6) Inefficiency inherent in the run-time construction of patterns.

Dichotomy of languages, with a further increase in total vocabulary and a
~: linguistic schism.
~) Lack of mechanism for defining matching procedures.

A number of attempts have been made to solve these problems by extending
~. Suggestions have been made for adding string synthesis facilities [6], for adding
programmer-defined matching procedures [12], and for providing more control
over the matching algorithm [6]. These proposals provide much of the basis for
SL5 [13, 17, 22]. Expanding the ~ component has hardly eliminated the need for
~l~e .Lz component. In fact, the ~f component of SL5 is larger. It includes, among
o~her things, functions for performing simple string analysis in cases where
complex search and backtracking are not needed. The dichotomy in SL5 is
l~creased, not reduced, and the vocabulary is, of course, also increased. The
linguistic schism is just as deep in SL5 as it is in SNOBOIA.

The fundamental question is whether such a dichotomy is necessary. It is the
thesis of this paper that most of the virtues of pattern matching in SNOBOIA
.~d related languages can be retained in a language without such a dichotomy
~ d, in fact, without patterns.
.A~CM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

An Alternative to the Use of Patterns in String Processing 161

3. A NEW APPROACH TO STRING PROCESSING

The new approach is to augment the more traditional .Lz component and to
eliminate ~. The major additions to the Xo component necessary to achieve the
advantages of pattern matching without actually having patterns are a facility
for automatic bookkeeping and search-and-backtrack mechanisms. The following
sections describe the major features of this approach.

3.1 A Brief Overview

The programming language that contains this new approach to string processing
is called Icon [20]. Icon resembles SL5 more than it does SNOBOL4. It has an
expression-oriented syntax with traditional control structures as well as some
novel ones. The evaluation of an expression in Icon l~r0duces a result consisting
of a value and a signal as in SL5. The value portion of the result serves the
traditional computational role. Success and failure signals drive control structures
in a manner similar to SL5.

Icon lacks the ~ component of SL5, has a less general procedure mechanism
than SL5, but adds new control structures and evaluation concepts that are
described in subsequent sections.

An extensive description of Icon is beyond the scope of this paper and is not
necessary for understanding the basic thesis. Examples taken from Icon should
be clea~ by context, at least in their general aspects, if not in all details. More
comprehensive descriptions of Icon are given in [16, 18, 19, 24] and implementa-
tion is discussed in [24].

3.2 Automatic Bookkeeping

In Icon automatic bookkeeping is accomplished in a manner that appears to be
similar to SNOBOL4 but bypasses the construction of patterns. The expression

s c a n s u s i n g e

establishes a global subject s to which string processing operations in e apply.
The expression e, which can include any operations but typically includes string
processing operations, is then evaluated. String processing operations that apply
to the subject are called "scanning operations." The result returned by the scan
expression is the result returned by e.

Most scanning operations deal with character positions within the subject. In
Icon, character positions are between character.~ and numbered from the left
starting at 1. For example, the positions in SUBJECT are

S U B J E C T
1 ' 1 ' 1' 1 ' 1 ' 1' 1' 1'
1 2 3 4 5 6 7 8

Note that the position after the last character may be specified. It is also useful
to specify positions from the right end of a string; nonpositive numbers starting
at 0 and continuing with negative values specify positions from the right end
toward the left, e.g.,

S U B J E C T
1' 1' 1' 1' 1' 1' 1' 1'

-7 -6 -5 -4 -3 -2 -1 0
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

162 R.E. Griswold and D. R. Hanson

A typical scanning operation is upto(c), which returns the position in the
subject just before the first occurrence of a character in c {note the similarity of
this operation to the pattern BREAK(c) in SNOBOL4). Thus

s c a n s us ingj := upto("aeiou")

assigns to j the position of the first vowel in s (failing if there is no vowel).
This simple example illustrates several important points. As in SNOBOL4, the

string operated on by upto(c) is implicit and does not have to be specified as an
argument. The operation upto(c) does not construct a pattern, but simply carries
out the analysis. In SNOBOL4, a similar operation, BREAK(c), constructs a
pattern, which, when applied, carries out the analysis. {Note that the precise
action is different; upto(c) returns a position, while BREAK(c) returns the
substring matched. This difference is inessential to the string processing concepts
in Icon, although it has pragmatic importance.)

