SOFTWARE-—PRACTICE AND EXPERIENCE, VOL. 13, 745-763 (1983)

Simple Code Optimizations*

DAVID R. HANSON
Department of Computer Science, The University of Arizona, Tucson, Arizona 85721, U.S.A.

SUMMARY

Program optimization has received a great deal of attention for many years, which has resulted in
numerous advances in compiler technology. The effectiveness of various simple optimizations has received
comparably little attention during the same time period. The simplicity of most programs suggests that
straightforward optimizations pay the greatest dividends. This paper describes three such optimizations
suitable for one-pass compilers. The optimizations involve expression rearrangement, instruction
selection, and the use of a cache for the allocation of resources. The cost of these optimizations is low;-
none require major changes to the size or structure of the compiler or reduce compilation speed by more
than 10%. The benefits are high; each optimization results in at least a 10% average reduction in object
code size and a corresponding reduction in execution time. Examples and implementation details are also
described.

KEY WORDS code optimization register allocation caching instruction selection

INTRODUCTION

There has been a great deal of research in program optimization over the last ten years, which
as lead to theoretical and practical advances in loop optimization, data flow analysis, and
associated techniques.’ Recent work has concentrated on interprocedural data flow analysis,z’3
optimization in the presence of other constraints (viz., Reference 4), and the automation of
code generation5'6 and peephole optimization.7

Much of the work in optimization has been directed toward obtaining the best code possible
according to some quality measure, such as space or execution time. The simplicity of most
programs and consequent effectiveness of straightforward optimizations has long been
recognized8 and pc:rsists.g'12 This suggests that relatively simple optimizations deserve more
attention than they have received.

Optimization cost is typically measured by complexity, the implementation effort required,
and the space and time impact on the compiler. The benefits of optimizations are measured by
the reduction in code size or execution time.!> Peephole optimization, which can greatly
improve local code, is an example of a relatively simple optimization that is very effective. Itis
one of the few optimizations that is frequently cited as generally worthwhile, and it often
accounts for significant improvement in optimizing compilers.!# Similar experience with other,
more complicated optimizations, especially those based on data flow analysis, is rare and
makes balancing the complexity of an optimization with its effectiveness a difficult design
decision. For example, including an optimization that would require an additional pass during
compilation in exchange for a 10% reduction in code size is questionable. As a result,
optimization is often confined to ad hoc techniques or methods such as peephole optimization.

*This work was supported by the National Science Foundation under Grant MCS-7802545.

0038-0644/83/080745-19%01.90 Recetved 29 November 1982
© 1983 by John Wiley & Sons, Ltd. Revised 9 May 1983

746 DAVID R. HANSON

This paper describes three optimizations used in a one-pass compiler for the Y programming
language,® which is syntactically similar to Ratfor!®!7 and semantically similar to C.!8 The
optimizations are simple and effective. Optimizations are simple if they require no major
changes to data structures or algorithms of the compiler, result in no more than a 10% increase
in space or running time required by the compiler, and do not require additional passes. (This
last constraint rules out optimizations that require a backward scan over the generated code,
such as those that employ ‘next-use’ information.!%) Optimizations are effective if they result in
at least a 109 average reduction in object code size. While compactness was considered more
important than speed, the optimizations described here also reduced execution time.

The Y compiler is typical of simple, one-pass compilers. It parses its input using a recursive
descent parser, emitting assembly language along the way. The code generator is a separate
module with an interface consisting of 18 procedures, many of which are trivial (e.g. generate a
jump instruction). Expressions are compiled into directed acyclic graphs (DAGs), which are
traversed by the code generator to produce the appropriate code. Some aspects of expressions,
such as short-circuit evaluation of conditional expressions,?’ are handled prior to code
generation, which simplifies code generation for expressions. Producing a naive code
generator for Y requires writing the 18 interface procedures. This task is straightforward and a
naive code generator can be written in a few days. Code generators have been written for the
DEC-10, PDP-11, the Motorola 6502 and several abstract machines. ‘

Of course, naive code generators produce poor code. The three optimizations described in
the subsequent sections are simple, and they yield good code. Indeed, for many ‘average’
programs, the code is comparable to or better than that produced by optimizing compilers set
at mid-range optimization levels and by some recent automated approaches.7 Although these
optimizations were designed for use in one-pass compilers, they can be applied equally well in
multi-pass compilers. The three optimizations are, in order of increasing machine dependence,
expression rearrangement, cache-based resource allocation, and lazy instruction selection.

