
Procedure Referencing Environments in SL5*

Dianne E. Britton, Frederick C. Druseikis, Ralph E. Griswold
David R. Hanson, and Richard A. Holmes

Department of Computer Science, The University of Arizona
Tucson, Arizona 85721

SL5 is a programming language developed for experimental work in generalized
pattern matching and high-level data structuring and access mechanisms. This
paper describes the procedure mechanism and the conventions for the interpreta-
tion of identifiers in SL5. Procedure invocation in SL5 is decomposed into the
separate source-language operations of context creation, argument binding and
procedure activation, and allows SL5 procedures to be used as recursive
functions or coroutines. This decomposition has led to rules for scoping and
for the interpretation of identifiers that are different from those found in
other programming languages. Several examples of SL5 procedures are given,
including a scanner based on the coroutine model of pattern matching.

1. Introduction

The SNOBOL4 programming language has
been used as a basic experimental tool for
recent research in generalized string pat-
tern matching [2,41 and advanced data
structure manipulation [6]. Until recent-
ly, the approach has been to extend or
modify existing SNOBOL4 implementations in
order to conduct investigations in these
areas. The formulation of the coroutine
model for pattern matching [’2,3], and the
introduction of programmer-defined scan-
ning procedures based on that model [4],
have made this approach impracticable.
The procedure mechanism required by the
coroutine model necessitates a more versi-
tile research vehicle than is provided by
SNOBOL4 and other existing programming
languages. Motivated primarily by the
requirements of the coroutine model, the
SL5 programming language [5] has been
developed and implemented as a research
tool for experimental work in the areas
mentioned above.

The purpose of this paper is to des-
cribe the procedure mechanism of SL5 and
the conventions that have been chosen for
the interpretation of identifiers in SL5.
SL5 provides a coroutine mechanism that
is based on a generalization of recursive
procedures in which ordinary recursive
function use is a special case. The con-
ventions for the dynamic interpretation of
identifiers have been designed to facili–
tate the insertion of programmer-defined
procedural abstractions into prior, or

*This work was supported by the NatiOnal
Science Foundation under Grant DCR75-01307.

builtin, procedural abstractions. For
example, the conventions allow the exten-
sion of the pattern–matching scanner by the
inclusion of programmer-defined scanning
procedures. The dynamic interpretation of
identifiers used in SL5 is conceptually
simpler than that used for programming
languages such as Algol 60, whose scoping
rules are too restrictive for general
coroutine programming. For example, pro-
cedures as.arguments require special
handling in Algol 60. In addition, the
conventions provide for the necessary
inter-procedure communication that is con-
venient and suitable for applications
requiring backtracking such as programmer-
defined scanning procedures [4].

2. The SL5 Programming Language

Experience with SNOBOL4 has motivated
some of the features of SL5, e.g., SL5 is
a “typeless” language in the same sense
that SNOBOL4 is –– a variable can have a
value of any datatype at any time during
program execution. A signaling mechanism
is also included in SL5. Some parts of
the language, however, are derived from
the desire to include facilities that are
not commonly found in programming lan-
guages and for which SNOBOL4 is inadequate.
For example, the syntax of SL5 is
expression–oriented, and the control
structures are similar to those in Algol
68. An expression returns a value and
signals either “success” or “failure” (as
in SNOBOL4). Control structures are

185

driven by these
boolean values.
expression

if x > y then x—
else y

first evaluates
that ex~ression

signals rather than by
For example, the

.= x– Y
:= y - x;

the expression x > g. If
succeeds. x := z - u is

evaluated; otherwise y := y - x is &valu-

ated.

Loop constructs are controlled in the
same manner:

-elQQe2

repeatedly evaluates e2 as long as el
succeeds. A sequence of expressions can
be grouped together as a single expression
using the begin . . . end construct. Other
typical constructs a%included, and have
interpretations consistent with the
signaling mechanism.

Procedures in SL5 are data objects and
an identifier can be assigned a procedure
as its value. For example, the expression

f ‘= p:;&y(~’Y)
.’y*

ifx > y then x := x - y—
else y := y - X;

succeed x
end;

assigns to f a procedure that computes the
greatest common divisor of its arguments.