Another important point is that the expression e in the scan-us ing construc-
tion can contain any Icon operation. In the example above, the standard form of
Icon assignment is used to assign the desired position. In SNOBOL4 the equiva-
lent statement would be

s BREAK("aeiou") @j

In Icon, the focus of attention in the subject is maintained as an implicit cursor,
similar to the method used in the ~ component of SNOBOL4. When the subject
is established, the cursor is set to 1. Some Icon operations move the cursor.
Examples are tab(n), which sets the cursor to n, and move(n), which adds n to
the current value of the cursor. Both operations return the substring between the
previous and new cursor positions. Again, there are analogies to the SNOBOL4
operations TAB(n) and LEN(n), although tab(n) and move(n) operate immedi-
ately upon invocation rather than constructing patterns. An example of the use
of such a scanning operation is ~
s c a n s u s i n g

write ("[" U rnove(2) II "]")

which is equivalent to the SNOBOL4 statements

s LEN(2) • TWO
OUTPUT = "[" TWO "]"

Note that the linguistic schism evidenced in the SNOBOL4 statements, with the
consequent need for an auxiliary variable, does not exist in Icon. The advantage
of the Icon approach is particularly evident where more complicated control
structures are useful. An example is

while s := read() do
s c a n s u s i n g

repeat write ("[" II rnove(2) II "]")

(The r epea t construct repeatedly invokes write until failure occurs because the
cursor cannot be advanced two positions.)

The subject and cursor position are directly accessible in Icon as key words

i II denotes string concatenation.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

An Alternative to the Use of Patterns in String Processing 163

&subject and &pos. Assigning a value to &subject establishes the subject for
string scanning. &pos is automatically set to 1 when &subject is set. &pos can be
explicitly set to any value in the range of &subject.

Since string processing expressions may be complicated and extensive in scope,
it is frequently useful to set &subject explicitly, rather than using scanning
expressions. The preceding example can be written more concisely as

while &subject := read() do
r e p e a t write("[" II move(2) II "]")

The advantage of the scan expression is that the current subject and cursor are
saved before e is evaluated and restored after e is evaluated. In fact,

s c a n s u s i n g e

is essentially equivalent to

push(&pos)
push(&subject)
&subject := s
e
pop(&subject)
pop(&pos)

where push(x) and pop(x) represent internal stack operations for saving and
restoring values. Since the scan expression suppresses a substantial amount of
detail, nested string scanning is easily obtained. For example, the following section
of program examines a string of items separated by commas, printing the items
that contain the letter "x".

s c a n s u s i n g
r e p e a t {

s c a n tab(upto(",")) u s i n g {
ff upto("x") t h e n

write(&subjeet)
}

move(l)
}

The value of tab(upto(",")) is the subject of an inner scanning operation that
prints an item only if it contains an "x". Once this operation is complete, the
cursor is advanced one position in the subject of the outer scan.

3.3 String Scanning Operations

There are eight stnng scanning operations in Icon. Two, move(n) and tab(n), are
positional. The remainder are "lexical" in the sense that they analyze the
character structure of the subject.

As previously described, the value of both move(n) and tab(n) is the substring
between the previous and new cursor positions (regardless of the direction of
cursor movement). Both operations fail if the resulting cursor position is not in
the range of the subject. As a consequence of the way in which positions are
designated, tab(O) positions the cursor past the last character of the subject.

The value of &pos is always positive. If a nonpositive value is assigned to &pos
to specify a position relative to the right end of the string without having to

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

164 R.E. Griswold and D. R. Hanson

compute the length of the string, the conversion to the corresponding positive
position is provided automatically. This device suppresses detail and avoids
bothersome computation. Thus, if the subject is "portability",

&pos := 0

actually sets &pos to 12, and subsequently

j :-- &pos

sets j to 12, not to 0.
The lexical scanning operations in Icon are more extensive than those in the
component of SNOBOIA:

upto(c)
many(c)
any(c)
bal(cl, c2, c3)
find(s)
match(s)

The scanning operation upto(c) returns the position of the first occurrence of
a character of c in the subject, starting at the current cursor position. Thus, if the
subject is "portability" and the position is 3, the value of upto("aeiou") is 5. The
operation fails if no such character exists. Note that upto(c) does not change the
position or return a string; the effect of BREAK(c) in SNOBOL4 is obtained by
tab(upto(c)).

