Reprinted from the Proceedings of the SIGPLAN’ 92 Conference on Programming Language Design and Implementation,

San Francisco, June 1992, pp. 22-31.

A Retargetable Debugger

Norman Ramsey and David R. Hanson
Department of Computer Science, Princeton University
Princeton, NJ 08544

nr@princeton.edu

Abstract

We are developing techniques for building retargetable de-
buggers. Our prototype, 1db, debugs C programs compiled
for the MIPS R3000, Motorola 68020, SPARC, and VAX
architectures. It can use a network to connect to faulty
processes and can do cross-architecture debugging. 1db’s
total code size is about 16,000 lines, but it needs only 250—
550 lines of machine-dependent code for each target.

1db owes its retargetability to three techniques: getting
help from the compiler, using a machine-independent em-
bedded interpreter, and choosing abstractions that min-
imize and isolate machine-dependent code. 1db reuses
existing compiler function by having the compiler emit
PostScript code that 1db later interprets; PostScript works
well in this unusual context.

1 Introduction

Retargeting some programming environment components,
such as compilers and editors, is now common, thanks to
well developed retargeting techniques. For example, com-
piler writers use machine-independent intermediate repre-
sentations and code-generator generators. We are devel-
oping techniques for building retargetable, multiple-target
debuggers. This paper describes the design and implemen-
tation of 1db, a prototype retargetable debugger. 1db is
a source-level debugger like gdb or dbx [15, 22]. It can
be used with C programs compiled with 1cc [11], a retar-
getable compiler that generates code for the MIPS R3000,
Motorola 68020, SPARC, and VAX architectures. Users
can set and remove breakpoints, start and stop programs,
evaluate expressions, and make assignments to variables.
1db’s contribution lies in implementing these operations
in a retargetable way. It does so by using three tech-
niques: getting help from the compiler, using a machine-
independent embedded interpreter, and choosing abstrac-
tions that minimize and isolate machine-dependent code.

drh@princeton.edu

1db is an experiment in coupling between compiler and
debugger; they are separate tools, but 1db depends on and
uses existing compiler function as much as possible. The
division of labor between 1db and lcc shows that making
modest demands on the compiler can simplify the debug-
ger substantially. lcc’s assistance in generating machine-
independent symbol tables, in implementing breakpoints,
and in evaluating expressions are examples.

1db is connected to the compiler by PostScript programs,
which its embedded PostScript interpreter evaluates as nec-
essary. This approach provides a uniform mechanism for
representing symbol tables, shields the debugger from irrel-
evant information, and supports machine-independent ex-
pression evaluation.

1db’s design embodies a set of engineering choices that
collaborate to minimize and isolate machine-dependent
code. For example, it controls target processes with a
small “debug nub” that is loaded with the target pro-
gram. It exchanges messages with this nub using a machine-
independent protocol, and it establishes a connection to a
nub by connecting to an existing process over the network,
by forking the target process as a child, or by being forked
by a faulty process asking to be debugged.

The bulk of 1db, including its embedded PostScript in-
terpreter, is written in Modula-3 [18]. The nub is written
in C and assembly language, and much of the symbol table
and expression evaluation support is written in PostScript.
1db’s machine-dependent code depends only on which archi-
tecture the target program and its nub run on, not on which
architecture 1db runs on. As a result, cross-architecture de-
bugging with 1db is identical to single-architecture debug-
ging, and 1db can change architectures dynamically.

2 PostScript Symbol Tables

Production versions of lcc generate machine-dependent,
symbol-table “stabs” for dbx and gdb. We changed this
code to generate machine-independent symbol tables rep-
resented by PostScript programs that build PostScript ob-
jects, such as dictionaries. Symbol tables contain code as
well as data, e.g., procedures that 1db can interpret to print
structured data, so 1db need not know the layout of runtime
data structures.

Embedded in 1db is an interpreter for a dialect of
PostScript. This dialect omits font and imaging types and

operators, but adds new types and operators for debugging.
For example, 1db’s PostScript dialect supports “abstract
memories,” which, as described in Sec. 4.1, are a machine-
independent representation of target registers and memory.

A symbol-table entry is a PostScript dictionary describing
a source-language identifier: a variable, procedure, type, or
constant. The symbol-table entry for i, on line 6 of the
sample C program shown in Fig. 1, is associated with the
name S10:

/810 <<
/name (i)
/type << /decl (int %s) /printer {INT} ... >>
/sourcefile (fib.c) /sourcey 6 /sourcex 8
/kind (variable)
/where 30 RegsetO Absolute
/uplink S8

>> def

Brackets (<<...>>) surround dictionaries; within each dic-
tionary, names preceded by slashes are associated with
the values that follow. name, type, sourcefile, sourcey,
sourcex, kind, and uplink appear in all symbol-table en-
tries; where appears only in entries for variables and pro-
cedures. The value associated with where represents i’s
location (register 30) and is computed when the symbol
table is interpreted.

A source-level type dictionary, associated with type,
must contain at least two values: a string used to declare
variables of the type and a PostScript procedure used to
print values of the type. The procedure’s arguments are ab-
stract memory, location, and type dictionary; the machine-
independent procedure INT ignores the dictionary, fetches
a 32-bit integer from the abstract memory, and prints it.
The ellipsis in the type dictionary shown above stands for
information not used by 1db proper, but used by PostScript
code that supports expression evaluation.

In entries for local symbols, uplink is associated with
the entry for the preceding symbol in the current or enclos-
ing scope; i’s uplink value is the symbol-table entry for a
(Fig. 1, line 2), which is associated with S8. The uplink val-
ues link symbol-table entries in a tree that handles nested
scopes; using a tree avoids complications that can arise with
the flattened tables emitted by typical assemblers and load-
ers [6].