2.1 The Decomposition of Procedure
Activation

In most programming languages, the in-
vocation of a procedure is considered an
atomic operation. In SL5, procedure
invocation is decomposed into several dis–
tinct components available to the pro-
grammer at the source–language level. The
invocation and execution of a procedure
requires the creation of a context, the
binding of the actual arguments to that
context, and the resumption of the proce-
dure represented by the context. In SL5,
the conventional function notation

f(~1,e2,en)

for the invocation of a procedure is
decomposed into the steps

tl := create f;
t2 := tl with (e1,e2,en).
resume t2;

The operator create takes a single
argument of datatype procedure and returns
an object of datatype context. This
source-language data object is a context
for the execution of the given procedure.
Argument binding is accomplished using the
with operator that binds the actual

arguments, el through en, to the indicated
context.

The actual activation of a procedure
is accomplished by the resume operator,
which takes a single argument of datatype
context . resume causes the execution of
the current ~rocedure to be suspended and
the executioh of the
by the given context
continue.

The operations

succeed e
fail e

procedure represented
to commence or

result in the suspension of the execution
of the current procedure and resumption
of the instance of the “resuming” proce-
dure . These operations are equivalent to
return in the recursive case”. The indi-
cated signal (success or failure) and
value are transmitted and become the
signal and value of the resume operator.

This decomposition provides the mechan-
ism for SL5 procedures to be used as
recursi+e functions or coroutines. While
this decomposition is useful and necessary
in some coroutine programming situations,
the abbreviated notation f(e1,e2,en)
may be used for the usual recursive
invocation.

3. The Interpretation of Identifiers

The interpretation and scope of identi–
fiers that appear in a procedure are
determined by declarations. In many
cases, a Procedure invoked in the standard
recursive fashion needs some mechanism for
inter–procedure communication. In con-
trast, a coroutine often requires that
some data be inaccessible from any other
coroutine. The declarations in SL5 are
motivated by the need for dynamic communi-
cation between instances of procedures
and the need for identifiers whose values
cannot be modified by any other procedure.

3.1 Public and Private Identifiers

Declarations have the form

public VI, v $>vn
=evl, 2,vn

Public identifiers allow for dynamic
communication between instances of proce-
dures . A public identifier is accessible
to the procedure in which it is declared
and in any other procedure whose context
is within the dynamic scope [8] of the
context for the procedure containing the
public declaration. When SL5 procedures
are used in the standard recursive fash-
ion, the interpretation of public

186

identifiers is equivalent to the dynamic
scope of identifiers in SNOBOL4.

Private identifiers are available only
to the procedure in which they are
declared. The value of a private identi-
fier cannot be examined or modified by
any other procedure. This type of identi-
fier is used, for example, in situations
where a procedure must “remember” infor–
mation in order to be able to reverse
effects duping backtracking. Unless
otherwise declared, the formal parameters
of a procedure are considered to be
pr<vate identifiers.

3.2 Free Identifiers

Free identifiers are those that do not
appear in any of the declarations in the
procedure in which they are used. The
interpretation of this type of identifier
is dynamic and occurs at the time of the
creation of a context for the procedure
that contains the free identifiers. The
interpretation is obtained by examining
the current state of the creation history
tree.

The creation history tree provides
information concerning the histo~y of the
creation of contexts during the course of
program execution. The tree grows when-
ever a create operation is performed and
is pruned upon the destruction of a con-
text . The actual tree consists of inter-
connections among contexts that result
from the create operation.

An example of a creation history ’tree
is shown in Figure 1. The nodes of the
tree in Figure 1 represent instances of
contexts for particular procedures. An
arrow indicates the ancestral linkage
between a context and the context that
caused its creation. The subscripts on B

t)B2

Figure 1. A Creation History Tree

denote specific occurrences of a context
for the same procedure. Contexts with a

common ancestor but that do not share a
common ancestral linkage are referred to
as parallel contexts. Serial contexts are
those in which creation history follows
ancestral lines. B1 and B2 are serial
contexts; B1 and B3 are parallel contexts.

The context for the procedure in which
public identifiers are declared is said
to be the custodian of those identifiers.
As described above, public identifiers are
available to their custodian and to any
procedure whose context is a descendant
of their custodian in the creation history
tree.

The dynamic interpretation of free
identifiers is determined by the history
of serial contexts. A search is performed
along the ancestral linkage for the first
context that contains a public declaration
for the free identifier, i.e., for the
closest custodian of that free identifier.
If the search is successful, the free
identifier (in the particular instance of
the context) henceforth refers to the
public identifier located in the custodian.

In Figure 1, assume that the procedure
A (that is, the procedure represented by
A) contains the declaration

public x

and that procedures B and E contain x as
a free identifier. At the time of crea-
tion of the contexts B1 and E, the inter-
pretation given the free identifier x is
the common public identifier x in the
context A. In this case, the context A
is the custodian of the public identifier
x. During the execution of B1 and E, x
can be used for inter-procedure communica-
tion between A, E, and B1.