The scanning operation many(c) returns the position after a continuous se-
quence of characters in c in the subject, starting at the current cursor position.
Thus, if the subject is "moonshine" and the position is 2, the value of
many("aeiou") is 4. The operation fails if the character of the subject at the
current position is not contained in c.

The scanning operation any(c) succeeds if the character at the current cursor
position in the subject is contained in c and fails otherwise. The value returned
is one greater than the current cursor position. Character sets in Icon may be
complemented with respect to the alphabet of all characters. Thus any(-c)
succeeds if the character at the current cursor position is not included in c.
(Character sets have a number of other uses; see [16] for details.)

The scanning operation bal(cl, c2, c3) is a generalization of the matching
procedure for the SNOBOIA pattern BAL. In SNOBOIA, BAL only matches
strings balanced with respect to parentheses. In Icon, cl and c2 are character sets
that specify the left and right balancing characters. Furthermore, c3 specifies a
set of characters that may follow the balanced string. For example, if the subject
is "(a)*[b] - 7" and the cursor is 1, the value of bal("[(",")]","+-") is 8. The
operation fails if there is not such a balanced string starting at the current cursor
position. For convenience, the following defaults are used if the arguments are
null:

cl "("
c2 ")"
c3 any character

Thus bal() is similar to the matching procedure for the pattern BAL in
SNOBOIA.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

An Alternative to the Use of Patterns in String Processing 165

The scanning operation find(s) returns the position just before the first occur-
rence of the string s in the subject, starting at the current cursor position. Thus,
if the subject is "mississippi" and the position is 1, the value of find("is") is 2.
The operation fails if no such string exists.

The scanning operation match(s) returns the cursor position after the occur-
rence of s as an initial substring of the subject starting at the current cursor
position. Thus, if the subject is "mississippi" and the position is 2, the value of
match("is") is 4. The operation fails if s is not an initial substring of the subject
at the current cursor position, Thus, for the subject above, if the position were 1,
match("is") would fail. For convenience, the expression =s is equivalent to
tab(match(s)). Note that =s corresponds to the pattern component s in
SNOBOL4.

3.4 Searching and Backtracking

One of the essential components of high-level string processing is the ability
to express alternatives concisely and to have the search for such alternatives
carried out automatically. In Icon, the operation el le2 is equivalent to the
operation performed in SNOBOL4 when the pattern constructed by PI IP2 is
evaluated in ~.

This operation is actually fairly complex and deserves discussion. The most
obvious aspect of alternation is that e l is evaluated first and if that evaluation
succeeds, the result is the result of the entire expression. However, if evaluation
of el fails, e2 is evaluated and its result is the result of the entire expression. The
subtlety arises if the value produced by successful evaluation of the alternation
is not acceptable in the context in which it occurs. Consider, for example,

tab(lO 15)

(Note that this construction, while clear in its intent, has no direct counterpart in
SNOBOL4.) The expression 1015 has two literal subexpressions, and of course -
the first, 10, succeeds. However if the subject is, say, six characters long, tab(lO)
fails. This results in a "reevaluation" of the expression 1015 and the alternative
value, 5, is returned the second time. Thus, tab(lOI5) is equivalent to
tab(lO) I tab(5), as would be expected.

In Icon, operations that have the capacity for producing alternative values as
required by the context in which they appear are called generators. This capacity
for generating alternative values is meaningful for many operations and is used
not just in string scanning but throughout Icon [19].

The scanning operation upto(c) is, in fact, a generator. For upto(c), the behavior
is like that for the matching procedure for BREAKX(c) in the SPITBOL dialect
of SNOBOL4 [4]. If the value returned by upto(c) does not satisfy the context in
which it is used, the next position further on is returned, and so on. Note that
upto(c) is a generator with an indefinite number of alternatives that depend on
c and the current subject.

The possible need for the second alternative in tab(lO 15) is clear, but the need
for alternatives in upto(c) is not so obvious. (Note that tab(upto(c)) necessarily
succeeds for any value of upto(c) and move(upto(c)) is somewhat fanciful.) There
are, however, other control structures that may require alternatives. One of these
is el & e2, which succeeds only if both el and e2 succeed. In requiring this

ACM Transactions on Programming Languages and Systems, VoL 2, No. 2, April 1980.