Fig. 2 shows the tree for £ib. The symbol-table entry for
a procedure associates formals with the entry for the pro-
cedure’s last parameter and loci with a PostScript array
of stopping points. Each element of this array contains a
source location, an object location, and a symbol-table en-
try; the symbol and its ancestors are visible from that stop-
ping point. For example, the 9th element of £ib’s stopping-
point array contains the entry for the symbol j. This point
corresponds to the expression j<n in line 11 of Fig. 1, from
which j, a, n, and fib are visible.

A context for name resolution is determined by a par-
ticular stopping point in a particular procedure, normally
the place where control has stopped. 1db resolves names
by walking up the tree of entries for local symbols, begin-
ning with the symbol-table entry contained in the stopping
point. When it reaches the root, it searches two PostScript
dictionaries; one contains entries for symbols local to this

1 void fib(int n) °{

2 static int a[20];

3

4 if (*n > 20) %n = 20;

5 3al0] = a[1] = 1;

6 { int 1i;

7 for (*i=2; ®i<n; "i++)
8 6ali] = al[i-1] + al[i-2];
9 }

10 { int j;

11 for (8j=0; %j<n; lj++)
12 Wprintf("%d ", aljl);
13 }

14 12printf("\n");

15 B3

Figure 1: Example program.
Superscripts show stopping points.

fib

‘ | | oci
\% (stopping points)
formal s D?\
r 0,13

%— 1-3,12

AN L
X X L 811
x{\‘g//L////r

Figure 2: The tree structure of £ib’s symbol table.

compilation unit (C statics) and the other contains en-
tries for global symbols (C externs). The first is associated
with statics in the current procedure’s symbol-table en-
try; the second is associated with externs in the “top-level
dictionary” for the program.

a’s symbol table entry is associated with S8:

/88 <<

/name (a)

/type <</decl (int %s[20]) /printer {ARRAY} ...>>

/sourcefile (fib.c) /sourcey 2 /sourcex 13

/kind (variable)

/uplink 87

/where {(_stanchor__V2935334b_e288a) 8 LazyDatal}
>> def

uplink is associated with n’s symbol-table entry, named S7.
a is static, so its location is not determined until link time.
The value associated with where is a PostScript procedure
that is interpreted at debug time; it computes a’s loca-
tion by calling LazyData. LazyData gets the location of the
generated anchor symbol, _stanchor__V2935334b_e288a,
from 1db’s linker interface (see Sec. 3) and fetches the ad-
dress of a from the 8th word following that location. This
anchor-symbol technique is also used to compute the object-
code locations of stopping points.

1db prints values using the procedure associated with
/printer in the value’s type dictionary. The machine-
independent PostScript procedure ARRAY prints C arrays.
Like INT, its arguments are an abstract memory, a loca-
tion, and a type dictionary. From the type dictionary, it
fetches the type of an element, the element size, and the
size of the whole array. This information, which may be
machine-dependent, is placed in the type dictionary by the
compiler. It is elided in the example above because it is
used only by PostScript code like the ARRAY procedure, not
by 1db proper.

The part of ARRAY that prints a’s value is

({) Put O Begin
0 &elemsize &arraysize 1 sub
{ dup O ne { (,) Put O Break } if
dup &limit ge { (...) Put pop exit } if
&machine &loc 3 -1 roll Shifted &elemtype print
} for
(}) Put End

This code prints an opening brace and loops through the
offsets of the array elements. At each iteration, it adds the
offset to the location of the array and prints the element
at that location. Each element except the first is preceded
by a comma and a potential line break. If the number of
elements exceeds an adjustable limit, an ellipsis is printed
and the loop terminates. Finally, a closing brace is printed.

A top-level dictionary describes a single compilation unit
or any combination of compilation units, up to an entire
program. It contains an array of symbol-table entries for
procedures, a dictionary associating external symbol names
with their symbol-table entries, a dictionary associating file
names with arrays of symbol-table entries for the proce-
dures defined in the files, and an array of the names of all
anchor symbols used. The anchor-symbol names are com-
pared with the anchor-symbol names in the loader table
(see Sec. 3) to ensure that the top-level dictionary matches
the object code. A top-level dictionary also contains the
name of the architecture for which the program was com-
piled, which 1db uses at debug time to find its machine-
dependent code and data.

Assuming that S1 and S6 represent the symbol-table en-
tries for procedures main and fib, the top-level dictionary
for fib.c is

<<
/procs [S1 86]
/externs <<
/main S1
/fib S6
>>
/sourcemap <<
/fib.c [81 86]
>>
/anchors [/_stanchor__V2935334b_e288a]
/architecture (sparc)
>>

The structure of top-level dictionaries is determined by
the operations 1db needs to perform. When given a pro-
gram counter, 1db must find the symbol-table entry of the
corresponding procedure. 1db uses the procs array to build

a table mapping procedure addresses to symbol-table en-
tries. (Mapping from program counters to procedure ad-
dresses is done by the linker interface described in Sec. 3.)
1db uses the externs dictionary to resolve names of global
symbols. 1db uses the sourcemap dictionary to build a map
from source locations to stopping points, making it possi-
ble to set breakpoints by source location. Because of the
C preprocessor, a single source location may correspond to
more than one stopping point.

3 Division of Labor

1db gets link-time information by cooperating with lcc’s
compiler driver. After linking a program, the driver uses
the UNIX program nm to generate PostScript that, when in-
terpreted, builds a loader table, which is a PostScript dictio-
nary. The loader table contains the program’s top-level dic-
tionary, a dictionary associating the names of anchor sym-
bols with their addresses, and an array of (address, name)
pairs for each procedure in the program. 1db’s linker in-
terface hides machine dependencies and provides access to
this table as a Modula-3 object. £ib’s loader table is

<<
/symtab << top-level dictionary >>
/anchormap <<
/_stanchor__V2935334b_e288a 16#000023d8

>>

/proctable [
16#00002270 (_£fib)
16#00002374 (_main)

]
>>

The loader table supports debugger operations that need
information not available until link time. 1db needs the lo-
cations of variables and procedures; Sec. 2’s anchor-symbol
technique reduces the problem to finding the locations of
the anchor symbols, which are stored in the anchormap dic-
tionary. The proctable enables 1db to find the address of
the procedure containing a given program counter, which is
the first step in mapping a program counter to the symbol-
table entry of the corresponding procedure.

