
ALGORITHM 568
PDSmA Portable Directory System

DAVID R. HANSON

The Univers i ty of Ar izona

Key Words and Phrases: file system, UNIX, RATFOR
CR Categories: 4.19, 4.33, 4.35, 4.41
Language: RATFOR (FORTRAN)

1. DESCRIPTION

P D S is a set of procedures t ha t provides a mach ine - independen t me thod of file
specification. P D S provides capabil i t ies beyond those provided by m a n y vendor-
supplied systems. In addition, because P D S is portable , addi t ional capabilities,
such as protec t ion schemes, file usage statistics, or some of the functions of a
source code control sys t em [5], can be added easily.

T h e basic funct ion of P D S is to ma in ta in a useful d i rectory s t ruc ture and
provide a set of pr imit ives for manipula t ing t ha t s tructure. T h e P D S directory
s t ruc ture is identical to the t ree s t ruc ture of the U N I X [4] file system, and m a n y
of the P D S pr imit ives are identical to U N I X primitives. P D S is, in large part , a
por table implemen ta t ion of the U N I X directory system. Besides P D S ' s machine-
independence, the ma jo r differences are the extensibil i ty of P D S and, as described
in the next section, its i /o independence.

In the s implest terms, P D S provides a di rectory s t ruc ture and a mapping f rom
mach ine - independen t file names to mach ine -dependen t names. I t deals only with
the informat ion describing a file; it does not use or man ipu la te actual files in any
way. T h e impor tance of this approach is t ha t P D S is used to specify a file but
does not par t ic ipate in the actual i /o to t ha t file. Consequent ly, there is no impac t
on i /o efficiency when P D S is used.

P D S manipu la tes a rooted t ree s t ruc ture in which the leaves are files or
directories and the nodes are directories. A directory is s imply a list of files and
directories. An example is shown in Figure 1, in which circles indicate directories
and squares indicate files. T h e root of the t ree is denoted by " / " , and files and
directories are denoted by their "pa th , " which specifies the i r absolute posit ion in
the tree. A pa th is composed of the names of the nodes on the p a t h f rom the root

Received December 1979; revised September 1980; accepted November 1980
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This work was supported by the National Science Foundation under grant MCS78-02545.
Author's address: Department of Computer Science, The University of Arizona, Tucson, AZ 85721.
© 1981 ACM 0164-0925/81/0400-0162 $00.75
ACM Transactions on Programming Languages and Systems,Vol. 3, No. 2, April 1981, Pages 162-167.

Algorithms 163

Y / A . I file1 0 0

link to f i le l

Currenf
directory

fi le2

fi le3

Fig. 1. A directory system.

to the desired file or directory. The path components are separated by slashes;
for example, the path for file "file2" in Figure 1 is "/m/n/fi le2." The directory
entries "." and ".." refer, respectively, to the directory itself and to the immediate
ancestor. These names may be used as path components, providing an explicit
means of using the structural properties of the tree. If a path does not begin with
"/" , it is taken to be rooted at the "current directory." For example, with the
current directory at "n" in Figure 1, the path "file3" is equivalent to "/m/n/fi le3."

Files and directories are equivalent with the exception that directories are
manipulated by PDS and files are not. Files simply "contain" the machine-
dependent names of the actual files. These machine-dependent names are referred
to as host names. The basic function of PDS is to map paths into host names.

There are ten PDS primitives; they are summarized in Table I. Detailed
descriptions of each primitive are given in [1] and in the machine-readable
comments. The most important primitives are openf and creatf, which map a
path to a host name and perform machine-dependent operations concerned with
preparing files for i/o. The rest are concerned primarily with manipulating the
directory structure.

openf obtains the host name corresponding to path and calls a machine-
dependent routine to actually open the file. mode indicates how the file is to be
opened (e.g., "read", "write", "append", etc.), mode is not modified by openf, so
it can be whatever is most appropriate on the host system, openf returns what