Expression rearrangement simplifies expressions, reorders computations according to
arithmetic laws, folds constant expressions, reduces the strength of certain operations, and
recognizes idioms. Lazy instruction selection defers the selection of specific instructions until
the last possible point in order to exploit instruction variants, such as ‘immediate’ mode on the
DEC-10. Both of these optimizations are straightforward and are similar to other techniques.

Cache-based resource allocation employs a cache to track the use of resources, such as
registers. While the other two optimizations produce local improvements, this one yields some
global improvements, including common subexpression elimination and register allocation. It
is similar to, but more general than, the techniques used in the CDC 6600 Pascal compiler for
tracking the register contents.?!

EXPRESSION REARRANGEMENT

Expr;ssions are compiled into DAGs in a bottem-up fashion. Using DAGs saves space and
permits common subexpressions to be recognized, and they are nearly as easy to construct as
trees. Nodes in the DAGs are built as the expression is parsed. Nodes correspond to operators
appearing explicitly in expressions and to other implicit operators, such as addressing
operators, introduced to facilitate semantic checking and code generation. For example, the Y
expression

c=1(a+b)-b/(a+bh)

is compiled into the tree

SIMPLE CODE OPTIMIZATIONS 747

(=(&c) (- (+ab) (/b (+ab))

The duplication of the common subexpression a + b is avoided in the DAG, whose nodes, listed
in prefix order, are

1. = 9 2
2. - 4 3
3. / 6 4
4, + 5 6
5. * 7
6. 8
7. & a
8. & b
9. & c

Operands of interior nodes are indicated by their node number, unary & and unary * denote the
‘address of® operator and indirection, respectively, and generic operators, such as binary +, are
used in place of their type-specific counterparts to simplify the examples.

Straightforward construction of the nodes produces DAGs from which naive code generators
produce poor or awkward code sequences. Improvements can be obtained by rearranging the
DAGs, which is similar to making source-to-source transformations.2? Expression
rearrangment differs from the latter technique in that it can introduce constructs that have no
source language counterpart. It evaluates constant expressions, recognizes arithmetic identities
and expression idioms, and factors additive components of addressing expressions, all of which
result in better code.

Expression rearrangement is implemented by recognizing certain patterns as each node is
built. Since DAGs are constructed from the bottom up, complete tree pattern matching is
unnecessary; only the current node and the roots of its offspring must be examined for most
patterns. Consequently, a very simple implementation suffices. In the Y compiler, for example,
the patterns are encoded in a series of conditional statements.

The simplest patterns involve the arithmetic identities and the reduction in strength of
certain operators:

+ x 0) - X
(- x 0) - X
* x 0) - 0
*x 1) - X
(* x 2 - (txx
* x 27 - (xxn
* x 0 - 0
(/ x 1) - X
(/ x 27 —~ (> xn)
(/ x x) - 1

where x represents any expression and << and >> denote left and right shift, respectively.
Constant expressions are also easily recognized:

(op o) ~ opc
(op ¢| ¢) =~ op ¢

where op indicates any unary or binary operator and ¢ and ¢; indicate constants.

748 DAVID R. HANSON

The arithmetic laws can be used to reduce the number of patterns by placing some
expressions in a ‘canonical form’ This reduction simplifies case analysis during code
generation. '

(+ ¢ x) — (+x0
(* ¢ x) - (*x0
(+ (+ x 9 ») ~ ¢+ (x)09
FExa9y - (*+(*xy -0

¢ xc)(+ye)
(+ (+ X Cl) (' y Cz))
- ¢+ x¢)¢ye)

The omitted cases are similar.

Other patterns rearrange addressing expressions to expose common factors. Examples
include:

(+ (+ x p) c/+cy)
¢+ (+ x) ¢,¢,)
(+ (" X y) C1+C2))

b

@xEyo - (+ (0 x) s*)
@xoa = ((& ¥) s*)
(++ (& x) 0) - (& x

(H (H (& X))) — (& %) ctey)
(++ (& x) (+ y o) - (+@dx(ys)o

where [] and ++ denote indexing and address adjustment, respectively, and s is the size of an
element of the array x. The operation ([] x y) is defined as

(++ (& x) (* 5)

and is included to avoid proliferation of ++ and & operators. These patterns often permit the
‘constant part’ of an addressing computation to performed by the addressing hardware.