To plant breakpoints, users specify source locations or
procedure names; 1db computes the locations of the cor-
responding instructions. 1db plants a breakpoint at an in-
struction I by overwriting I with a trap instruction. To
resume execution, it interprets I out of line, then continues
with the next instruction. For now, 1db can set breakpoints
only at no-op instructions, which can be skipped instead of
interpreted. The implementation is machine-independent,
but it manipulates machine-dependent data: the bit pat-
terns used for break and no-op, the type used to fetch and
store instructions, and the amount to advance the program
counter after “interpreting” the no-op. This interim scheme
relies on compiler support: lcc already places labels at
stopping points, so putting no-ops there requires no extra
effort. The no-ops increase the number of instructions by
16-19%, depending on the target.

‘print a[0]’
expressions
parse, typecheck [Modula-3 code
A
v context v result
PostScript

>

code generation
PostScript interpreter

symbol table type, symbol info

expression server 1db

Figure 3: Communication paths between 1db and an ex-
pression server

The possibility of stopping the program before any top-
level expression reduces the benefit of instruction schedul-
ing because the scheduler may rearrange instructions only
within such expressions, not within basic blocks. 1lcc does
not do instruction scheduling, but the MIPS assembler
does. When lcc compiles for debugging, the MIPS code
size increases by 13%, because there are load delay slots
that the assembler is unable to fill using the more restricted
scheduling. This penalty is independent of the cost of the
explicitly inserted no-ops.

Assignment and expression evaluation use an “expression
server,” with which 1db communicates via pipes, as shown
in Fig. 3. To evaluate an expression, 1db sends it to the
server, which is a variant of the compiler. The server at-
tempts to parse and type-check the expression and to pro-
duce an intermediate-code tree. When it fails to find an
identifier a in its symbol table, it does not print an error
message and stop; its symbol-table code has been modified
to send “/a ExpressionServer.lookup” back to 1db. The
PostScript procedure ExpressionServer.lookup, when in-
terpreted by 1db, finds the PostScript dictionary represent-
ing a’s symbol-table entry and sends information from that
dictionary back to the expression server. The server’s mod-
ified symbol-table code uses that information to reconstruct
a’s symbol-table entry on the fly, and it returns the newly
created entry to the parser just as if the entry had always
been present. The expression server discards new symbol-
table entries after the evaluation of each expression, but it
saves type information until the user switches to a different
target program.

The server’s intermediate-code tree is not passed to
the usual compiler back end; instead it is rewritten as a
PostScript procedure. This PostScript procedure is sent to
1db, followed by “ExpressionServer.result”, which tells
1db that the procedure is on the stack and that it can stop
listening to the expression server. 1db then takes the pro-
cedure from the stack and interprets it, which has the effect
of evaluating the expression.

Rewriting intermediate code into PostScript takes little
effort, and doing so instead of interpreting intermediate
code directly should make it easier to support different lan-
guages, compilers, and intermediate codes. One interpreter
supports code in symbol-table entries and expression eval-
uation.

The expression-server architecture has two benefits: reuse
of the compiler and simplicity in the debugger. The changes
that make the compiler front end act as a server affect only
the input, lexical analysis, symbol, and type modules. The
debugger treats each expression as a string; it sends the
string to the expression server, then interprets PostScript
code until the expression server tells it to stop. The oper-
ation of interpreting until told to stop is implemented by
applying “cvx stopped” to the open pipe from the server.

Reusing the compiler has a limitation: the debugger can-
not provide an extended language for debugging. Such fa-
cilities could be provided by implementing an extended lan-
guage as an expression server.

Because it puts the expression server in a separate ad-
dress space, 1db can reuse a range of compiler implementa-
tions. The compiler and debugger need not be written in
the same language, need not support the same data types,
and need not agree on how to manage storage or share input
and output. The cost of this flexibility is that the compiler
writer must devise PostScript procedures that take symbol-
table data and send it to the expression server over a byte
stream. The lcc expression server receives sequences of C
tokens that represent type and symbol data. If the 1cc front
end could easily have shared an address space with 1db, 1db
could have made procedure calls to expression-server code
instead of sending messages between processes.

4 Design for Retargetability

Three aspects of 1db’s design contribute most to its retar-
getability: abstract memories, the debug nub, and the use
of Modula-3 subtyping.

1db is written in Modula-3 and uses Modula-3 interfaces
and subtypes to minimize and isolate machine dependen-
cies. Each target architecture requires Modula-3 objects
that contain machine-dependent data, methods, or both.
When possible, machine-dependent function is specified by
Modula-3 objects containing machine-dependent data but
no code.

Machine-independent classes! define the important ab-
stractions in 1db; machine-dependent code is isolated in
machine-dependent subtypes of such classes. (A simi-
lar technique has been used in implementations of I/O
streams [18, p. 143].) One such class is 1db’s stack-frame
abstraction. The machine-independent class includes the
value of the program counter, the symbol-table entry of the
corresponding procedure, and several machine-independent
methods, which perform such tasks as computing scopes for
name resolution. Machine-dependent instances of the class
supply only two methods: one that walks down the stack
and one that restores registers from the stack.

4.1 Abstract Memories

Abstract memories represent the registers and memory of a
target process. An abstract memory is a collection of spaces,
denoted by lower-case letters, e.g., d for data space, r for
registers, etc. Locations within a space are determined by
an integer offset. 1db provides several “addressing modes”

1A class is a Modula-3 type that has no exact instances; all
instances have types that are proper subtypes of the class.

to refer to locations, including an immediate mode. Given a
memory and location, 1db can fetch and store three sizes of
integers (8, 16, and 32 bits) and three sizes of floating-point
values (32, 64, and 80 bits).