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

1 64 Algorithms

Table I. P D S Pr imi t ives

chdir (path)
chds(root, ilist)
creatf (path, mode)
link (path l, path2)
mkdir (path }
mkds (root, ilist)
ink file (path, hname)
openf (path, mode)
stat (path, array)
unlink (path)

change cur ren t directory to path
change to ano the r directory sy s t em
create path and open it for i /o
make a link to pathl n a m e d path2
make a directory n a m e d path
make a directory s y s t e m
make a t'fie path with hos t n a m e hname
open path for i /o according to mode
re tu rn informat ion about path
unl ink path

the machine-dependent open routine returns, which is whatever is most useful as
an argument in calling machine-dependent i/o routines that perform the actual
i/o (e.g., r ead and wri te) . Typically, a channel number or FORTRAN unit
number is returned.

creat f is similar to openf, except that p a t h is created along with a host name
and file. The generation of the host name is performed automatically. After the
file is created, it is opened according to mode as if openf had been called.

openf and creat f are insensitive to the values of mode. It is, however, useful to
introduce standard values representing common file usage, such as reading and
writing. This approach promotes machine-independence in programs that use
PDS and is used, for example, with the programs described in [3]. Such mode
values are scrutinized by the machine-dependent i/o interface routines, however,
permitting PDS to be used in almost any environment--not just those in which
i/o capabilities conform to preconceived notions of "common" file usage.

PDS has no other i/o primitives; it is completely independent of the actual
i/o. Thus, additional overhead is incurred in opening files, but none is incurred in
accessing them. The effect of the additional overhead is minimal since the former
is performed much less frequently than the latter. The contribution of PDS is a
portable hierarchical directory system with absolutely no time impact on i/o
efficiency.

2. USAGE

PDS is packaged as a set of RATFOR [2, 3] (and hence FORTRAN) functions
and subroutines, which is loaded with the program or system that uses it. PDS is
useful in programs or systems that use named files extensively, or where a
machine-independent means of naming files and a flexible directory structure
would enhance utility. Another use would be in a set of tools, such as those
described in [3], implemented on computers with limited file systems.

The following program, saveall, illustrates a typical use of PDS. It copies all
of the files in the current directory to files of the same name in the directory
"../backup". saveall is written in RATFOR in the style of [3].

saveall - save all files in ../backup
character dline (MAXLINE), bnarne (MAXLINE)
integer fd, fdi, fdo
integer openf, creatf, getlin
string dot "."

ACM Transactions on Programming Languages and Systems, VoL 3, No. 2, April 1981.

Algorithms 165

str ing backup "../backup/"

fd = openf(dot, READ)
while (getlin(dline, fd) ~= EOF) {

fdi = openf(dline (5), READ)
call strcat (backup, dline (5), bname)
fdo = creatf (bname, WRITE)
call fcopy(fdi, fdo)
call close(fdi)
call close (fdo)
}

call close(fd)
end

Uppercase names denote defined constants; for example, a typical value for
M A X L I N E might be 80. The s t r ing statement declares a character array large
enough to accommodate the indicated character string. The program begins by
opening the current directory for reading using openf. The while loop reads the
directory, line-by-line, until end-of-file, placing each line in the character array
dline. As described in the next section, each line in a directory contains a file
name beginning in column 5. Thus the body of the whi le loop opens each file for
reading (openf) , constructs the path name of the backup copy (s trcat) , creates
the backup file and opens it for writing (creat f) , copies the file (fcopy), and
finally closes the original and backup files (close).

This program makes use of the i/o routines described in [3] (get l in and close),
but any other set of routines--including standard FORTRAN read and wr i te
statements--could be used.

Another example of the use of PDS is as a simple command preprocessor that
translates machine-independent system commands to the appropriate host com-
mand sequence. In commands, files are referred to by their PDS names and are
mapped to the corresponding host names during the generation of host com-
mands. For example, the command

list f i l e s . . .

lists the named files on the line printer. The preprocessor translates the list into
whatever is appropriate on the host system. For example,

l i s t ../backup/saveall.r saveall.r

results in the DEC-10 command sequence

r q u e u e
ilist.120, save.rat

where "ilist.120" and "save.rat" are the host names for "../backup/saveall.r" and
"saveall.r", respectively.