As another example, consider an identi-
fier y declared public in both D and E
but that is free in B. In this case, the
interpretation given to y in B2 refers to
Y declared public in D, whereas in B3 the
free identifier y refers to the publlc
identifier declared in E.

Communication between the serial con-
texts B1 and B2, which are invoked in a
recursive fashion, can be effected by
reference to a free identifier (such as x)
in B that is declared public in A.

This interpretation of free identifiers
allows procedures with instances of either
serial or parallel contexts to communicate
via public identifiers declared in pro-
cedures that are represented by their
common ancestors in the creation history
tree. Since private identifiers are not
considered during the interpretation of
free identifiers, their values are
inaccessible from any other procedure
activation.

187

The root of the creation history tree
is a context for a “main procedure” in

which, conceptually, all builtin identi-
fiers are declared public, and are
initialized to their predefine values
before program execution begins. The root

context contains, for example, identifiers
that have builtin procedures as thei~
initial value. Unless explicitly declared
otherwise, when these identifiers are used
as free identifiers in programmer–defined
procedures, the interpretation made is the
value of the builtin identifier in the
root context.

The search of the creation history tree
may fail to provide an interpretation for
a free identifier. There are several

possible solutions to this problem.
Perhaps the most reasonable solution is to
consider this situation a programming
error. An alternative is to provide an
“implicit” public or private interpreta–
tion for the identifier. If an implicit
public interpretation is chosen, either
the active context or the root of the
creation history tree could be chosen to
be the custodian of the identifier.

4. Examples

4.1 Redefinition of a Procedure

Since a procedure is a source-language
data object, public identifiers provide a
convenient means for the dynamic redei’ini-
tion of a programmer–defined or builtin
procedure within a subtree of the creation
history tree. For example, assume the
procedure represented by Bl, B2, and B3 in
Figu~e 1 contains the expression

i := length(s)

and length is a free identifier in B. At
the time of the cre”ation of the contexts
B1 and B3 an interpretation for length is
sought . Assuming that the procedure
represented by E does not contain a public
declaration for 2ength, the interpretation
made is the builtin identifier length.
(whose value is a procedure that returns
the number of characters in its argument).
If the identifier is declared public in
the procedure represented by D, and
assigned a procedure as value, the effect
is to cause the redefinition of length in
the instance of procedure B represented by

‘2 “
The programmer can use this facility

to monitor the use of certain procedures
or extend the domain of a procedure or
operator to accommodate different types of
arguments.

4.2 A Generator of Random Number
Generators

The values of private identifiers in a
context for a procedure partly characterize

the state of that instance of the proce–
dure. AS such, they provide a mechanism
for the parameterization of a given in-
stance of a procedure. For example,

consider the procedure rangen defined as
follows.

rangen := procedure(private S,p,c,m,n)
repeat begin

s. .= Y=(S * p) + e,m);

succeed ((s * n) / m) + 1;
end

end;

The procedure rangen computes a random
number using the linear congruence method
[71. A context for rangen computes the
next random number within the range 1 to
n in the sequence defined by the para-

meters S) P> C) andm. A context for
rangen is parameterized by the values of
the arguments to rangen and generates the
next random number from an independent
sequence every time it is resumed. Thus
any number of generators may be created
using a common procedure, rangen. It is
the context for each instance of rangen
that is the generator. For example, the

expressions

gl := create rangen
-0,12621,21131,100000 ,100);

g2 := create rangen
with (0,12641,11241,10000, 10);

93 := create rangen

-111,12321,12231 ,10000,50);

assign to gl, g2, and g3 three separate
contexts for rangen, each of which gener–
ates a distinct sequence of random numbers.
To obtain the next random number in a
sequence, the execution of the desired
context is resumed, e.g. ,

x := resume g2;

The superfluous data structures that
are usually needed to effect the type of
parameterization desired for rangen are
unnecessary in SL5. Private identifiers
allow the parameterization data to be
implicitly stored as a part of the context
for the procedure. Moreover, since a con-
text is a source-language data object, a
procedure activation and its associated
parameterization data can be manipulated
as a single object.

4.3 The Pattern-Matching Scanner

Part of the motivation for the proce-
dure facility in SL5 comes from the co-
routine model of pattern matching [2,3].
The conventions adopted for the interpre–
tation of identifiers facilitate the inter-
action between the builtin scanner and
scanning procedures and programmed-defined
scanning procedures. In addition, the
procedure mechanism is sufficiently

188

general tb allow the scanner to be written
in SL5 for experimental purposes without
sacrificing any of its capabilities. An
SL5 implementation of the scanner, given
below, illustrates the need for the conven-
tions as defined.

