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SNOBOL4 is best known for its string processing facilities, which are based on patterns as da~: 
objects. Despite the demonstrated success of patterns, there are many shortcomings associated with, 
their use. The concept of patterns in SNOBOL4 is examined and problem areas are discussed. A~. 
alternative method for high-level string processing is described. This method, implemented in thg 
programming language Icon, employs generators, which are capable of producing alternative value~ 
Generators, coupled with a goal-driven method of expression evaluation, provide the string processing- 
facilities of SNOBOL4 without the disadvantages associated with patterns. Comparisons betwee~ 
SNOBOL4 and Icon are included and the broader implications of the new approach are discussed. ;~ 
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1. INTRODUCTION -~ 

S N O B O L 4  is cer ta in ly  bes t  k n o w n  for  its p a t t e r n - m a t c h i n g  facilities [21]. A m o n g  
readi ly  avai lable  high-level  languages,  S N O B O L 4  is v i r tual ly  un ique  in provid ing  
powerfu l  facilities for s t r ing analysis.  P roposa l s  have  been  m a d e  for ex tending  
the  p a t t e r n - m a t c h i n g  facilities of  S N O B O I A  to include synthes is  as well a~ 
analysis  [6], and  p rocedura l  m e c h a n i s m s  for imp lemen t ing  pa t t e rn s  are  a cent ra l  
issue in a subsequen t  language,  SL5 [13, 17, 22]. ~ 

P a t t e r n s  in a style s imilar  to  S N O B O L 4  have  been  inco rpo ra t ed  or  p roposed  in 
a n u m b e r  o f  o the r  l anguages  or  language  var ian t s  [27, 32]. Artificial  intelligend~ 
languages  in pa r t i cu la r  have  increasingly inc luded pa t t e rn s  and  pa t t e rn  m a t c h i n g  
as cen t ra l  facilities [2, 28], and  p a t t e r n  m a t c h i n g  has  been  i m p o r t a n t  in som~ 
recen t  appl ica t ions  of  artificial intel l igence t echn iques  [8]. Finally,  the re  has  als~ 
been  subs tan t ia l  theore t ica l  in teres t  in s t r ing p a t t e r n  m a t c h i n g  [3, 7, 23, 30]. 

Cons ider ing  the  impor t ance  a t t r i bu t ed  to pa t te rns ,  and  to  s t r ing pa t t e rn s  m 
pa r t i cu la r  [7], it is wor thwhi le  to m a k e  a crit ical eva lua t ion  of  high-level  l anguage  
facilities for  p a t t e r n  match ing .  Th i s  pape r  eva lua tes  the  p a t t e r n - m a t c h i n g  facil,~ ~- 
ties of  S N O B O L 4 .  In  par t icular ,  the  use of  pa t t e rn s  as da t a  objects  is considered,  
concen t r a t i ng  on thei r  character is t ics ,  the i r  advan t ageous  and  disadvantageot~s 
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154 R.E. Griswold and D. R. Hanson 

attributes, and the degree to which they are essential as a mechanism for 
embodying search and backtrack facilities. An alternative to patterns that  pro- 
vides most of their advantages without the associated disadvantages is suggested. 
While other defects in SNOBOIA, such as lack of traditional control structures 
and the absence of high-level synthesis facilities, are not considered here, solutions 
to these problems are provided as a by-product of the new approach. 

2. PATTERNS IN SNOBOL4 

In SNOBOIA, patterns are data objects constructed during program execution. 
The repertoire of pattern-construction functions and operators provides a variety 
~f patterns and permits the construction of relationships among them. During 
pattern matching, a focus of attention (cursor position) is maintained in the string 
being examined (the subject). As pattern components successfully match, the 
cursor is advanced and subsequent pattern components are applied. If a pattern 
component fails to match, alternative components are applied. If no alternative 
succeeds, backtracking to an earlier state is at tempted to seek alternatives to a 
formerly successful match. For descriptions of the matching process, see [10, 11, 
13, 15, 21]. 

2.1 Advantages of the Pattern Approach 

The richness of the SNOBOIA pattern facil i ty is i l lustrated by the pattern- 
~onstrdcting operations and the corresponding processes that occur during pat- 
kern matching. There are 16 operations that  construct patterns. Of these, five are 
-g~ncerned with positions in the subject: 

~EN(N) match N characters 
TAB(N) move cursor to position N 
RTAB(N) move cursor to position N from right end 
:pOS(N) match if cursor is at position N 
,RPOS{N) match if cursor is at position N from right end 

~Four operations construct "lexical" patterns, whose actions depend on the char- 
.~cter structure of the subject: 

~NY(S) match any character in S 
NOTANY(S) match any character not in S 
BREAK(S) match up to (but not including) 
~,, any character in S 
SPAN{S) match through characters in S 

'There are three operations that  construct patterns that  perform assignments: 
3.: 
@V assign cursor value to V 
P $ V assign substring matched by P to V 
~P. V assign substring matched by P to V 
9~ if entire match succeeds 
; - c  

.JPatterns that  control the application of other patterns are constructed by three 
operations: 

be 
P1 ] P2 apply P1 or apply P2 
P1 P2 apply P1 then apply P2 
ARBNO(P) apply pattern P an arbitrary number of times 
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An Alternative to the Use of Patterns in String Processing 155 

These operations allow the composition of patterns, and hence the construction 
of more complex patterns out of simpler ones. 

The unevaluated expression operation, *X, defers the evaluation of the expres- 
sion X until pattern matching. This feature allows the effect of recursive pattern 
matching as well as computation during pattern matching. 