166 R.E. Griswold and D. R. Hanson

"mutual" success, there is automatic backtracking for alternatives of el if e2 fails.
This operation corresponds to the matching procedure for the concatenation of
patterns P1 P2 in SNOBOL4. Suppose, for example, that the subject is "missis-
sippi" and the cursor position is 1. In the expression

tab(upto("i")) & ="issip"

upto("i") first returns the value 2 and tab(upto("i")) moves the cursor to this
position. However, --"issip" fails, and the first expression is reevaluated for an
alternative. This time the value of upto("i") is 5, tab(upto("i")), moves the cursor
correspondingly, and ="issip" succeeds.

Since tab(upto(c)) is equivalent to matching for the SPITBOL pattern
BREAKX(c), the expression above is equivalent to matching for the SPITBOL
pattern

BREAKX("i") "issip"

The Icon expression is slightly more verbose than the SPITBOL pattern, but in
turn, Icon expressions offer more flexibility (there is no straightforward SPITBOL
equivalent to j := upto(c)). This tradeoff is typical and works to the advantage of
Icon in complex string processing, while the conciseness of SNOBOL4 is an
advantage in simple situations.

The other string scanning operations that are generators are bal(cl, c2, c3) and
find(s). For bal(cl, c2, c3), the alternatives are as in the SNOBOL4 pattern
BAL--successively longer balanced strings. For find, the alternatives are positions
of s successively further on in the subject.

The full range of search and backtracking in SNOBOL4 pattern matching is
available in the Icon expressions el I e2 and el & e2. It is important to note that
el & e2 does not have to be used unless it is needed (while in SNOBOL4,
backtracking in a sequence of pattern components cannot be avoided). For
example,

x := tab(upto(cl)) & y := tab(upto(c2))

succeeds only if the subject contains a character of c2 in a position at or beyond
a character of cl, while in the sequence of expressions

x := tab(upto(cl)); y := tab(upto(c2))

this constraint does not apply. A value may be assigned to y even if the subject
does not contain a character in cl.

It is not necessary to require the mutual success of two expressions in order to
obtain the alternatives of a generator. The control structure

every el do e2

causes el to generate its alternatives in sequence, evaluating e2 for each alter-
native generated by el. An example is

every j := find(s) do write(j)

which prints all the positions at which s occurs as a substring of the current
subject.

In backtracking over an instance of move(n), tab(n), or =s, the effects of
implicit cursor movement are reversed and the cursor is restored to its position
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

An Alternative to the Use Of Patterns in String Processing 167

prior to the evaluation of the operation. For example, if the subject is "portability"
and the cursor position is 1, evaluation of

tab(lO) & ="a"

first sets the position to 10 but then restores it to 1 when ="a" fails. Other effects
are not reversed. In the expression

&pos := 10 & ="a"

the value of the cursor position is not restored, since it is set by assignment, not
by a scanning operation.

3.5 Procedures

One of the most severe limitations of pattern matching in SNOBOL4 is the
inability to add new matching procedures. Since SNOBOL4 has no such facility,
programmers do not miss it per se (it is essentially "inconceivable," since, as a
language, SNOBOL4 has no construct for expressing such a possibility). In Icon,
procedures allow the construction of programmer-defined generators and hence
programmer-defined scanning procedures.

A typical Icon procedure is

procedure max(m, n)
if m > n then return m else return n

end "

As shown in this example, procedures may return values using the expression
r e t u r n e. If e fails, the procedure call fails. The expressions succeed e and fail
are similar to r e t u r n but return the indicated signal. Arguments are transmitted
by value.

Since scanning operations are on a par with all other operations, procedures
may be used for scanning in the same way in which they are used as abstractions
for other purposes. An example is a procedure that behaves like match(s) but is
"unanchored" like find(s):
procedure fmatch(s)

local j
i f j := find(s) then

return j + length(s)
else fail

end

If s is found in the subject, the appropriate value is returned. Otherwise, the
procedure fails.

Defined generators are obtained by using suspend, which returns a value like
r e tu rn , but leaves the procedure activation in a state in which it can be resumed
for the generation of additional values. For example, the procedure fmatch(s)
defined above is not a generator like find(s). This defect can be remedied by
using suspend:
procedure ftnatch(s)

local j
e v e r y j := find(s) do

suspend j + length(s)
fail

end

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

168 R.E. Griswold and D. R. Hanson

Like built-in generators, different instances of defined generators may be sus-
pended simultaneously without interfering with eachother.