1db assumes that every machine has code and data
spaces. Other spaces can be added to the abstract mem-
ory model as necessary for a particular machine. On the
MIPS, for example, we add r for general-purpose registers,
£ for floating-point registers, and x for “extra registers.”
The extra registers are the program counter and the vir-
tual frame pointer.? The code and data spaces may refer to
the same locations or different locations depending on the
target architecture.

Abstract memory is another Modula-3 class; 1db com-
bines several different instances to represent the state of
memory and registers during a particular procedure activa-
tion. The instances form a directed acyclic graph, shown in
Fig. 4. The wire is an abstract memory that holds a con-
nection to the nub; it forwards fetch and store requests to
the nub, which executes them and returns the results. The
nub, located in the target process, can respond to requests
only for locations in the code and data spaces. Registers
are saved either on the stack or in a context, which is an
area in memory that holds the state of a stopped program.
The alias memory translates requests for locations in reg-
ister spaces into requests for locations in the code or data
spaces (or for immediate locations).

The register memory solves a problem that occurs when
fetching the least significant byte from a register. The alias
memory records the location in memory of the whole regis-
ter, but the location of the byte depends on the target’s byte
order. The register memory transforms fetches and stores
into full-word operations on the underlying memory, mak-
ing byte order irrelevant. For example, if 1db fetches a char-
acter from a 32-bit register, the register memory fetchs the
whole register, but returns only the least significant 8 bits.
Register memories enable 1db to execute the same code
whether debugging a little-endian or a big-endian MIPS,
for example.

The joined memory combines memories that serve differ-
ent spaces, routing fetch and store requests to the appropri-
ate underlying memory. The joined memory is the instance
presented to the rest of the debugger as representing the
abstract memory for a stack frame.

1db uses abstract memories to print the values of vari-
ables. If a breakpoint is planted at stopping point 7 of £ib
(line 7 of Fig. 1), 1db can access i, a, n, and fib when
it stops there. For example, it prints i by executing the
PostScript procedures shown in Sec. 2, which generate fetch
requests that travel through Fig. 4’s abstract memories. i
is located at offset 30 of space r (register 30), so the joined
memory fetches i from the register memory. The request
is for a full word, so the register memory fetches the word
from the alias memory, which notes that register 30 is an
alias for a location in the data space 92 bytes after the be-
ginning of the context and asks the wire to fetch the word at
that location. The wire sends a message to the nub, which
fetches i using the target’s byte order and sends the value
back to the debugger in little-endian order, where it gets

2The MIPS has no actual frame pointer, but 1lcc uses the vir-
tual frame pointer to address local variables. The other targets
have other idiosyncrasies of similar complexity.

requests i T replies

c,d, r, f, x
joined memory

r, f, x/
register memory

r, f,x
alias memory

c,d

wire

Hc, d

debug nub

)

Figure 4: Abstract memory for a frame.

returned up the dag of abstract memories and put on the
PostScript operand stack, whence it is printed. Printing
the value of a is similar, but its elements are located in the
data space, so the fetch requests are routed from the joined
memory directly to the wire, which sends them to the nub.

In the abstract memory dag, machine-independent code
manipulates machine-dependent data: the aliases recorded
in the alias memory. Fetches that use the immediate ad-
dressing mode return immediate values; all other fetches
and all stores are eventually done on target memory by the
nub. Only the data is machine-dependent, so it doesn’t
matter what architecture the code runs on; except for
floating-point data, cross-debugging is free.

1db creates abstract memories using machine-dependent
stack-walking procedures. On the MIPS, for example,
MipsFrame.New takes the context from the nub and creates
a machine-dependent instance of the stack-frame abstrac-
tion, a representation of the topmost frame on the target
call stack. The stack frame includes an abstract memory,
which is a joined memory that is part of a dag like the one
shown in Fig. 4. Since the general-purpose and floating-
point registers are saved in the context, those locations are
made aliases for the appropriate locations in the target.
The extra registers (program counter and virtual frame
pointer) are aliases for immediate locations, not for loca-
tions in target memory. MipsFrame.New uses the program
counter to find the procedure’s dictionary, then computes
the virtual frame pointer by adding the size of procedure’s
frame to the stack pointer. The machine-dependent frame
size is stored in the dictionary by the MIPS implementation
of 1db’s linker interface (see Sec. 4.3).

The stack-frame object created by MipsFrame.New has
two machine-dependent methods. When a user walks the
stack, one of these methods finds the calling frame, and the
other constructs a new abstract memory for that frame.
The aliases in the new alias memory usually stand for lo-
cations on the stack, not in the context, but when callee-
save registers are not modified by the called procedure, the
aliases from the called frame are reused.

4.2 The Debug Nub

The nub executes in user space; at program startup it in-
stalls a signal handler that gets control when the target pro-
cess faults or encounters a breakpoint. When such an event
occurs, the nub uses a socket to notify 1db of the signal,
passing a signal number, an associated code, and a context
that holds the values the registers had when the signal ar-
rived. It then services 1db’s fetch and store requests until
told to continue execution, to terminate, or to break the
connection. Normally, when a connection is broken, even
by a debugger crash, the nub preserves the state of the tar-
get program and waits for a new connection from another
instance of 1db. The nub may be told to continue execution
instead. The little-endian communication protocol between
1db and the nub has been used on all combinations of host
and target byte orders and has been validated [13].

The nub supports several connection mechanisms, includ-
ing debugging over the network. Since the nub is always
loaded with the target program, it can catch unexpected
faults and wait for a connection from 1db; the target pro-
gram need not be a child of the debugger.

The nub isolates dependencies on the host operating sys-
tem. Using sockets and signal handlers makes it easier to
retarget the nub; these mechanisms are more uniform on
different UNIX implementations than are mechanisms that
support debugging more directly, such as system facilities
permitting one process to control another.