There are seven built-in patterns. Three are concerned with specific types of 
matching: 

ARB match an arbitrary string 
BAL match a parenthesis-balanced string 
REM match remainder of subject 

Four built-in patterns are concerned with control of the matching process: 

ABORT terminate matching with failure 
FAIL fail to match 
FENCE abort during backtracking 
SUCCEED succeed during backtracking 

Finally there are two key words that control global aspects of pattern matching. 
&ANCHOR determines whether patterns must match at the first character of 
the subject. &FULLSCAN controls the use of heuristics designed to improve the 
efficiency of pattern matching. 

Patterns,as data objects also provide an abstraction mechanism. For example, 
if the value of LETTERS is a string of all alphabetic characters, 

GETWORD = BREAK(LETTERS) SPAN(LETTERS). WORD 

is a pattern that locates a "word" and assigns the result to WORD. Used in 
pattern matching, this pattern operates as an abstraction much like a function. 
For example, 

TEXT GETWORD :S(YES)F(NO) 

identifies a word in TEXT, if there is one. 
A large part of the usefulness of pattern matching lies in the automatic 

bookkeeping that is provided. A focus of attention in the subject is maintained as 
matching progresses without the need for explicit specification by the user. While 
the value of this automatic bookkeeping may appear to be minor, it has the 
practical effect of freeing the programmer from one of the most error-prone 
aspects of programming--complex nested indexing. An important consequence of 
automatic bookkeeping lies in the suppression of notational detail. Since each 
pattern match applies only to a single subject and since the cursor changes 
automatically, neither of these variables has to be specified in the pattern. Thus 
complex operations can be expressed concisely. This characteristic is evident in 
the example above; the specification for GETWORD requires no reference to the 
string to which it is applied nor to where in this string the first letter is found. 

The process of pattern matching, i.e., the application of a pattern to a string, 
embodies a powerful search and backtrack algorithm that the programmer need 
not understand beyond an abstract functional level, much less implement. The 
algorithm includes the maintenance of state information and the reversal of 
effects during backtracking. Thus the programmer can specify a desired construc- 
tion without ha ,ving to program the algorithm for applying it. For example, 
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KEY-- ("re" I "trans") ("form" I "port") ("er" I "s") 

is a pat tern tha t  matches strings such as "reformer", "reforms", "transforms", 
and so on. The pattern-matching algorithm assures tha t  the application of this 
pat tern will match any of the eight possibilities, regardless of where the pat tern 
occurs in the subject. In this simple example, a matching algorithm is obvious. 
However, KEY can be used in more complex contexts such as 

KEYWORD -- (POS(0) I .... ) KEY (ANY(",.;:!?") I RPOS(0)) 

and so on. Regardless of the complexity of the pattern, the pat tern-matching 
algorithm exhaustively searches for all alternatives. 

One of the special aspects of pat terns lies in their ability to characterize 
properties of strings in a manner  similar to the way in which context-free 
grammars characterize context-free languages. Pat terns  viewed in this way pro- 
vide an easy method for emulating static grammatical  characterizations and, for 
example, for constructing recognizers without  the need to know how the recog- 
nition process is carried out. This use also illustrates the value of pat terns as data  
objects. Pat terns  can be composed from simpler ones using construction operators 
tha t  parallel the grammatical  concepts of subsequent and alternate. Recognizers 
for complicated grammars can be built in a bottom-up fashion, starting with 
simple components and fashioning more complex ones. The almost direct corre- 
spondence between productions of a context-free grammar and corresponding 
SNOBOIA patterns is particularly appealing. A simple example is given by the 
grammar 

(vat) : :=xl  Yl z 
(addop) ::= + I - 
(mulop) ::-- * I / 
(term) ::--(var) I ((exp)) I (term)(mulop)(var) 
(exp) ::= (term) I (exp) (addop) (term) 

For which the corresponding SNOBOIA patterns are 

V A R = " x "  I "y" I "z" 
ADDOP--"+"  I " - "  
MULOP--"*" I " / "  
TERM -- VAR I "C *EXP ")" I *TERM MULOP VAR 
EXP -- TERM I *EXP ADDOP TERM 

Note the use of deferred evaluation to handle the forward ("recursive") references 
to T E R M  and EXP. Since a pat tern is a data  object, the effect of a loop is 
obtained by deferring reference to these components until after the pat tern is 
constructed. The forward references are computed by the evaluation of T E R M  
and EXP during pat tern matching. 

In fact, a direct translation between context-free grammars and patterns can 
be made by deferring evaluation of all patterns [9, 14]. Using this device for the 
example above, the patterns are 

VAR--"x"  I "y" I "z" 
ADDOP--"+"  I " - "  
MULOP--"*" I " /"  
TERM -- *VAR I "(" *EXP ")" I *TERM *MULOP *VAR 
EXP = *TERM I *EXP *ADDOP *TERM 
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Patterns can also be constructed in a top-down fashion, although this technique 
is less frequently used. For the example above, this amounts to reversing the 
order of construction and the use of deferred evaluation for forward references: 

EXP = *TERM I *EXP *ADDOP *TERM 
TERM -- *VAR I "(" EXP ")" I *TERM *MULOP *VAR 
MULOP = "*" I "/" 
ADDOP="+" I " - "  
VAR="x" [ "y" I "z" 

SNOBOIA allows greater expressive power than most grammar systems. Thus 

VAR = ANY("xyz") 
ADDOP = ANY("+-") 
MULOP -- ANY("./") 

are both more concise and more efficient than the alternation of individual 
characters. Of course SNOBOIA allows thespecification of context-sensitive 
constructions and in general provides a much richer expressive facility than 
context-free grammar systems. 