The preponderance of simple, idiomatic assignments in most programs is well known 81023
Those that occur frequently can be recognized and tagged during DAG construction. The
following patterns are examples.

FEx@Fxl) — =xEx]D)
FExCxD) — (=x(x1)
(=x(pxc — (Sopx(opxl)

where x is an expression without side effects, =+ and =— denote increment and decrement
operations, respectively, and =op denotes assignment ‘augmented’ with operation op. Note
that the replacement DAGs have the same form as the originals; the only changes are the
augmented assignment operators. This approach permits augmented assignment to be handled
exactly like assignment in code generators that cannot make use of the special operators, The
appropriate portions of the subtree can be ignored when these operators are supported by
hardware.

These patterns permit a simple code generator to produce substantially better code. For
example, expressions such as

6+ 1*x -5
x 1 0400 | 1<10

where 0400 is an octal constant, | is bitwise inclusive OR, and 1«10 is 1 shifted left 10 places,

occur frequently when compile-time parameters are used in place of explicit constants. These
are compiled into, respectively,

SIMPLE CODE OPTIMIZATIONS 749

(+x1)
(I x 1280)

where X denotes (* (& x)). The addressing patterns and the definition of [] permit expressions
such as

x[j+4].link
x[10].tablefi].count

to be compiled into
(++ (@ x j) 614)
(++ (++ (& x) (" 12) 1797)

assuming widths of the elements of x and table are 200 and 12, respectively, that the offsets t
the link, table, and count fields are 14, 2, and 7, respectively, and array indexing begins at 1.
On the DEC-10, these references can be accomplished in two instructions. Likewise, the idiom
patterns cause expressions such as

f=fl 010
X[p+4].count = 6 + 1*x[p+4].count - §

to be compiled into

=l f (I f8))
(=+ (++ @ x p) 607) (++ (0 x p) 607) 1)

which, on the DEC-10, yields

= f| 010
movei 2,8 ; 010 to register 2
iorb 2 f ; 1 010 to register 2 and f
x[p+4].count = 6 + 1*x{p+4].count - 5
move 3,p ; p to register 3
aos x+607(3) ; increment X[p+4].count

The improvements described above can be done, often more throughly, by other kinds of
optimizations or during code generation, but usually at the cost of additional passes. The
advantages of expression rearrangement are that it is machine-independent, amenable to one-
pass compilation, simple to implement as a part of DAG construction, and it yields substantial
improvement. In addition, it enhances the effect of the other optimizations described below.

LAZY INSTRUCTION SELECTION

Instruction selection is complicated by the idiosyncrasies of the instruction sets of most
computers. Good selection can significantly improve the quality of the resulting code,!* but
typically requires tedious case analysis. Automating this case analysis and insuring its
correctness motivates recent table-driven approaches to code generation. While these
techniques do automate case analysis and produce good code, they currently require large
tables and a separate processor to construct the tables.?*

v does not have records or structures, but the code generator interface supports the operations necessary to
implement them.

750 DAVID R. HANSON

Lazy instruction selection? is a simpler, procedural approach to instruction selection and,

consequently, does not produce code of quality comparable to the table-driven methods. For
example, lazy selection deals only with selecting a single instruction instead of sequences of
instructions. It does, however, result in improvements of 10 to 209, is easy to implement, and
has almost no impact on compiler speed or size.

Lazy instruction selection effectively generalizes the instruction set and defers selection of
specific instructions until the last possible moment. Hence the label ‘lazy’, which is taken from
a similar concept in programming Ianguages.26 For example, for a computer with two-operand
instructions, it would be assumed that o/l instructions can accept two operands of any kind, and
the details would be handled as instructions are output. A similar generalization can be made
for computers that have a variety of ‘modes’, indicated by different address specifications (e.g.
the PDP-11) or different instructions (e.g. the DEC-10).

Contrast this ‘optimistic’ approach to the pessimistic approach, typically made in naive code
generators, in which operands must appear in registers. On the DEC-10, for example, these
two approaches would compile the statement

a=b'c+5

into the code

pessimistic optimistic

move 2,b move 2,b ; b to register 2

move 3,¢ ; C to register 3

imul 2,3 imul 2,c ; b*c to register 2
move 3,[5] ; B to register 3

add 2,3 addi 2,5 ; b*c + 5 to register 2
movem 2,a movem 2,a ; b'c + S5to a

where brackets indicate the address of a word containing what they enclose. The optimistic
sequence, which requires 4 words of memory instead of 7, references ¢ directly in the imul
instruction and uses the immediate mode form of the add instruction in which the address, 5, is
the operand.