The principle guiding the design of the nub has been to
keep it as small as possible. The nub is loaded with every
program, so the cost for programs that are never debugged
should be small. The smaller the nub is, the simpler it is,
and the easier to retarget. It is easier to make a simple nub
reliable, and the nub must preserve the state of the target
program even if the debugger crashes.

In user space, the debug nub is vulnerable; if a faulty
program destroys the nub’s data structures it becomes im-
possible to debug that program. Moving the nub into the
operating-system kernel would solve this problem; it could
also reduce the number of context switches needed to per-
form a nub operation. The smaller and simpler the nub
is, the more reasonable it is to consider putting it in the
kernel. Finally, the nub interface should be small as well.
A small interface will be easier to implement in a variety
of environments, e.g., PCR [24] or the Topaz TeleDebug
server [21].

4.3 Retargeting 1db

The debugger proper, the PostScript, and the nub all have
machine-dependent parts, and each must be retargeted for
a new machine. This section lists all such parts.
Machine-dependent Modula-3 code plants breakpoints,
communicates with the nub, gets machine-dependent data
bound at link time, and walks the call stack. 1db’s interim
breakpoint implementation requires four items of machine-
dependent data (see Sec. 3). The code that communicates
with the nub is machine-independent, but it uses three
machine-dependent procedures or objects: a procedure that
distinguishes breakpoint faults from other faults, an object
used to fetch and store the program counter located in a
context, and a procedure that takes a context and creates

the top frame on the call stack (see Sec. 4.1). Likewise, the
code that fetches and stores fields of a context is machine-
independent, but is parameterized by a machine-dependent
description of those fields.

The VAX, SPARC, and 68020 share a single, machine-
independent implementation of the linker interface. The
MIPS cannot use this implementation because it has no
frame pointer. To be able to walk past a MIPS stack
frame, 1db needs to know its size. That information is avail-
able, even for procedures without debugging symbols, in the
MIPS runtime procedure table [17]. The MIPS implemen-
tation of 1db’s linker interface uses the runtime procedure
table to find the addresses and frame sizes of procedures,
as well as other machine-dependent data.

The top-of-stack procedure, for example, MipsFrame . New
of Sec. 4.1, hides the rest of the machine-dependent stack-
walking code, i.e., the machine-dependent methods of the
stack-frame object. The implementations for all four tar-
gets are similar.

1db uses machine-dependent PostScript to address local
variables and to enumerate a target’s registers.

Most of the nub is machine-independent, but it has a few
machine dependencies. The target architecture determines
the type of the signal handler and whether, as on the MIPS
and SPARC, the struct sigcontext can serve as a con-
text or, as on the VAX and 68020, another representation
must be used [8]. On a big-endian MIPS, nub code for
doubleword fetches and stores of saved floating-point regis-
ters must swap the words.®> Each machine has a different
one-line “pause” procedure, which stops the target program
before it calls main. The VAX and 68020 require assembly
code to save and restore registers, and the 68020 requires
assembly code to fetch and store 80-bit floating-point val-
ues.

To give the nub initial control, the system-dependent
startup code must be modified to call the nub instead of
main. It is most easily modified by editing the object code.

The following table lists the number of lines of machine-
dependent Modula-3, ANSI C, and PostScript code that
collaborate to implement the machine-dependent parts of
1db on each of its targets. The amount of machine-
independent code is listed in the rightmost column.

MIPS 68020 SPARC VAX shared

Debugger (M3) 476 187 206 199 12193
PostScript 15 18 18 13 1203
Nub (C, asm) 34 73 5 72 632

A few numbers stand out. The MIPS requires an extra
250 lines of Modula-3 code in the linker interface because
the machine has no frame pointer. There is very little
SPARC-dependent code in the nub because the operating
system provides most of the registers and there is no other
machine-dependent dirt. The nub sizes for the 68020 and
VAX are large because of the assembly language used on
those machines.

The effort required to retarget 1db is minimal. The au-
thors’ ports to the 68020 and VAX architectures each took

30n a big-endian MIPS, doubleword floating-point values are
stored with the most significant word first, except that when the
kernel saves floating-point registers in a struct sigcontext, it
stores the least significant word first.

less than a week of one programmer’s time. A colleague in-
dependently retargeted the Modula-3 code for the SPARC;
he spent about two weeks working half-time.

5 Why PostScript?

The language embedded in the debugger should be easy
for people to read and for tools to manipulate, so bytecode
and machine code are inappropriate. Designing a new lan-
guage is best avoided, so we considered PostScript, Scheme,
FORTH, and Tcl [20]. The latter two offer too few data
types. Although most of the benefits of using PostScript
would also be obtained with Scheme, there are a number of
reasons to prefer PostScript.

Both the compiler and the expression server have to gen-
erate code for the debugger, and PostScript was designed
to be generated by other programs [2, p. 2]. Our experience
confirms that it is easy to generate PostScript; for example,
the expression server code that rewrites lcc’s intermediate
representation into PostScript is only 124 lines of C, even
though the intermediate representation has 112 operators.

PostScript dictionaries provide a convenient notation for
symbol-table entries. Dictionaries are easily extended with
machine-dependent data by adding entries; we have done
so for two targets. For example, the compiler adds register-
save masks when compiling procedures for the 68020. Most
of 1db ignores these masks, but they are used by the
machine-dependent stack-walking code.

Every PostScript object has an attribute that tells explic-
itly whether the object is literal or executable; the distinc-
tion need not be inferred from context. Because attempts
to execute a literal object put that object on the stack, pro-
cedures that are interpreted at most once can be replaced
with their results. We use this technique when fetching
addresses relative to anchor symbols (see Sec. 2).

We can defer not only the interpretation but also the lex-
ical analysis of PostScript code by quoting it with paren-
theses; the scanner reads the resulting string quickly. This
deferral technique reduces by 40% the time required to read
a large symbol table.

PostScript names are bound dynamically, and the “dic-
tionary stack” used to resolve names is both distinct from
the call stack and explicitly controlled by the PostScript
program. When 1db changes architectures, it rebinds
machine-dependent names by placing a dictionary on the
dictionary stack; we supply one such dictionary for each
target architecture.