2.2 Disadvantages of the Pattern Approach 

The problems with patterns are closely related to their virtues. While the pattern- 
matching facility of SNOt~OIA has a richness of expressive power, it also has a 
corresponding verbosity. The large vocabulary of pattern-construction operations, 
built-in patterns, and matching modes presents the programmer with a formidable 
repertoire to master [30]. 

Similarly, while the implicit pattern-matching algorithm is helpful in formulat- 
ing complex string analysis, programmers frequently lack confidence in the 
correctness of complicated patterns. Hidden intricacies of the matching algorithm 
may baffle the programmer trying to find the source of a bug. In circumstances 
where knowledge of the details of pattern matching is necessary, the programmer 
must master an arcane discipline. Some aspects of pattern matching are so 
obscure that  even the designers and implementers of the language are forced to 
resort to listings of the system for answers. 

Less obvious to the programmer is the unnecessary processing that may result 
because of the exhaustive search-and-backtrack algorithm. While the programmer 
benefits from the built-in algorithm, the lack of control over this algorithm may 
result in hidden but substantial inefficiencies in processing. This issue has, of 
course, been of considerable concern in artificial intelligence languages [31]. A 
simple example of the problem in SNOBOIA is illustrated by the application of 
the pattern KEY to a subject consisting of "reforming". The first and second 
components of the pattern match "reform", but when "er" and "s" fail to match, 
the algorithm backtracks to the second component to try the alternative "port" 
which obviously cannot match, since a different literal string has already been 
found in this position. While there is an obvious solution in this case and there 
are classes of related problems that  can be treated easily [6], the general difficulty 
remains. SNOBOIA does provide a few source-language mechanisms for control- 
ling the matching algorithm, but these are rarely used and tend to aggravate the 
problem of understanding the processes that  go on during matching. 

One of the most difficult concepts for the beginning SNOBOIA programmer to 
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grasp is that  pattern construction and pattern matching are separate and distinct 
processes. Furthermore, since patterns can be constructed at their site of use, the 
existence of the two processes is not always evident. For example, in 

LOOP LIST BREAK(",").KLEN(1) = :F(DONE) 

the two processes are not apparent, although both occur. However, in 

ITEM = BREAK(","). K LEN(1} 

LOOP LIST ITEM = :F(DONE) 

the first statement clearly constructs a pattern, while the last statement just as 
clearly applies this pattern. The sophisticated SNOBOIA programmer knows 
that  the second approach is more efficient in most implementations of SNOBOIA, 
since the pattern is constructed only once, while the first approach requires that  
the pattern be constructed for each execution of the statement labeled LOOP. 
Pattern construction uses two resources, time and space. In the first approach 
above, time and space are used for each construction of the pattern. After the 
execution of this statement, this pattern is no longer accessible. Most SNOBOIA 
systems eventually "garbage collect" such transient objects to reclaim the space, 
but since this takes time as well, creation of transient objects eventually imposes 
an additional time penalty. (Some implementations of SNOBOIA recognize 
constant in-line patterns during compilation and place them out of the line of 
actual program execution [5].) 

Patterns cause many problems in program structuring. The necessity of using 
side effects is particularly troublesome. The assignment to WORD in the pattern 
GETWORD given above illustrates this problem. 

From the point of view of program structure, an in-line pattern provides 
evidence of its function at the site of use, whereas an out-of-line pattern, being 
physically separated from its site of use, must be located to determine its actual 
function. Well-chosen mnemonics help, but can hardly substitute for the pattern 
itself. The issue tends to defeat the use of patterns as an abstraction mechanism. 
Furthermore, patterns, unlike functions, cannot be given arguments at the site of 
application. The need for parameterization frequently results in the use of a 
number of similar, but distinct patterns. For example, if words are to be identified 
at several places in a program, but different identifiers are needed for assignment 
of the words, the pattern GETWORD given above cannot be used, since the 
identifier WORD is an integral part of the pattern and cannot be specified when 
GETWORD is applied. Similarly, unlike functions, patterns have no local iden- 
tifiers and hence must operate by side effects on global variables, as illustrated in 
the example above. If a pattern is not constructed at its site of use, the difficulty 
with side effects is aggravated. 

One of the most serious linguistic problems with pattern matching in SNOBOL4 
is the fact that  the pattern-matching facility constitutes an essentially distinct 
sublanguage imbedded in SNOBOL4. The kinds of operations that occur during 
pattern matching are significantly different from those that  occur outside pattern 
matching. Some pattern operations, such as ANY(S), have no counterpart outside 
pattern matching, while others have similar, but significantly different, parallels 
inside and outside pattern matching. For example, there are three forms of 
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assignment inside pattern matching and only the standard assignment operation 
outside. Similarly, expressions are executed sequentially outside pattern match- 
ing, while inside pattern matching their execution may involve backtracking. Fo~ 
instance, outside pattern matching P1 P2 denotes string concatenation, while 
inside it results in sequential application of P1 and P2 with search for alternatives 
and backtracking. =: 

In a very real sense, SNOBOIA is composed of two languages, a basic languag6~ 
Lfand a pattern-matching language ~. This linguistic dichotomy produces a totat: 
vocabulary that is large and forces the programmer to think differently in the 
two languages, to xlse different approaches and phraseology, to decide which~ 
language to use to accomplish a particular task, and to change frames of referende~ 
frequently. The effect is a "linguistic schism." 