The pattern-matching scanner has two
arguments –– a subject and pattern. The
pattern contains the information necessary
to direct the analysis of the subject
string. In the coroutine model, the
analysis is performed by scanning proce-
dures, which are invoked as coroutines.
It is the use of public and private identi-
fiers in the scanning procedures that is
of interest in this example. Further
details of the coroutine model are given

in References 2, 3, and 4.

Patterns in SL5, as in SNOBOL4, are
data objects. A pattern can be visualized
as a tree of nodes in which each node has
three fields: spree, argl, and arg2.
The sproc field contains the scanning pro-
cedure, which is an object of datatype
procedure. The argl and arg2 fields con-
tain arguments supplied for the scanning
procedure when the pattern is constructed.
A pattern is constructed by a pattern-
construction procedure and the actual
matching is performed by the associated
scanning procedure. For example, Zen(n)
constructs a single-node pattern shown in
Figure 2 whose spree field contains the
scanning procedure slen, which attempts to
advance the cursor position by n charac-
ters during matching. A scanning
procedure is called with a single argu-
ment : the node in the pattern that caused
its invocation.

sproc
\

e

slen

n

arg 1> ‘arg 2

Figure 2. The Pattern Constructed
by Zen(n).

Unlike pattern matching in SNOBOL4,
operations such as alternation and concat-
enation are themselves scanning ’procedures
that perform only control operations. The
pattern-constructing procedures for these
operations in SL5 are denoted by the
operators “\” and “--” respectively.; saZt
and scat are the associated scanning pro-
cedures. For example, Figure 3 illus-
trates the pattern constructed by the
expression

P := (Zen(l) -- rpos(0)) \ Zen(s)

proceeds as scanning procedures in the
pattern are activated. A successful match
is signaled by the resumption of the
scanner with a success signal. Thus the
scanner can be written in SL5 as follows,

scan := procedure(public subject,
private pattern)

public CUPSOY;
private e;
Cursor := o;
e := create sproc(pattern).with pattern;
if resume e then succeed else fail;

em;

slen

65s””53-s”0s
Figure 3, A Pattern.

Communication between scanning proce-
dures and the scanner is provided by the
identifiers subject and cursor, which are
declared public in scan. The value of
sub.jeet is the string that is to be
scanned and the value of cursor indicates
the position in the string that is to be
examined by a scanning procedure.

The interpretations of the free identi-
fiers subject and cursor that appear in
scanning procedures are made when a con-
text for a scanning procedure is created
and refers to the public identifiers in
the nearest custodian in the creation
history tree. The use of subject and
cursor in scanning procedures is illus-
trated by sZen.

sZen := procedure(private p)
private e;
c := CUPSOP:
Cursor := eLsor + argl(p);
if cursor >= O & cursor <= Zength(subject)

then succeed;
cursor := c?;
fail

end;

Note that szen is more general than the
corresponding SNOBOL4 primitive since its
argument may specify a negative integer
thereby causing the cursor to be
decremented.

Pattern matching is initiated by the By convention [2-4], a scanning pro-
creation and resumption of the scanning cedure is resumed with a success signal
procedure given in the root node of the as a request to search for alternatives.
pattern passed to the scanner. Matching It fails if it cannot find an alternative.

189

In addition, before a scanning procedure
can fail it must reverse any effects, such
as cursor movement, that it caused during
matching. Private identifiers are used

within scanning procedures to retain
values that are necessary in order to
reverse effects during backtracking. In
the procedure for slen given above, the
private identifier c is used to save the
previous value of cursor. slen does not
possess alternatives, so if it is resumed
after signaling success, it restores
cursor to its previous value and fails.
(Subsequent resumption of a scanning pro-
cedure that has signaled failure is a
programming error.)

Scanning procedures that perform con-
trol operations, such as scat and salt,

do not examine or modify subject or
cursor. They initiate other scanning
procedures in order to implement their
specific control relationships. For

example, the scanning procedure for a
primitive version of saZ.t can be written
as follows.

salt := procedure(private p
private e;
e := create sppoe(argl(p))
while resume e do succeed;
e := create spr=(arg2(p))
while resume e do succeed;—0.,.la._L.L

end;

)

with

with

argl

arg2

p);

p);

(This primitive implementation of sazt
does not provide for reversal of effects
caused by arguments that contain alterna-
tives, A complete version of sa2t is
given in Reference 2.)