As noted in Sec. 2, 1db’s PostScript implementation has
extra types and operators to support debugging, and it
omits types and operators that support fonts and graph-
ics. The debugging support includes abstract memory and
location types and operators. It includes an interface to
a prettyprinter supplied with Modula-3; the prettyprinter
procedures are called by the PostScript code that prints
structured data. We made several other changes that
make PostScript work better when embedded in a Modula-
3 program. Strings are immutable, for compatibility with
Modula-3 TEXTs. There are no save and restore operators;
memory is reclaimed by the Modula-3 garbage collector.
There are no substrings or subarrays. Interpreter errors
raise Modula-3 exceptions. Files are readers or writers.

6 Related Work

Implementation strategies for debuggers vary. In some ex-
perimental systems, the compiler and debugger are tightly
coupled. DEC SRC’s Vulcan debugger executes in the same
address space as the compiler, sharing its annotated ab-
stract syntax trees. The DICE debugger cooperates with
an incremental compiler as part of an integrated environ-
ment [12]. Most debuggers, like VAX DEBUG [4] and
dbx [15], are separate tools which communicate with the
compiler only through symbol-table information. This in-
formation is placed in the object file in a machine-dependent
format. 1db is like these debuggers, but it uses PostScript
as a machine-independent, language-independent, symbol-
table format.

Most debuggers must re-implement some facilities for ev-
ery language that they support [4]. Debuggers must rec-
ognize expressions and assignments, must be able to print
values, including structured data, and must apply the lan-
guage’s scope rules to resolve names. 1db’s expression-
server architecture and its use of PostScript reduce this kind
of re-implementation effort. 1db has a fixed name resolution
algorithm, but its implementation of printing values and its
interaction with the expression server are independent of C.
The name resolution algorithm could handle nested proce-
dures, but not overloading.

gdb 4.0 [22] supports 20 different target machines and
many different versions of UNIX, but of its more than
150,000 lines, over 47,000 are noted in the documentation
as machine-dependent. This figure does not include over
10,000 lines that deal with machine-dependent object code
formats like a.out and COFF. The long delay between the
availability of MIPS machines and the availability of gdb
for them also suggests that substantial effort is needed to
retarget gdb.

Like parts of the Cedar programming environment [23],
1db defines a client interface so that it can be used by other
programs, e.g., user interfaces. If gdb and dbx defined client
interfaces, it would simplify the implementation of better
user interfaces (e.g., dbxtool [1]) and of higher-level debug-
ging tools (e.g., Dalek [19]). Event-action debugging tech-
niques [3, 5, 19] seem well suited for implementation above
1db. 1db can debug on multiple architectures simultane-
ously, so it can process events from pieces of client-server
applications that execute on different hardware.

1db’s abstract memory model is low-level, close to the
hardware. By contrast, the Cedar debugger manipulates
an abstract machine, whose abstractions are those of the
Cedar programming language [23, §6.4]. The abstract ma-
chine’s interface to Cedar data is used by clients other than
the debugger, including a user interface tool that lets users
manipulate fields (including procedures) of records chosen
dynamically. A similar abstraction could be built on top of
1db’s PostScript symbol tables and abstract memories, but
it, like the expression server, would need detailed knowl-
edge of the contents of the symbol tables; it would not be
isolated from the details of C.

1db’s nub interface is derived from the Topaz TeleDebug
protocol, TTD [21], with some simplifications. 1db uses
code outside the nub to connect to a target process. 1db’s
nub does not support multiple threads or multiple proces-
sors. 1db and T'TD use different data models; 1db’s model

makes it easier to write code that is independent of tar-
get byte order, but TTD’s model makes it easier to cache
copies of target memory in the debugger process. The im-
portant simplification in 1db is that the protocol and nub
do not mention breakpoints or single-stepping; breakpoints
are implemented entirely in 1db using fetches and stores
without assuming the ability to single-step. Other remote
debuggers use more complex interfaces [16].

One way to resume execution after a breakpoint is to
return the overwritten instruction to memory, execute it
by single-stepping the target machine, and replant the
breakpoint [7]. Single-stepping can be avoided by using
a memory-patching implementation [9]; in that case, the
overwritten instruction can be interpreted or transformed
so that it can be correctly executed out of line [14].

7 Discussion

Work is divided between 1db and lcc to facilitate 1db’s
retargeting, even at the cost of sacrificing other features.
Having lcc insert no-ops at stopping points makes it pos-
sible to specify a breakpoint implementation in four lines,
but makes target programs bigger and slower. Inserting
relocatable addresses into locations known relative to an-
chor symbols simplifies the debugger’s interface to the linker
(1db never needs the value of a private or static symbol),
but makes target programs bigger. Using nm to extract
information from the linked program makes 1db indepen-
dent of linker formats.? Using PostScript for symbol tables
makes the compiler interface machine-independent, but is
incompatible with existing compilers, linkers, and debug-
gers. Having lcc emit PostScript procedures that 1db in-
terprets to print values makes 1db independent of C’s type
structure and of the details of the runtime layout of data
structures; the compiler writer determines both how values
are represented in memory and how they are printed by the
debugger.

The use of nm and the anchor-symbol technique could
be avoided if lcc used a linker that recorded informa-
tion about the locations of global and private symbols.
This information should be in a machine-independent for-
mat and should make it possible to distinguish identically
named private symbols from different compilation units. It
is unnecessary to have the linker “relocate” the informa-
tion in the PostScript symbol tables. For external symbols,
nm is a good compromise; its output is mostly machine-
independent and is easily transformed into PostScript.

lcc generates PostScript symbol tables using the same
internal interface that is used by the production versions to
generate machine-dependent symbol-table “stabs” for dbx
and gdb. The implementation is somewhat more complex;
about 1000 lines of C to generate PostScript versus about
300 for stabs. The additional cost is reasonable consider-
ing that the PostScript contains more information; it must
be enough to enable the expression server to reconstruct
the compiler’s symbol-table and type information at debug
time.