Implementing lazy instruction selection is straightforward. Code generation for the leaves of
a DAG, e.g. references to variables and constants, result in data structures, often called
‘suspensions’, that represent the references. Code generation for interior nodes, which
represent operations, consists of calling the output routine with the appropriate generalized
instruction and the suspensions returned from generating code for the operands. When an
actual instruction must be emitted, the operand suspensions are examined and the appropriate
selection is made.

For example, assuming operands can be either registers, constants, or addresses, code
generation for the example given above begins by constructing suspensions for the references to
a, b, and ¢: {address, a}, {address, b}, and {address, ¢} where braces enclose the operand type
and operand of a suspension. Attempting to output a generic multiply instruction with
operands {address, b} and {address, ¢} causes b to be loaded:

move 2,b
then multiplied by c:

imul 2,c

SIMPLE CODE OPTIMIZATIONS 751

The resulting suspension is {register, 2}. Similarly, the reference to 5 produces the suspension
{constant, 5}, and the generic addition of {register, 2} and {constant, 5} emits

addi 2,5
and produces the suspension {register, 2}. Finally, the emission of the generic store with
operands {address, a} and {register, 2} emits

movem 2,a

Other aspects of code generation can be simplified by generalizing the instruction set further
and adding more information to suspensions. For example, adding data type information to
suspensions permits some implicit type conversions, which are usually included in the DAGs, to
be done during instruction selection. Assuming @ and b are integers and ¢ is real, code
generation for the example given above results in the following instruction sequence.

fitr 2,b : b to register 2 and convert to real
fmpr 2, ; b*c to register 2

fadri 2,(5.0) ; b*c + 5.0 to register 2

fixr 2,2 . convert b*c + 5.0 to integer
movem 2,a : b'c+ 50to a

The generic multiplication of {integer, address, b} and {real, address, ¢} causes the implicit
conversion of b as it is loaded. Likewise, the generic addition of {real, register, 2}and {inzeger,
constant, 5} causes compile-time conversion of 5to 5.0 and the use of the immediate mode of
fadr instruction since the rightmost 18 bits of 5.0 on the DEC-10 are zero.

Lazy instruction selection divides the case analysis required during code generation into two
parts. Analysis that depends the semantics of the language, such as data type considerations,
can be performed in the ‘main part’ of the code generator. Analysis that depends on the low
level details of instruction selection can be performed by the output routines. This separation
simplifies both components of the code generator.

CACHE-BASED RESOURCE ALLOCATION

Another reason that naive code generators produce poor code is because they do not ‘track’ the
contents of registers, temporaries, and other scarce resources, and they do not eliminate
common subexpressions. These omissions lead to redundant and awkward instruction
sequences. Peephole optimization can solve the first of these problems, but often introduces an
additional pass unless the instruction stream is buffered, which complicates the implementation
of the output routines. More recent approaches to object code optimization can also eliminate
some common subexpressions.?’

The remainder of this section describes a simple cache-based method for tracking resource
use and detecting some common subexpressions. The algorithm is explained by considering a
cache model more general than that actually implemented. In addition, some of the searching
implied by the model used in the presentation is avoided in the actual implementation, as
described below.

Expressions in Basic Blocks

Given the DAG framework described above, the basic idea is to maintain during compilation
a cache of associations (r, 1), where r describes a resource, typically a register, a temporary, or a
suspension, and is the root of a subtree in the set of DAGs for the program. r contains the
result of executing the code for subtree 1. Whenever code for computing 7 is to be emitted, the

752

DAVID R. HANSON

cache is examined. If an entry (r, t) exists, r is returned and no code is emitted. If there is no
entry for ¢, the code is emitted as usual and a cache entry indicating that the resource r contains

the result of executing ¢ is made.
For example, the Y sequence

xfa] = b
b=a+ 10
¢ = xa]

results in the following code from a naive code generator that produces low-level quadruples. 19

xfa] = b

1. T1 = &a

2. T2 = *T1

3. T3 = & [} T2
4, T4 = T3 ++ -1
5. T5 = &b

6. T6 = *T5

7. *T4 = T6
b=a+ 10

8. T7 = &b

9. T8=a&a
0. T9 =*T8

11. T10 = 10

12. T11 = T9 + T10
13. *T7 = T11

¢ = x{a]