A more esoteric application of procedures is in the use of defined generators in
a fashion similar to SNOBOL4 patterns to characterize context-free languages.
Consider the simple grammar

(s) : :=a(s) a[b

An Icon procedure to "match" sentences from the language generated by this
grammar is

procedure s
every (="a" & s() & ="a") l ffi"b"

do suspend
fail

end

This procedure is suspended for every alternative of the expression describing
the language. Thus

scan "aabaa" us ing s()

calls s. The first alternative matches "a" and calls s again (recursively), resulting
in the match of the second "a" and another call to s. This time, the first
alternative fails and the "b" is matched. Upon successive returns, a trailing "a"
is matched each time and the entire expression succeeds. On the other hand, for
a subject that is not a sentence in the language, alternatives are eventually
exhausted, and the scanning operation fails.

The method used above generalizes for more comphcated grammars with a
procedure for each nonterminal symbol. The correspondence between context-
free grammars and defined scanning procedures is just as direct as the correspon-
dence between context-free grammars and SNOBOL4 patterns, if a bit lengthier.
Perhaps more importantly, other computations, such as the construction of a
parse tree, can be added to the appropriate defined scanning procedures. Such
computations cannot be done as easily in SNOBOL4 because there is no way to
write matching procedures.

4. DISCUSSION

As demonstrated in Section 3, generators in Icon give the programmer more
control over the search and backtracking necessary in many string processing
applications than can be exercised in SNOBOIA. It is this programmer control
and the bookkeeping implicit in the maintenance of a &subject and &pos that
make the Icon facilities preferable to, say, a well-designed hbrary of functions.
Although a set of hbrary functions would reduce the size of the language, the loss
of the evaluation mechanism of the built-in facilities would require more work on
the part of the programmer.

There are cases, however, where simple lexical functions would serve as well as
the more general scanning facility. SL5 included a number of lexical functions in
addition to its scanning facility, but this approach results in a large vocabulary
and deepens the hnguistic schism described in Section 2.3. In Icon, this problem
is avoided by permitting most of the scanning operations to be used as simple

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

An Alternative to the Use of Patterns in String Processing 169

lexical functions if additional arguments are supplied. For example, find(s1)
operates as described in Section 3.3, while find(sl, s2) operates simply as a lexical
function, returning the position of the first occurrence of sl in s2. The form
find(sl, s2, i, fi limits the examination of s2 to the substring between positions i
and j. This polymorphic property of the scanning operations is a result of having
them as built-in functions, so that the compiler can supply the correct defaults
for omitted arguments. A more elaborate type system, such as that used in
Alphard [29] or CLU [25], would be required to support a similar mechanism for
defined procedures. A built-in procedure can of course be replaced by a defined
procedure of the same name, but the specialized defaults are not automatically
provided for the defined procedure.

Not surprisingly, however, the Icon approach to string scanning does present
some interesting problems. One problem is the choice of primitive scanning
operations, which is similar to what constitutes a "well-designed" function library
for string manipulation. For example, it might be desirable to have a scanning
operation that sets the cursor like tab(n) but does not return the substring
between the previous and new cursor positions. The advantage of such an
operation would be efficiency, since the computation of the substring would be
avoided, but the automatic reversal of the assignment to &pos would still be
provided. A similar situation exists for move(n). If these new operations are
added, however, the vocabulary of the language is increased, with all the attendant
problems. An alternative is to replace tab(n) and move(n) by these new operations
and add an additional operation to obtain substrings. At the other extreme,
tab(upto(s)) is used so frequently that a single operation that combines these two
would be useful.

The bases for such decisions are the usual ones in language design. The problem
is aggravated by the relative unfamiliarity of string scanning. The historical
influence of SNOBOIA tends to inhibit new views. More experience with scanning
should provide new insights.

The global nature of &subject and &pos is another problem. In Icon, scanning
operations on the same subject tend to be more extensive than in SNOBOIA
because any language constructs may appear in scanning expressions. This is the
reason that setting &subject directly is frequently more useful than the implicit
setting of the subject in the scan expression. However, it then becomes more
likely that the subject or cursor position may be changed inadvertently. For
example, if a defined procedure is called, it may expect to operate on the subject
(as the procedure fmatch(s) given above) or it may establish its own subject. If it
does the latter without saving and restoring the prior subject and cursor position,
the results may be catastrophic.