The dichotomy is particularly troublesome because there is little facility fo~ 
communication between £0 and ~. In ~, patterns for ~ are constructed. When ,h- 
pattern match is invoked in ~, control is transferred to ~, where the matching: 
procedures for the pattern are then executed. Thus ~cf has the operations nece~,, 
sary for describing programs in ~, but not for carrying out their actions. Patterr~ 
construction is essentially the compilation of such programs for ~. In typical' 
SNOBOIA programs, programs for 2~ are continually compiled and executed.'.i 
Note that the vocabulary of Lf is increased by having to describe programs in 
and that compilation of programs for ~ during the execution of ~q~is an inherentl~ 
expensive process. 

Pattern matching is not extensible in the same fashion as the rest of tlx~ 
language is. While SNOBOIA has a facility for programmer-defined functions' 
and data types in ~, there is no facility for programmer-defined matchir~ 
procedures, i.e., procedures in ~. While complex patterns can be composed fron~ 
simpler ones, there is no mechanism for introducing new methods of matching, 

In ~, operations of Zf are inaccessible except through the interface of unevai~-,' 
uated expressions. This interface is awkward at best. Consider, for example, the' 
problem of determining whether the first comma in a string is at least K 
characters from the beginning. Numerical computation is part of £fbut  not of ~ 
On the other hand, .L# has no facilities for locating characters in strings. There ard 
several possible approaches to this problem. (The existence of such alternatives 
is, in itself, indicative of a difficulty.) If this problem is given to a typical 
SNOBOL4 programmer, the most likely type of solution is 

Y¢ 

S BREAK(",") . T :F(NO) c. 
GE(SIZE(T),K) :S(YES)F(NO) :a 

• . [ 3  Here, the solution is divided into two parts. One part is performed m ~ to get the 
substring up to the first comma. The second part is performed in Zf to test tl~e~ 
length of this substring. "" 

The more sophisticated (or involuntionally minded) SNOBOIA programme~ 
might produce the following solution: ~•.: 

S BREAK(",") $ T *GE(SIZE(T),K) :S(YES)F(NO) 

Here the solution is accomplished in one statement (a doubtful virtue) by havin~ 
interface ~ through an unevaluated expression to perform the necessa~ 

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980~ 



1-_60 R.E.  Griswold and D. R. Hanson 

.numerical computation. A better solution along these lines is 

S: BREAK(",") @N *GE(N,K) :S(YES)F(NO) 

T:he advantage of this solution is that the formation of a substring and the 
computation of its length is avoided. However, all of these solutions have evident 
p~oblems. Each of them requires assignment to a global variable as a side effect 
in order to have the information necessary to do a simple computation in ~. 
~j The real problem here is that there are frequently times when both £z and 

a~e inadequate, individually. In such cases, the typical result is obscure, refractory, 
a~.d poorly structured. 

2.3 SNOBOL4 Patterns in Perspective 

To summarize the preceding sections, string patterns as embodied in SNOBOIA 
l~ave a number of valuable aspects: 

(:[) Powerful and extensive facilities for string analysis. 

~ ) An abstraction mechanism. 
) Automatic bookkeeping. 

~ ) A built-in search and backtrack algorithm. 
) Natural characterization of languages. 

On the other hand, patterns present many problems: 

(~) An excessively large vocabulary. 
(~) Complexity of the pattern-matching algorithm. 
~3) Unnecessary backtracking and lack of control over the pattern-matching 
;: algorithm. 
(~) Confusion between pattern construction and pattern matching. 
($) Difficulties with program structuring, especially the necessity for using side 
~:~ effects. 
"x:(6) Inefficiency inherent in the run-time construction of patterns. 

Dichotomy of languages, with a further increase in total vocabulary and a 
~: linguistic schism. 
~) Lack of mechanism for defining matching procedures. 

A number of attempts have been made to solve these problems by extending 
~. Suggestions have been made for adding string synthesis facilities [6], for adding 
programmer-defined matching procedures [12], and for providing more control 
over the matching algorithm [6]. These proposals provide much of the basis for 
SL5 [13, 17, 22]. Expanding the ~ component has hardly eliminated the need for 
~l~e .Lz component. In fact, the ~f component of SL5 is larger. It includes, among 
o~her things, functions for performing simple string analysis in cases where 
complex search and backtracking are not needed. The dichotomy in SL5 is 
l~creased, not reduced, and the vocabulary is, of course, also increased. The 
linguistic schism is just as deep in SL5 as it is in SNOBOIA. 

The fundamental question is whether such a dichotomy is necessary. It is the 
thesis of this paper that most of the virtues of pattern matching in SNOBOIA 
.~d related languages can be retained in a language without such a dichotomy 
~ d, in fact, without patterns. 
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3. A NEW APPROACH TO STRING PROCESSING 

The new approach is to augment the more traditional .Lz component and to 
eliminate ~. The major additions to the Xo component necessary to achieve the 
advantages of pattern matching without actually having patterns are a facility 
for automatic bookkeeping and search-and-backtrack mechanisms. The following 
sections describe the major features of this approach. 

3.1 A Brief Overview 

The programming language that  contains this new approach to string processing 
is called Icon [20]. Icon resembles SL5 more than it does SNOBOL4. It has an 
expression-oriented syntax with traditional control structures as well as some 
novel ones. The evaluation of an expression in Icon l~r0duces a result consisting 
of a value and a signal as in SL5. The value portion of the result serves the 
traditional computational role. Success and failure signals drive control structures 
in a manner similar to SL5. 

Icon lacks the ~ component of SL5, has a less general procedure mechanism 
than SL5, but adds new control structures and evaluation concepts that  are 
described in subsequent sections. 