14. T12 = &c

15. T13 = &a

16. T14 = *T13

17. T15 = &x [] T14
18. T16 = T15 ++ -1
19. T17 = *T16

20. *T12 = T17

address of a to Tt
value of a to T2
address of x[a+1] to T3
address of x[a] to T4
address of b to T5
value of b to T6

value of b to x[a]

address of b to T7
address of a to T8
value of a to T9
constant 10 to T10
a+ 10to TN
a+10to b

address of ¢ to T12
address of a to T13
value of a to T14
address of x[a+1] to T15
address of x[a] to T16
value of x[a] to T17
value of x[a] to ¢

Using the cache eliminates quadruples 8-10 and 15-19 and produces the following code. Note
the elimination of the common subexpression x[a].

xfa] = b

1. T1 = &a

2. T2 = *T1

3. T3 = &x [] T2
4, T4 = T3 ++ -1
5. T5 = &b

6. T6 = *T5

7. *T4 = T6
b=a+10

11. T10 = 10

12. T11=T2+ T10

13, *T5=T11

address of a to T1
value of a to T2
address of x[a+1] to T3
address of x[a] to T4
address of b to T5
value of b to T6

value of b to x[a]

constant 10 to T10
a+ 10 to T11
a+10to b

SIMPLE CODE OPTIMIZATIONS 753

¢ = x{a]
14. T12 = &c address of ¢ to T12
20. *T12 = T6 value of x[a] to €

Translating these quadruples into the final code is straightforward. Indeed, the DEC-10
compiler emits assembly language directly bypassing the quadruple representation. It produces
the following unoptimized and optimized code for this example. (Both sequences include the
effects of expression rearrangement and lazy instruction selection).

unoptimized optimized
x[a] = b
move 2,a move 2,a ; a to register 2
move 3,b move 3,b ; b to register 3
movem 3,x-1(2) movem 3,x-1(2) ; b to x{a]
b=a+ 10
move 2,a ; a to register 2
addi 2,10 addi 2,10 ; a+ 10 to register 2
movem 2,b movem 2,b ;a+10to b
¢ = x[a]
move 2,a ; a to register 2
move 3,x-1(2) ; x[a] to register 3
movem 3,c movem 3,C ; X[a] to ¢©

Addressing operations are a particularly important source of common subexpressions. For
example, array indexing is usually decomposed into individual addressing operations, which
explains the adjustment of T3 shown above. On many computers, some addressing operations
(e.g. indexing, indirection) can be performed by the addressing hardware. Using the cache
eliminates recurrent addressing operations as illustrated by the'y sequence

xfa] = b
X[a+3] = x{a-4]
yields the following unoptimized and optimized sequences.

unoptimized optimized

xfa] =b
T1 = &a T1 = &a
T2 = *T1 T2 = *T1
T3 = & [] T2 T3 = &[] T2 address of x[a+1] to T3
T4 = T3 ++ -1 T4 = T3 ++ -1 address of x{a] to T4
T5 = &b T5 = &b
T6 = *T5 T6 = *T5
*T4 = T6 *T4 =T6

x[a+3] = x[a-4]
T7 = &a
T8 = *T7
T9 = & [] T8 address of x[a+1] to T9
T10 = T9 ++ 2 T10 = T3 ++ 2 address of x[a+3] to T10
T11 = &a
T12 = *T11
T13 = &x [] T12 address of x{a+1] to T13

754 DAVID R. HANSON

T14 = T13 ++ -5 T14 = T3 ++ -5 address of x[a-4] to T14

T15 = *T14 T15 = *T14
*T10 = T15 *T10 = T15
The corresponding DEC-10 code is

unoptimized optimized

xfa] = b
move 2a move 2,a
move 3,b move 3,b
movem 3,x-1(2) movem 3,x-1(2) ; b to x[a]

x[a+3] = x[a-4]
move 2a
addi 2,3 ; a+ 3 to register 2
move 3,a
subi 3,4 ; @ - 4 to register 3
move 4,x-1(3) move 4,x-5(2) ; X[a-4] to register 4
movem 4,x-1(2) movem 4,x+2(2) ; X[a-4] to x[at+3]

As shown by the DEC-10 code for this example, some details of addressing expressions, such as
negative offsets, are machine-dependent. Such variations in addressing manifest themselves as
variations or additions in the operators that appear in the DAGs, but do not affect the caching
mechanism.