The generally recognized hazards of global variables [34] are magnified here
because of the frequency with which the two globals, &subject and &pos, are
used. This appears to be a dilemma, since much of the virtue of string scanning
is derived from the global nature of these variables.

It should be noted with respect to terminology that there are other languages
that use "generator" to describe language facilities; Cobol and Algol 68 [33] are
two languages in which the use of the term is completely unrelated to its use in
Icon. One of the first languages having a concept of generators is IPL-V [26] in

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

170 R.E. Griswold and D. R. Hanson

which a generator is a subroutine that processes the elements of a data structure
by calling another routine for each element. More recently, generators appear in
CLU [1, 25] and Alphard [29] where they are used in looping constructs to iterate
over the elements of a data structure. Their use is restricted to specific constructs
and they lack the evaluation mechanism associated with Icon generators.

5. CONCLUSION

Icon demonstrates that the advantages of pattern matching in SNOBOL4 can be
achieved without patterns as data objects and that the linguistic dichotomy of
SNOBOL4 is not an essential property of high-level string processing.

The usefulness of string scanning in Icon leads to a number of possibilities and
open questions. Once scanning on a single subject is available, situations imme-
diately arise where the coordinated scanning of two or more subjects would be
useful. This is a dilemma, since it is the single focus of attention that leads to the
simplifications that make string scanning attractive. Any departure from this
single focus of attention introduces complexity and detail that string scanning
presently avoids.

Looking in another direction, there is no inherent reason why scanning should
be limited to strings. Scanning of data structures, given appropriate primitives,
follows by analogy. Such possibilities are particularly attractive.

It is important to note that the search and backtracking facilities of Icon are
not limited to string scanning. These facilities allow a more natural expression of
some constructions than is possible in most other programming languages.
Examples are

if (x l y) = (m I n) then f(x, y)
if (x = n) & (n > y) then f(x, y)
if x < (n I m) < y then f(x, y)
every (n := f(x)) & (n > 0) do g(n)

Such constructions are closer to the way that programmers think in mathematical
and natural languages than typical programming languages allow. More experi-
ence with the use of such constructions may also lead to the development of new
control structures for expressing alternatives, search strategies, and mutually
necessary conditions.

ACKNOWLEDGMENTS

We are indebted to Tim Korb for a number of suggestions and ideas that are
incorporated in this work, as well as for advice on the presentation. The sugges-
tions of Susan Graham and the referees were also very helpful.

REFERENCES

1. ATKINSON, R. Toward more general iteration methods in CLU. CLU Design Note 54, M.I.T.,
Cambridge, Mass., Sept. 1975.

2. BOBROW, D.G., AND RAPHAEL, B. New programming languages for artificial intelligence re-
search. Comput. Surv. 6, 3 (Sept. 1974), 153-174.

3. BOYER, R.S., AND MOORE, J.S. A fast string searching algorithm. Commun. ACM 20, 10 (Oct.
1977), 762-772.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

An Alternative to the Use of Patterns in String Processing 1 71

4. DEWAR, R.B.K. SPITBOL version 2.0. SNOBOIA Proj. Doc. $4D23, Illinois Inst. Technology,
Chicago, 1971.

5. DEWAR, R.B.K., AND MECANN, A.P. MACRO SPITBOL--A SNOBOIA compiler. Softw., Pract.
Exper. 7, 1 (Jam-Feb. 1977), 95-114.

6. DOYLE, J.N. A generalized facility for the analysis and synthesis of strings and a procedure-
based model of an implementation. M.S. thesis, Univ. Arizona, Tucson, 1975.

7. FLECK, A.C. Formal models for string patterns. In Current Trends in Programming Method-
ology, vol. IV, Data Structuring, R. T. Yeh, Ed. Prentice-Hall, Englewood Cliffs, N.J., 1978, pp.
216-240.

8. FRASER, C.W. A compact, machine-independent peephole optimizer. In Conf. Rec. 6th Annu.
ACM Syrup. Principles Programming Languages, Jan. 1979, pp. 1-6.

9. GIMPEL, J.F. Algorithms in SNOBOL4. Wiley, New York, 1976.
10. GIMPEL, J.F. A theory of discrete patterns and their implementation in SNOBOIA. Commun.