An extensive description of Icon is beyond the scope of this paper and is not 
necessary for understanding the basic thesis. Examples taken from Icon should 
be clea~ by context, at least in their general aspects, if not in all details. More 
comprehensive descriptions of Icon are given in [16, 18, 19, 24] and implementa- 
tion is discussed in [24]. 

3.2 Automatic Bookkeeping 

In Icon automatic bookkeeping is accomplished in a manner that appears to be 
similar to SNOBOL4 but bypasses the construction of patterns. The expression 

s c a n  s u s i n g  e 

establishes a global subject s to which string processing operations in e apply. 
The expression e, which can include any operations but typically includes string 
processing operations, is then evaluated. String processing operations that  apply 
to the subject are called "scanning operations." The result returned by the scan 
expression is the result returned by e. 

Most scanning operations deal with character positions within the subject. In 
Icon, character positions are between character.~ and numbered from the left 
starting at 1. For example, the positions in SUBJECT are 

S U B J E C T 
1 ' 1 '  1' 1 ' 1 '  1' 1' 1' 
1 2 3 4 5 6 7 8 

Note that  the position after the last character may be specified. It is also useful 
to specify positions from the right end of a string; nonpositive numbers starting 
at 0 and continuing with negative values specify positions from the right end 
toward the left, e.g., 

S U B J E C T 
1' 1' 1' 1' 1' 1' 1' 1' 

-7 -6 -5 -4 -3 -2 -1 0 
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A typical scanning operation is upto(c), which returns the position in the 
subject just before the first occurrence of a character in c {note the similarity of 
this operation to the pattern BREAK(c) in SNOBOL4). Thus 

s c a n  s us ingj  := upto("aeiou") 

assigns to j the position of the first vowel in s (failing if there is no vowel). 
This simple example illustrates several important points. As in SNOBOL4, the 

string operated on by upto(c) is implicit and does not have to be specified as an 
argument. The operation upto(c) does not construct a pattern, but simply carries 
out the analysis. In SNOBOL4, a similar operation, BREAK(c), constructs a 
pattern, which, when applied, carries out the analysis. {Note that the precise 
action is different; upto(c) returns a position, while BREAK(c) returns the 
substring matched. This difference is inessential to the string processing concepts 
in Icon, although it has pragmatic importance.) 

Another important point is that  the expression e in the scan-us ing  construc- 
tion can contain any Icon operation. In the example above, the standard form of 
Icon assignment is used to assign the desired position. In SNOBOL4 the equiva- 
lent statement would be 

s BREAK("aeiou") @j 

In Icon, the focus of attention in the subject is maintained as an implicit cursor, 
similar to the method used in the ~ component of SNOBOL4. When the subject 
is established, the cursor is set to 1. Some Icon operations move the cursor. 
Examples are tab(n), which sets the cursor to n, and move(n), which adds n to 
the current value of the cursor. Both operations return the substring between the 
previous and new cursor positions. Again, there are analogies to the SNOBOL4 
operations TAB(n) and LEN(n), although tab(n) and move(n) operate immedi- 
ately upon invocation rather than constructing patterns. An example of the use 
of such a scanning operation is ~ 
s c a n  s u s i n g  

write ("[" U rnove(2) II "]") 

which is equivalent to the SNOBOL4 statements 

s LEN(2) • TWO 
OUTPUT = "[" TWO "]" 

Note that  the linguistic schism evidenced in the SNOBOL4 statements, with the 
consequent need for an auxiliary variable, does not exist in Icon. The advantage 
of the Icon approach is particularly evident where more complicated control 
structures are useful. An example is 

while s := read() do 
s c a n  s u s i n g  

repeat write ("[" II rnove(2) II "]") 

(The r epea t  construct repeatedly invokes write until failure occurs because the 
cursor cannot be advanced two positions.) 

The subject and cursor position are directly accessible in Icon as key words 

i II denotes string concatenation. 
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&subject and &pos. Assigning a value to &subject establishes the subject for 
string scanning. &pos is automatically set to 1 when &subject is set. &pos can be 
explicitly set to any value in the range of &subject. 

Since string processing expressions may be complicated and extensive in scope, 
it is frequently useful to set &subject explicitly, rather than using scanning 
expressions. The preceding example can be written more concisely as 

while &subject := read() do 
r e p e a t  write("[" II move(2) II "]") 

The advantage of the scan  expression is that the current subject and cursor are 
saved before e is evaluated and restored after e is evaluated. In fact, 

s c a n  s u s i n g  e 

is essentially equivalent to 

push(&pos) 
push(&subject) 
&subject := s 
e 
pop(&subject) 
pop(&pos) 

where push(x) and pop(x) represent internal stack operations for saving and 
restoring values. Since the scan  expression suppresses a substantial amount of 
detail, nested string scanning is easily obtained. For example, the following section 
of program examines a string of items separated by commas, printing the items 
that  contain the letter "x". 

s c a n  s u s i n g  
r e p e a t  { 

s c a n  tab(upto(",")) u s i n g  { 
ff upto("x") t h e n  

write( &subjeet) 
} 

move(l) 
} 

The value of tab(upto(",")) is the subject of an inner scanning operation that  
prints an item only if it contains an "x". Once this operation is complete, the 
cursor is advanced one position in the subject of the outer scan. 

3.3 String Scanning Operations 

There are eight stnng scanning operations in Icon. Two, move(n) and tab(n), are 
positional. The remainder are "lexical" in the sense that they analyze the 
character structure of the subject. 

As previously described, the value of both move(n) and tab(n) is the substring 
between the previous and new cursor positions (regardless of the direction of 
cursor movement). Both operations fail if the resulting cursor position is not in 
the range of the subject. As a consequence of the way in which positions are 
designated, tab(O) positions the cursor past the last character of the subject. 