These examples show that the cache represented by the values of r during execution is a
‘write-through’ cache; values associated with permanent memory locations (e.g. variables) are
also stored in memory. This property permits ‘old’ entries to be discarded when the cache
becomes full. An aging algorithm, such as least recently used, determines which entry is
removed. Note that better algorithms, such as farthest distance to the ‘next use’, cannot be used
in a single pass environment.

Cache entries are also removed when they are invalidated by side effects and, as described
below, flow of control. While language semantics dictate the details of this action, any
operation that invalidates an association (r, ¢) results in the removal of that entry. In v, the
cache must be examined after each assignment and procedure call.

Assignment to a scalar variable invalidates all cache entries that depend on that variable, and
assignment to an array element invalidates all entries that depend on any element of the array.
Specifically, upon assignment to v all entries (r, 1) in which ¢ depends on v must be discarded.
Since ¢ is the root of an arbitrary subtree in the set of DAGs, each ¢ is traversed recursively to
determine its dependence on v. This potentially expensive operation could be avoided by
propagating dependency information to the roots of the subtrees when the DAGs are
constructed. In practice, however, the vast majority of subtrees are quite shallow and the
traversal cost is within reasonable bounds.

Procedure calls present three situations in which cache entries might be removed. First,
entries that depend on global variables must be discarded. Second, since the callee can change
the values of reference parameters, entries that depend on those variables must be discarded.
Finally, entries for reference parameters to the caller, which might refer to global variables,
must be discarded. The only reference parameters in Y are arrays. Thus, following the callto g
in

(4]

SIMPLE CODE OPTIMIZATIONS 75

int x[10], y
f(a)
int af], bl20], ¢, d[5], e

g(x b, ¢)

end

entries that depend on X, y, &, and b must be discarded. Entries for ¢ remain valid because it is
a scalar local to f and is passed by value. Entries for d and e remain valid because they are local
to fand cannot be affected by g.

Although v lacks pointers, they are handled much like array references and have the well
known effect on the outcome of optimization.28 Adding pointers (and records) to Y would
require substantial modifications to syntax analysis and symbol table modules of the compiler,
but few changes to the code generator.

Assignment via a pointer p or passing p to a procedure invalidates entries that contain
variables to which p might refer. Entries that depend on pointers passed to the caller must also
be discarded. Likewise, assignment to a non-pointer variable invalidates entries for those
pointers that could potentially point to it. Note that the number of entries invalidated by these
operations is potentially much less in a language, such as Pascal, that has only type-specific
pointers as opposed to a language, such as C, that permits type-free pointers.

Control Flow Constructs
Flow of control also invalidates cache entries. An unnecessarily conservative approach
would be to clear the entire cache at every-label. Consider, however, the Y sequence

b = x[a]
if (b > max)
max = b
else
max = a
c=xal+b

which produces code of the form

code for b = x[a]
if (b <= max) goto L1
code for max = b
goto L2

L1 code for max = a

L2 code for ¢ = x[a] + b

Clearing the cache at L1 removes the entry for @, which is still valid at this point. Similarly,
clearing the cache at L2 removes the valid entries for &, b, and x[a].

Although solving this problem in general requires data flow analysis, a good approximation
can be achieved by generalizing the cache mechanism. Instead of a single cache, a stack of
caches is maintained. To search the entire cache for subtree 7, each cache on the stack is
examined, beginning at the top of the stack. Removing entries involves a similar traversal. The
stack is pushed and popped in accordance with the semantics of the various control flow
constructs. In addition, a searchdepth parameter, which limits the number of caches examined
during a search, is required to handle loops. For example, if searchdepth is 1, only the cache at

756 DAVID R. HANSON

the top of the cache is examined. Initially, searchdepth is infinite, indicating that the entire
stack is to examined.

To explicate this mechanism, the stack is manipulated by the following push and pop
operations. push(n) pushes the current value of searchdepth and a new, empty cache onto the
stack and sets searchdepth to n. pop() discards the cache at the top of the stack, removing all of
its entries, and restores the value of searchdepth saved by the corresponding push.