3. IMPLEMENTATION
PDS is designed to use only simple sequential i/o (i.e., FORTRAN i/o). It is
implemented in RATFOR for portability reasons and because FORTRAN is the
only widely available high-level language to which calls from other languages can
be made.

The implementation is similar to the implementation of the UNIX file system
[7]. The basic technique is to separate the information about a file from the

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

166 Algorithms

presence of that file in a directory. An i-node is associated with each file and
directory, and it contains all of the information, including the host name, con-
cerning the file. All of the i-nodes are stored in a single file in which i-node n is
line n. This file, referred to as the i-list, is stored in character format so that it
can be read easily with FORTRAN i/o or its equivalent.

The i-list maps i-node number, or i-number, to a host name. Directories provide
a map of PDS name to i-number, thereby completing the mapping from PDS
name to host name. A directory is a file of lines, each line containing an i-number
and the corresponding PDS name.

Further implementation details are given in [1].

4. INSTALLATION

PDS consists of about 1000 lines of RATFOR including comments. Of this total,
however, 300 lines are utility subroutines commonly available in a RATFOR
environment. After preprocessing by RATFOR, the resulting FORTRAN code is
about 1200 lines in length. The resulting FORTRAN conforms to the portable
subset of ANSI standard FORTRAN as defined by PFORT [6].

On a DEC-10 (36-bit words, 512-word pages), the code area for the entire
system occupies 6 pages and the data area occupies 17 pages. Small adjustments
in the size of the data area can be made by changing various parameters, although
the tendency seems to be to increase those parameters.

As mentioned in the previous section, PDS operates using sequential i/o only.
It is therefore possible to use FORTRAN i/o, although in practice modifications
are necessary to avoid having to use FORTRAN unit numbers and to make use
of named host files. PDS is written to use the i/o interface described in [3]; a
FORTRAN version of these routines is provided along with suggested modifica-
tions.

Installation of the system using the FORTRAN version of the i/o interface can
be accomplished in 1-2 man-days. The implementation of more sophisticated
i/o systems requires substantial time investment, typically 3-6 man-months
depending on the target system. This is unnecessary unless heavy use of the
RATFOR i/o interface is anticipated. System-specific i/o systems are supplied
for the DEC-10 and Cyber 175.

PDS can be modified to use standard FORTRAN i/o facilities directly {i.e.,
r ead and wr i t e statements). The modification requires replacing parts of the
RATFOR i/o interface--the 300 lines of code mentioned above--with the appro-
priate standard FORTRAN i/o statements. While these modifications have not
been made, similar experience suggests that 1-2 man-weeks is a conservative
estimate of the effort required.

PDS is distributed with the following components:

PDS written in RATFOR
PDS written in FORTRAN (RATFOR output)
RATFOR and RATFOR i/o system written in RATFOR
RATFOR and RATFOR i/o system written in FORTRAN
DEC-10 i/o system
Cyber 175 i/o system

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

Algorithms 167

REFERENCES

1. HANSON, D.R. A portable file directory system. Softw. Pract. Exper. 10, 8 (Aug. 1980), 623-634.
2. KERNIGHAN, B.W. Ratfor--A preprocessor for a rational Fortran. Softw, Pract. Exper. 5, 4

(Dec. 1975), 396-406.
3. KERNIGHAN, B.W., AND PLAUGER, P.J. Software Tools. Addison-Wesley, Reading, Mass., 1976.
4. RITCHIE, D.M., AND THOMPSON, K. The UNIX timesharing system. Commun. ACM 17, 7 (July

1974), 365-375.
5. ROCHKIND, M.J. The source code control system. IEEE Trans. Softw. Eng. SE-1, 4 (Dec. 1975),

364-370.
6. RYDER, B.G. The PFORT verifier. Softw. Pract. Exper. 4, 4 (Dec. 1974), 359-377.
7. THOMPSON, K. UNIX implementation. Bell Syst. Tech. J. 57, 6 (July 1978), 1931-1946.

ALGORITHM

[The complete algorithm is available from the ACM Algorithms Distribution
Service (see page 209 for order form)].

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