The value of &pos is always positive. If a nonpositive value is assigned to &pos 
to specify a position relative to the right end of the string without having to 
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compute the length of the string, the conversion to the corresponding positive 
position is provided automatically. This device suppresses detail and avoids 
bothersome computation. Thus, if the subject is "portability", 

&pos := 0 

actually sets &pos to 12, and subsequently 

j :-- &pos 

sets j to 12, not to 0. 
The lexical scanning operations in Icon are more extensive than those in the 
component of SNOBOIA: 

upto(c) 
many(c) 
any(c) 
bal(cl, c2, c3) 
find(s) 
match(s) 

The scanning operation upto(c) returns the position of the first occurrence of 
a character of c in the subject, starting at the current cursor position. Thus, if the 
subject is "portability" and the position is 3, the value of upto("aeiou") is 5. The 
operation fails if no such character exists. Note that  upto(c) does not change the 
position or return a string; the effect of BREAK(c) in SNOBOL4 is obtained by 
tab(upto(c) ). 

The scanning operation many(c) returns the position after a continuous se- 
quence of characters in c in the subject, starting at the current cursor position. 
Thus, if the subject is "moonshine" and the position is 2, the value of 
many("aeiou") is 4. The operation fails if the character of the subject at the 
current position is not contained in c. 

The scanning operation any(c) succeeds if the character at the current cursor 
position in the subject is contained in c and fails otherwise. The value returned 
is one greater than the current cursor position. Character sets in Icon may be 
complemented with respect to the alphabet of all characters. Thus any(-c) 
succeeds if the character at the current cursor position is not included in c. 
(Character sets have a number of other uses; see [16] for details.) 

The scanning operation bal(cl, c2, c3) is a generalization of the matching 
procedure for the SNOBOIA pattern BAL. In SNOBOIA, BAL only matches 
strings balanced with respect to parentheses. In Icon, cl  and c2 are character sets 
that  specify the left and right balancing characters. Furthermore, c3 specifies a 
set of characters that  may follow the balanced string. For example, if the subject 
is "(a)*[b] - 7" and the cursor is 1, the value of bal("[ (",") ]","+-") is 8. The 
operation fails if there is not such a balanced string starting at the current cursor 
position. For convenience, the following defaults are used if the arguments are 
null: 

cl "(" 
c2 ")" 
c3 any character 

Thus bal() is similar to the matching procedure for the pattern BAL in 
SNOBOIA. 
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The scanning operation find(s) returns the position just before the first occur- 
rence of the string s in the subject, starting at the current cursor position. Thus, 
if the subject is "mississippi" and the position is 1, the value of find("is") is 2. 
The operation fails if no such string exists. 

The scanning operation match(s) returns the cursor position after the occur- 
rence of s as an initial substring of the subject starting at the current cursor 
position. Thus, if the subject is "mississippi" and the position is 2, the value of 
match("is") is 4. The operation fails if s is not an initial substring of the subject 
at the current cursor position, Thus, for the subject above, if the position were 1, 
match("is") would fail. For convenience, the expression =s is equivalent to 
tab(match(s)). Note that  =s corresponds to the pattern component s in 
SNOBOL4. 

3.4 Searching and Backtracking 

One of the essential components of high-level string processing is the ability 
to express alternatives concisely and to have the search for such alternatives 
carried out automatically. In Icon, the operation el le2 is equivalent to the 
operation performed in SNOBOL4 when the pattern constructed by PI IP2  is 
evaluated in ~. 

This operation is actually fairly complex and deserves discussion. The most 
obvious aspect of alternation is that  e l  is evaluated first and if that evaluation 
succeeds, the result is the result of the entire expression. However, if evaluation 
of el  fails, e2 is evaluated and its result is the result of the entire expression. The 
subtlety arises if the value produced by successful evaluation of the alternation 
is not acceptable in the context in which it occurs. Consider, for example, 

tab( lO 15) 

(Note that  this construction, while clear in its intent, has no direct counterpart in 
SNOBOL4.) The expression 1015 has two literal subexpressions, and of course - 
the first, 10, succeeds. However if the subject is, say, six characters long, tab(lO) 
fails. This results in a "reevaluation" of the expression 1015 and the alternative 
value, 5, is returned the second time. Thus, tab(lOI5 ) is equivalent to 
tab(lO) I tab(5), as would be expected. 

In Icon, operations that have the capacity for producing alternative values as 
required by the context in which they appear are called generators. This capacity 
for generating alternative values is meaningful for many operations and is used 
not just in string scanning but throughout Icon [19]. 

The scanning operation upto(c) is, in fact, a generator. For upto(c), the behavior 
is like that  for the matching procedure for BREAKX(c) in the SPITBOL dialect 
of SNOBOL4 [4]. If the value returned by upto(c) does not satisfy the context in 
which it is used, the next position further on is returned, and so on. Note that 
upto(c) is a generator with an indefinite number of alternatives that depend on 
c and the current subject. 

The possible need for the second alternative in tab(lO 15) is clear, but the need 
for alternatives in upto(c) is not so obvious. (Note that tab(upto(c)) necessarily 
succeeds for any value of upto(c) and move(upto(c)) is somewhat fanciful.) There 
are, however, other control structures that may require alternatives. One of these 
is el & e2, which succeeds only if both el  and e2 succeed. In requiring this 
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"mutual" success, there is automatic backtracking for alternatives of el if e2 fails. 
This operation corresponds to the matching procedure for the concatenation of 
patterns P1 P2 in SNOBOL4. Suppose, for example, that the subject is "missis- 
sippi" and the cursor position is 1. In the expression 

tab(upto("i") ) & ="issip" 

upto("i") first returns the value 2 and tab(upto("i")) moves the cursor to this 
position. However, --"issip" fails, and the first expression is reevaluated for an 
alternative. This time the value of upto("i") is 5, tab(upto("i")), moves the cursor 
correspondingly, and ="issip" succeeds. 