41db’s MIPS linker interface gets machine-dependent data
from the runtime procedure table located in the target address
space [17], not from the object file.

1db’s PostScript symbol tables can be manipulated by
PostScript programs. For example, we wrote PostScript
code that reads the top-level dictionary for the nub and con-
structs a Modula-3 description of one of the nub’s machine-
dependent data structures.

1db takes about 6 seconds to start up on a one-line “hello
world” program, and about 9 seconds to start up on a
13,000-line version of lcc. The costs of initializing the
Modula-3 runtime system and of interpreting PostScript
increase the startup time of 1db. The following table shows
the elapsed time required to execute the initial phases of
1db, dbx, and gdb. All programs were executed on a lightly
loaded DECstation 5000/200 with 16M of main memory.
Times shown are the average of seven measurements made
with a stopwatch; errors are a few percent.

Modula-3 initialization 1.9 sec
Read initial PostScript 1.6
Read symbol table for hello.c (1 line) 2.2
Read symbol table for 1cc (13,000 lines) 5.5
Connect to hello.c (one machine) 1.8
Connect to lcc (one machine) 5.1
Connect to lcc (two MIPS machines) 6.2
Connect to 1cc (host MIPS, target SPARC) 5.0
dbx: start and read a.out for lcc 1.5
gdb: start and read a.out for lcc 1.1

All PostScript symbol tables include symbol-table informa-
tion for the nub. The extra time required to debug a MIPS
target is spent fetching information from the runtime pro-
cedure table in the target address space.

PostScript symbol-table information is about 9 times
larger than dbx stabs for the same program. The dbx in-
formation is in a binary format, so it may be fairer to com-
pare the PostScript after compression by the UNIX program
compress, in which case the ratio is about 2.

1db originally used an abstract memory model based on
C primitive types; for example, it distinguished signed from
unsigned integers. The current abstract memory model
(Sec. 4.1) uses three sizes of integers and three sizes of
floating-point values. These values and types correspond
closely to the values and types manipulated in lcc’s in-
termediate representation [10]. The change simplified both
1db and the PostScript symbol tables, and it enables the ex-
pression server to share more code with the compiler front
end.

Floating point complicates cross-debugging. Different
precision in 1db’s machine and the target machine is the
most obvious problem, but even if both machines use IEEE
floating point, each floating-point unit can hold a different
state — rounding mode, for example. One possible solu-
tion to these problems is to extend the nub and its proto-
col to do all floating-point operations in the target. Even
then, the floating-point state may be correct only for the
topmost procedure activation. Other debuggers can suffer
from these problems, too, unless the operating system or
compiler tracks floating-point state changes.

1db can connect to multiple targets simultaneously, so
it must not leave target-specific state in global variables.
It stores such state in target objects. Dependence on such
state is surprisingly pervasive; many procedures require a
target object for reasons not immediately obvious. One
might expect, for example, that values of variables could

be printed without access to a target object, but to print
the function name associated with a C function pointer re-
quires the loader table, which is accessed from the target
object. A second problem with the target object is that
several parts of the debugger must know whether the de-
bugger is connected to a target process and whether that
process is running or stopped. These parts include the user
interface, the breakpoint implementation, the debugger end
of the nub protocol, and the implementation of the client
interface.

Both problems are exacerbated by the use of the anchor-
symbol technique, because every computation of a location
might fetch data from the target address space. This oper-
ation not only requires the target object, it requires that it
be connected to a stopped process. Fortunately, the fetches
from the target address space have little impact on perfor-
mance because such fetches are performed only on demand
and at most once per symbol-table entry.

7.1 Future Work

The expression server is not yet complete; in particular,
1db cannot evaluate expressions that include procedure calls
into the target process. We expect to use the existing nub
protocol when adding procedure-call support. 1db’s inter-
face with the expression server is defined precisely by the
relevant code, but our experience suggests that we can for-
mulate a more abstract interface analogous to lcc’s code
generation interface [10].

The PostScript approach may extend gracefully to lan-
guages with more semantic complexity, like C++ and
Modula-3. If dbx “stabs” are extended to describe a richer
language, dbx itself must also be extended [15], but 1db’s ca-
pabilities can be extended by changing only the PostScript
symbol tables; 1db itself need not change. 1db may well suit
language implementations that compile to C, because the
first compiler can emit PostScript code that manipulates
the symbols emitted by the C compiler, producing one set
of symbols that combines the results of two compilations.

PostScript invites further exploitation; for example, it
might help debug optimized code. If an optimizer performs
strength reduction and replaces the use of i in a[i] with
an induction variable p, the compiler can emit Postscript
that recovers i from p.

The similarity of the stack-walking procedures on the four
targets suggests that formal descriptions of stack-frame lay-
out and calling conventions might be devised and used to
generate all or part of the stack-walking code. Such descrip-
tions might also be useful for providing a compiler back
end with information about register usage or calling con-
ventions.

1db’s model of breakpoints should be replaced with one
based on instruction-level single-stepping. Single-stepping
lends itself to simpler machine-dependent implementation
than does interpretation, and it would eliminate the no-ops
emitted by lcc. Implementing breakpoints entirely in the
debugger keeps the nub simple, but runs the risk of losing
important state in a debugger crash, and of being unable to
resume debugging with a new debugger. We can solve this
problem by enriching the protocol with a special store op-
eration used only for planting breakpoints and by making
the nub capable of reporting to a new debugger the instruc-

tions overwritten by such stores, in case the connection to
the original debugger is lost.

1db needs facilities like source-level single stepping. Im-
plementing such facilities on top of breakpoints is complex,
because the event that is expected may not be the one
that occurs; a fault may occur when a breakpoint is ex-
pected. One solution is to make the debugger internals
event-driven [15]. Exporting the mechanisms used to make
the debugger event-driven would simplify the implementa-
tion of event-driven clients. Event-driven debugging sub-
sumes conditional breakpoints as a special case.