ACM 16, 2 (Feb. 1973), 91-100.
11. GIMPEL, J.F. Nonlinear pattern theory. Acta Inf. 4, (1975), 91-100.
12. GRISWOLD, R.E. Extensible pattern matching in SNOBOIA. In Proc. ACM Annu. Conf., Oct.

1975, pp. 248-252.
13. GRISWOLD, R.E. String analysis and synthesis in SL5. In Proc. ACM Annu. Conf., Oct. 1976, pp.

410-414.
14. GRISWOLD, R.E. String and List Processing in SNOBOL4, Techniques and Applications.

Prentice-Hall, Englewood Cliffs, N.J., 1975, pp. 12, 233-234.
15. GRISWOLD, R.E. The Macro Implementation of SNOBOL4, A Case Study in Machine-Inde-

pendent Software Development. W. H. Freeman, San Francisco, 1972.
16. GRISWOLD, R.E. The use of character sets and character mappings in Icon. Comput. J., to

appear.
17. GRISWOLD, R.E., AND HANSON, D.R. An overview of SL5. SIGPLAN Notices 12, 5 (Apr. 1977),

40-50.
18. GRISWOLD, R.E., AND HANSON, D.R. Reference manual for the Icon programming language.

Tech. Rep. TR 79-1, Dep. Comput. Sci., Univ. Arizona, Tucson, Jan. 1979.
19. GRISWOLD, R.E., HANSON, D.R., AND KORB, J.T. Generators in Icon. ACM Trans. Program.

Lang., submitted for publication.
20. GRISWOLD, R.E., HANSON, D.R., AND KORB, J.T. The Icon programming language: An overview.

SIGPLAN Notices 14, 4 (April 1979), 18-31.
21. GRISWOLD, R.E., POAOE, J.F., AND POLONSKY, I.P. The SNOBOL4 Programming Language,

2nd ed. Prentice-Hall, Englewood Cliffs, N.J., 1971.
22. HANSON, D.R., AND GRISWOLD, R.E. The SL5 procedure mechanism. Commun. ACM 21, 5

(May 1978), 392-400.
23. KNUTH, D.E., MORRIS, J.H., AND PRATT, V.R. Fast pattern matching in strings. SIAM J.

Comput. 6, 2 (June 1977), 323-350.
24. KORB, J.T. The design and implementation of a goal-directed programming language. Ph.D.

dissertation, Univ. Arizona, Tucson, 1979.
25. LIsKov, B.H., ST AL. Abstraction mechanisms in CLU. Commun. ACM 20, 8 (Aug. 1977),

564-576.
26. NEWELL, A., V.D. Information Processing Language-V Manual (Rand Corp.), Prentice-Hall,

Englewood Cliffs, N.J., 1961.
27. PFEFFER, A.S., AND FURTADO, A.L. Pattern matching for structured programming. In Proc. 7th

Asilomar Conf. Circuits, Systems, and Computers, Pacific Grove, Calif., 1973, pp. 466-469.
28. Proceedings of the workshop on pattern-directed inference systems. SIGART Newsletter 63

(June 1977), 1-84.
29. SHAW, M., WULF, W.A., AND LONDON, R.L. Abstraction and verification in Alphard: Defining

and specifying iteration and generators. Commun. ACM20, 8 (Aug. 1977), 553-564.
30. STEWART, G.F. An algebraic model for string patterns. In Conf. Rec. 2nd Annu. ACM Symp.

Principles of Programming Languages, Jan. 1975, pp. 167-184.
31. SUSSMAN, G.J., AND MCDERMOTT, D.V. From PLANNER to CONNIVER--A genetic approach.

Proc. 1972 AFIPS, Fall Jt. Computer Conf., vol. 41, AFIPS Press, Arlington, Va., pp. 1171-1179.
32. TESLER, L.G., ENEA, H.J., AND SMITH, D.C. The LISP70 pattern matching system. In Proc. 3rd

Int. Jt. Conf. Artificial Intelligence, Stanford, Calif., 1973, pp. 671-676.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

172 R.E. Griswold and D. R. Hanson

33. VAN WIJNGAARDEN, A., ET AL.
5 (Jan. 1976), 1-236.

34. WULF, W., AND SHAW, M.
(Feb. 1973), 28-34.

Revised report on the algorithmic language Algol 68. Acta Inf.

Global variables considered harmful. SIGPLAN Notices 8,

Received May 1978; revised August and December 1979; accepted December 1979

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980.