Since tab(upto(c)) is equivalent to matching for the SPITBOL pattern 
BREAKX(c), the expression above is equivalent to matching for the SPITBOL 
pattern 

BREAKX("i") "issip" 

The Icon expression is slightly more verbose than the SPITBOL pattern, but in 
turn, Icon expressions offer more flexibility (there is no straightforward SPITBOL 
equivalent to j := upto(c)). This tradeoff is typical and works to the advantage of 
Icon in complex string processing, while the conciseness of SNOBOL4 is an 
advantage in simple situations. 

The other string scanning operations that are generators are bal(cl, c2, c3) and 
find(s). For bal(cl, c2, c3), the alternatives are as in the SNOBOL4 pattern 
BAL--successively longer balanced strings. For find, the alternatives are positions 
of s successively further on in the subject. 

The full range of search and backtracking in SNOBOL4 pattern matching is 
available in the Icon expressions el I e2 and el & e2. It is important to note that 
el  & e2 does not have to be used unless it is needed (while in SNOBOL4, 
backtracking in a sequence of pattern components cannot be avoided). For 
example, 

x := tab(upto(cl)) & y := tab(upto(c2)) 

succeeds only if the subject contains a character of c2 in a position at or beyond 
a character of cl, while in the sequence of expressions 

x := tab(upto(cl)); y := tab(upto(c2)) 

this constraint does not apply. A value may be assigned to y even if the subject 
does not contain a character in cl. 

It  is not necessary to require the mutual success of two expressions in order to 
obtain the alternatives of a generator. The control structure 

every el do e2 

causes el to generate its alternatives in sequence, evaluating e2 for each alter- 
native generated by el. An example is 

every j  := find(s) do write(j) 

which prints all the positions at which s occurs as a substring of the current 
subject. 

In backtracking over an instance of move(n), tab(n), or =s, the effects of 
implicit cursor movement are reversed and the cursor is restored to its position 
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prior to the evaluation of the operation. For example, if the subject is "portability" 
and the cursor position is 1, evaluation of 

tab(lO) & ="a" 

first sets the position to 10 but then restores it to 1 when ="a" fails. Other effects 
are not reversed. In the expression 

&pos := 10 & ="a" 

the value of the cursor position is not restored, since it is set by assignment, not 
by a scanning operation. 

3.5 Procedures 

One of the most severe limitations of pattern matching in SNOBOL4 is the 
inability to add new matching procedures. Since SNOBOL4 has no such facility, 
programmers do not miss it per se (it is essentially "inconceivable," since, as a 
language, SNOBOL4 has no construct for expressing such a possibility). In Icon, 
procedures allow the construction of programmer-defined generators and hence 
programmer-defined scanning procedures. 

A typical Icon procedure is 

procedure max(m, n) 
if m > n then return m else return n 

end " 

As shown in this example, procedures may return values using the expression 
r e t u r n  e. If e fails, the procedure call fails. The expressions succeed  e and fail  
are similar to r e t u r n  but return the indicated signal. Arguments are transmitted 
by value. 

Since scanning operations are on a par with all other operations, procedures 
may be used for scanning in the same way in which they are used as abstractions 
for other purposes. An example is a procedure that  behaves like match(s) but is 
"unanchored" like find(s): 
procedure fmatch(s) 

local j 
i f j  := find(s) then 

return j + length(s) 
else fail 

end 

If s is found in the subject, the appropriate value is returned. Otherwise, the 
procedure fails. 

Defined generators are obtained by using suspend,  which returns a value like 
r e tu rn ,  but leaves the procedure activation in a state in which it can be resumed 
for the generation of additional values. For example, the procedure fmatch(s) 
defined above is not a generator like find(s). This defect can be remedied by 
using suspend:  
procedure ftnatch(s) 

local j 
e v e r y j  := find(s) do 

suspend j + length(s) 
fail 

end 

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2, April 1980. 



168 R.E. Griswold and D. R. Hanson 

Like built-in generators, different instances of defined generators may be sus- 
pended simultaneously without interfering with eachother. 

A more esoteric application of procedures is in the use of defined generators in 
a fashion similar to SNOBOL4 patterns to characterize context-free languages. 
Consider the simple grammar 

(s) : :=a(s)  a[b 

An Icon procedure to "match" sentences from the language generated by this 
grammar is 

procedure s 
every  (="a" & s( ) & ="a") l ffi"b" 

do suspend 
fail 

end 

This procedure is suspended for every alternative of the expression describing 
the language. Thus 

scan "aabaa" us ing  s() 

calls s. The first alternative matches "a" and calls s again (recursively), resulting 
in the match of the second "a" and another call to s. This time, the first 
alternative fails and the "b" is matched. Upon successive returns, a trailing "a" 
is matched each time and the entire expression succeeds. On the other hand, for 
a subject that is not a sentence in the language, alternatives are eventually 
exhausted, and the scanning operation fails. 

The method used above generalizes for more comphcated grammars with a 
procedure for each nonterminal symbol. The correspondence between context- 
free grammars and defined scanning procedures is just as direct as the correspon- 
dence between context-free grammars and SNOBOL4 patterns, if a bit lengthier. 
Perhaps more importantly, other computations, such as the construction of a 
parse tree, can be added to the appropriate defined scanning procedures. Such 
computations cannot be done as easily in SNOBOL4 because there is no way to 
write matching procedures. 