Sec. 4.2 describes the potential reliability and perfor-
mance benefits of moving the nub into the kernel. Re-
implementing the nub interface on top of operating-system
support for debugging might have similar benefits, but at
some cost in retargetability. Using operating-system facili-
ties has an additional advantage: they may provide access
to instruction single-stepping, breakpoints, threads, signals,
or exceptions. 1db could be designed to take advantage of
these kinds of extensions to the nub protocol when they are
available, but should continue to function correctly when
they are not available.

8 Acknowledgements

Mike Spreitzer helped clarify retargeting issues by indepen-
dently writing Modula-3 code for the SPARC. Anne Rogers
insisted that we write more about ideas and less about code.
John Ellis’s thorough reading of an earlier draft uncovered
many important omissions.

This work was supported by a Fannie and John Hertz
Fellowship, an AT&T Bell Laboratories Fellowship, and a
summer research internship at Xerox PARC.

References

[1] E. Adams and S. S. Muchnick. = Dbxtool: A
window-based symbolic debugger for Sun worksta-
tions. Software—Practice & FExperience, 16(7):653—
669, July 1986.

[2] Adobe Systems Incorporated, Reading, Ma. PostScript
Language Reference Manual, 1985.

[3] P. C. Bates and J. C. Wileden. High-level debugging
of distributed systems: The behavioral abstraction ap-
proach. Journal of Systems and Software, 3(4):255—
264, Dec. 1983.

[4] B. Beander. VAX DEBUG: An interactive, symbolic,
multilingual debugger. Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Sympo-
stum on High-Level Debugging, in SIGPLAN Notices,
18(8):173-179, August 1983.

[6] B. Bruegge. Adaptability and Portability of Symbolic
Debuggers. PhD thesis, Carnegie Mellon University,
September 1985.

[6] T. A. Cargill. Pi: A case study in object-oriented
programming. Proceedings of OOPSLA’86, SIGPLAN
Notices, 21(11):350-360, Nov. 1986.

[7]

8]

[9]

(10]

(11]

(12]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

D. Caswell and D. Black. Implementing a Mach de-
bugger for multithreaded applications. In Proceedings
of the Winter USENIX Technical Conference, pages
25-39, Washington, DC, Jan. 1990.

G. V. Cormack. A micro-kernel for concurrency in C.
Software—Practice € Experience, 18(5):485-491, May
1988.

Digital Equipment Corporation, Maynard, MA.

DDT—Dynamic Debugging Technique, 1975.

C. W. Fraser and D. R. Hanson. A code generation in-
terface for ANSI C. Software— Practice € Experience,
21(9):963-988, Sept. 1991.

C. W. Fraser and D. R. Hanson. A retargetable com-
piler for ANSI C. SIGPLAN Notices, 26(10):29-43,
Oct. 1991.

P. Fritzson. Symbolic debugging through incremental
compilation in an integrated environment. Journal of
Systems and Software, 3(4):285-294, Dec. 1983.

G. J. Holzmann. Design and Validation of Computer
Protocols. Prentice Hall, Englewood Cliffs, NJ, 1991.

P. B. Kessler. Fast breakpoints: Design and imple-
mentation. Proceedings of the ACM SIGPLAN ’90
Conference on Programming Language Design and Im-
plementation, in SIGPLAN Notices, 25(6):78-84, June
1990.

M. A. Linton. The evolution of Dbx. In Proceedings
of the Summer USENIX Conference, pages 211-220,
Anaheim, CA, June 1990.

P. Maybee. pdb: A network oriented symbolic debug-
ger. In Proceedings of the Winter USENIX Conference,
pages 41-52, Jan. 1990.

MIPS Computer Systems, Mountain View, CA. MIPS
Assembly Language Programmer’s Guide, May 1989.

G. Nelson, editor. Systems Programming with Modula-
3. Prentice Hall, Englewood Cliffs, NJ, 1991.

R. A. Olsson, R. H. Crawford, and W. W. Ho.
A dataflow approach to event-based debugging.
Software—Practice & Experience, 21(2):209-229, Feb.
1991.

J. K. Ousterhout. Tcl: An embeddable command lan-
guage. In Proceedings of the Winter USENIX Confer-
ence, pages 133-146, Washington, DC, Jan. 1990.

D. D. Redell. Experience with Topaz TeleDebugging.
Proceedings of the ACM SIGPLAN/SIGOPS Work-
shop on Parallel and Distributed Debugging, in SIG-
PLAN Notices, 24(1):35-44, January 1989.

R. M. Stallman and R. H. Pesch. Using GDB: A
guide to the GNU source-level debugger, GDB ver-
sion 4.0. Technical report, Free Software Foundation,
Cambridge, MA, 1991.

23]

24]

D. C. Swinehart, P. T. Zellweger, R. J. Beach, and
R. B. Hagmann. A structural view of the Cedar pro-
gramming environment. ACM Transactions on Pro-
gramming Languages and Systems, 8(4):419-490, Oct.
1986.

M. Weiser, A. Demers, and C. Hauser. The portable
common runtime approach to interoperability. Pro-
ceedings of the 12th Symposium on Operating Systems
Principles, in Operating Systems Review, 23(5):114—
122, Dec. 1989.

In a multipass program, the earlier passes must transmit

information to the later passes. This information is often
transmitted most efficiently in a somewhat machine-like
language, as a set of instructions for the later pass; the
later pass is then nothing but a special purpose interpretive
routine, and the earlier pass is a special purpose
“compiler.” This philosophy of multipass operation may be
characterized as telling the later pass what to do, whenever

possible, rather than simply presenting it with a lot of facts

and asking it to figure out what to do.

— D. E. Knuth, The Art of Computer Programming,
vol. 1, 2nd ed., p. 198. Addison-Wesley, 1973.