The procedure salt creates a context
for its first argument and resumes its
execution. As long as it succeeds, sa2t
succeeds . If the first argument fails,
indicating that no further alternatives
exist, salt creates a context for its
second argument and resumes its execution,
succeeding as long as it does. Finally,
salt signals failure only after all of the
alternatives for both arguments have been
exhausted.

A scanning procedure may invoke the
scanner. Since subject and cursor are
declared in scan, each instance of scan
becomes a custodian for new occurrences
of these identifiers. The free identi–
fiers subject and cursor in scanning
procedures that are invoked in the course
of pattern matching controlled by the
nested instance of scan refer to those
identifiers in that custodian. This is
illustrated in Figure 4, which shows a
creation history tree containing two
instances of scan (indicated by S1 and
S2) and six instances of scanning pro-
cedures (Cl through c6). Cl causes a
nested invocation of scan. Thus S1 is
the custodian of the sub~eet and cursor
referenced in Cl, C2, and C6 while S2

is the custodian of those identifiers
in C3, C4, and C5.

oC4

Figure 4. A Creation History
Tree for the Scanner.

The builtin scanner is implemented in
the same fashion as scan, viz., subject
and cursor are treated as public identifi-
ers in each instance of the builtin
scanner. Thus the concept of public iden-
tifiers and the interpretation chosen for
free identifiers are what permit
programmer-defined scanning procedures to
“adapt T! themselves to the builtin mechan-

ism. They also make possible the replace-
ment of the builtin scanner by a
programmer–defined procedure, such as
scan, which is able to interact with
either builtin or programmer–defined
scanning procedures.

5. Conclusions

The determination of the scope of
identifiers is a persistent problem in
programming language design. The static
scoping conventions of most high-level
languages, such as Algol 60, are due in
part to the atomic nature of traditional
procedure activation. It is clear that in
order to support the decomposition of pro-
cedure activation described in this paper,
the static mechanisms are inappropriate,
and additional language features are
required in order to perform functions
such as backtracking [1,81.

The decomposition of procedure activa-
tion into separate components gives the
programmer the control, at the linguistic
level, that is necessary for applications
that involve sophisticated processes.
This decomposition and the implications of
program manipulation of procedures and

190

contexts as data objects have motivated
the scoping conventions and dynamic inter-
pretation of free identifiers used in SL5.
The effect is a means for inter-procedure
communication as well as a method of
avoiding inter–procedure interference.

Initial experience indicates that the
SL5 procedure mechanism does provide a
research tool of sufficient generality
for experimentation in the areas mentioned
at the beginning of this paper. The
facilities allow significant language
extensions to be made without changing the
base implementation of SL5. For example,
the scanner can be written completely in
SL5 without loss of generality. As illus-
trated by scan, the ability to create and
manipulate procedure contexts independent-
ly of argument binding or invocation
allows the programmer to adapt the general
mechanism to a specific experimental
application.

References

1. Bobrow, D. G. and Wegbreit, B.
“A Model and Stack Implementation of
Multiple Environments”, Communications
of tfie ACM, Vol. 6, No. 10, 591-603
(October 1973).

3. Druseikis, F. C. and Doyle, J. N.
“A Procedural Approach to Pattern
Matching in SNOBOL4”, Proceedings of
the ACM Annual Conference, 311-317
(November 1974).

4. Griswold, R. E. “Extensible Pattern
Matching in SNOBOL4”, Proceedings of
the ACM Annual Conference, 248-252
(October 1975).

5. Griswold, R. E. and Hanson, D. R.
An Overview of the SL5 Programming
Language, SL~ Project Document S5LD1,
The University of Arizona, Tucson,
1975.

6. Hallyburton, J. C., Jr. Advanced Data
Structure Manipulation Facilities for
the SNOBOL4 Programming Language, Ph.D.
Dissertation, The University of
Arizona, May 1974.

7. Knuth, D. E. The Art of Computer
Programming, Volume 2, Seminumerical
Algorithms, Addison-Wesley, Reading,
Mass. , 1969, p. 9.

8. Prenner, C., Spitzen, J. and
Wegbreit, B. “An Implementation of
Backtracking for Programming
Languages”, Proceedings of the ACM
AnnuaZ conference, 763-771 (August
1972).

2. Doyle,J. N. A Generalized Facility
for the Ana2ysis and Synthesis of

Strings and a Procedure-Based Model
of an Implementation, SNOBOL4 Project
Document s4D48, The University of
Arizona, Tucson, February 1975.

191