4. DISCUSSION 

As demonstrated in Section 3, generators in Icon give the programmer more 
control over the search and backtracking necessary in many string processing 
applications than can be exercised in SNOBOIA. It is this programmer control 
and the bookkeeping implicit in the maintenance of a &subject and &pos that  
make the Icon facilities preferable to, say, a well-designed hbrary of functions. 
Although a set of hbrary functions would reduce the size of the language, the loss 
of the evaluation mechanism of the built-in facilities would require more work on 
the part of the programmer. 

There are cases, however, where simple lexical functions would serve as well as 
the more general scanning facility. SL5 included a number of lexical functions in 
addition to its scanning facility, but this approach results in a large vocabulary 
and deepens the hnguistic schism described in Section 2.3. In Icon, this problem 
is avoided by permitting most of the scanning operations to be used as simple 
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lexical functions if additional arguments are supplied. For example, find(s1) 
operates as described in Section 3.3, while find(sl, s2) operates simply as a lexical 
function, returning the position of the first occurrence of sl  in s2. The form 
find(sl, s2, i, fi  limits the examination of s2 to the substring between positions i 
and j. This polymorphic property of the scanning operations is a result of having 
them as built-in functions, so that the compiler can supply the correct defaults 
for omitted arguments. A more elaborate type system, such as that used in 
Alphard [29] or CLU [25], would be required to support a similar mechanism for 
defined procedures. A built-in procedure can of course be replaced by a defined 
procedure of the same name, but the specialized defaults are not automatically 
provided for the defined procedure. 

Not surprisingly, however, the Icon approach to string scanning does present 
some interesting problems. One problem is the choice of primitive scanning 
operations, which is similar to what constitutes a "well-designed" function library 
for string manipulation. For example, it might be desirable to have a scanning 
operation that sets the cursor like tab(n) but does not return the substring 
between the previous and new cursor positions. The advantage of such an 
operation would be efficiency, since the computation of the substring would be 
avoided, but the automatic reversal of the assignment to &pos would still be 
provided. A similar situation exists for move(n). If these new operations are 
added, however, the vocabulary of the language is increased, with all the attendant 
problems. An alternative is to replace tab(n) and move(n) by these new operations 
and add an additional operation to obtain substrings. At the other extreme, 
tab(upto(s)) is used so frequently that a single operation that combines these two 
would be useful. 

The bases for such decisions are the usual ones in language design. The problem 
is aggravated by the relative unfamiliarity of string scanning. The historical 
influence of SNOBOIA tends to inhibit new views. More experience with scanning 
should provide new insights. 

The global nature of &subject and &pos is another problem. In Icon, scanning 
operations on the same subject tend to be more extensive than in SNOBOIA 
because any language constructs may appear in scanning expressions. This is the 
reason that  setting &subject directly is frequently more useful than the implicit 
setting of the subject in the scan  expression. However, it then becomes more 
likely that  the subject or cursor position may be changed inadvertently. For 
example, if a defined procedure is called, it may expect to operate on the subject 
(as the procedure fmatch(s) given above) or it may establish its own subject. If it 
does the latter without saving and restoring the prior subject and cursor position, 
the results may be catastrophic. 

The generally recognized hazards of global variables [34] are magnified here 
because of the frequency with which the two globals, &subject and &pos, are 
used. This appears to be a dilemma, since much of the virtue of string scanning 
is derived from the global nature of these variables. 

It should be noted with respect to terminology that there are other languages 
that  use "generator" to describe language facilities; Cobol and Algol 68 [33] are 
two languages in which the use of the term is completely unrelated to its use in 
Icon. One of the first languages having a concept of generators is IPL-V [26] in 
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which a generator is a subroutine that processes the elements of a data structure 
by calling another routine for each element. More recently, generators appear in 
CLU [1, 25] and Alphard [29] where they are used in looping constructs to iterate 
over the elements of a data structure. Their use is restricted to specific constructs 
and they lack the evaluation mechanism associated with Icon generators. 

5. CONCLUSION 

Icon demonstrates that the advantages of pattern matching in SNOBOL4 can be 
achieved without patterns as data objects and that the linguistic dichotomy of 
SNOBOL4 is not an essential property of high-level string processing. 

The usefulness of string scanning in Icon leads to a number of possibilities and 
open questions. Once scanning on a single subject is available, situations imme- 
diately arise where the coordinated scanning of two or more subjects would be 
useful. This is a dilemma, since it is the single focus of attention that  leads to the 
simplifications that  make string scanning attractive. Any departure from this 
single focus of attention introduces complexity and detail that string scanning 
presently avoids. 

Looking in another direction, there is no inherent reason why scanning should 
be limited to strings. Scanning of data structures, given appropriate primitives, 
follows by analogy. Such possibilities are particularly attractive. 

It is important to note that  the search and backtracking facilities of Icon are 
not limited to string scanning. These facilities allow a more natural expression of 
some constructions than is possible in most other programming languages. 
Examples are 

if (x l y) = (m I n) then f(x, y) 
if (x = n) & (n > y) then f(x, y) 
if x < (n I m) < y then f(x, y) 
every (n := f(x)) & (n > 0) do g(n) 

Such constructions are closer to the way that  programmers think in mathematical 
and natural languages than typical programming languages allow. More experi- 
ence with the use of such constructions may also lead to the development of new 
control structures for expressing alternatives, search strategies, and mutually 
necessary conditions. 
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