Code is generated for each control flow construct by generating code for the components of
the construct interleaved with the appropriate push and pop calls. For example, the code
generation template for ‘

if (e) S, else S,
is

emit(if (~e) goto L1)

push(stackdepth+1)

emit(code for §))

pop()

emit(goto L2)

emitlabel(L1)

push(stackdepth+1)

emit(code for §,)

pop()

emitlabel(L2)
The effect of the stack is to ‘restore’ the state of computation at L2 that before the if statement,
except for those entries removed during code generation for each of the ‘arms’. In addition,
entries made before the if statement are available in both arms despite the intervening label (L1)
due to the search strategy. New entries made in either of the arms, however, are discarded
when they are no longer valid. Applying this template to the Y sequence given above yields the
following quadruples.

unoptimized optimized
b = x[a]
T1 = &b T1 = &b
T2 = &a T2 = &a
T3 ="T2 T3 = *T2
T4 = 8&x [] T3 T4 = &x []1 T3
TS = T4 ++ -1 T5 = T4 ++ -1
T6 = *T5 T6 = *T5
*T1 =76 *T1 = T6
if (b > max)
T7 = &b
T8 = *T7
T9 = &max T9 = &max
T10 = *T9 T10 = *T9
if (T8 <= T10) goto L1 if (T6 <= T10) goto L1
max = b
T11 = &max
T12 = &b

Il

T13 = *T12

SIMPLE CODE OPTIMIZATIONS 757

*T11 = T13 *T9 = T6
goto L2 goto L2
L1: L1;
max = a
T14 = &max
T15 = &a
T16 = *T15
*T14 = T16 *T9 = T3
L2; L2:
c=xfal+b
T17 = &c T17 = &c
T18 = &a
T19 = *T18

T20 = &x [] T19
T21 = T20 ++ -1

T22 = *T21

T23 = &b

T24 = *T23

T25 = T22 + T24 T25 = T6 + T6
*T17 = T256 *T17 = T25

Code generation templates for other branching control constructs, such as the switch or
case statement, are similar. The resulting code is good, but not as good as can be achieved
using more advanced data flow techniques. For example, in

a = ..
if (...)
code that modifies a
else
code that uses a

the modification of a in the then arm results in the removal of the cache entry for the value of a,
causing it to be unnecessarily reloaded in the else arm. More sophisticated—and costly—
techniques can detect this case and avoid the redundant load.

Code generation templates for loops is complicated because there is more than one path to
the beginning of the loop. To handle these constructs, the search must be restricted to the cache
at the top of the stack. For example, the code generation template for

while (¢) §

push(1)

emitlabel(L1)

emit(if {~e) goto L2)
emit(code for S)
emit(goto L1)
emitlabel(L.2)

pop()

The C-style for statement

758 DAVID R. HANSON

for (e, i ¢, ;€;) S
is equivalent to

€
while (e,) {
S

€3
}
Code generation for for statements is complicated by next statements, which transfer control

to the ‘next iteration’ point—just before e,—of the loop. Thus, cache entries made during the
compilation of § may be invalid in e;. The template for the for statement is

emit(code for ¢))

push(l)

emitlabel(L1)

emii(if (~e,) goto L3)

emit(code for S)

if (number of next statements > 0) {
pop()
push(l)

}
emitlabel(L.2)
emit(code for €y)
emir(goto L1)
emitlabel(L3)

pop()

Alternative code templates for loops also cause problems similar those caused by next
statements. For example, while loops are sometimes compiled into

goto L2
L1 code for S
L2 if (¢) goto L1

which avoids n-1 jump instructions when the loop is executed n times.>2 The corresponding
code generation template is

push(l)

emit(goto L2)
emitlabel(L1)
emit(code for §)
pop()

push(1)
emitlabel(1.2)

emit(if () goto L1)
pop()

Since there are two execution paths to L2, the cache must be cleared at that point.

Consequently, in loops where e and S share common subexpressions, this template may yield
poorer code than the previous while template.

SIMPLE CODE OPTIMIZATIONS 759

Implementation

Clearly, the searching and maintenance of multiple caches is too inefficient to be used in
practice, especially if the goal is to minimize cost. There are two simplifications to the scheme
that bring its cost within acceptable bounds without sacrificing its advantages.

A single cache can be used in place of the stack by augmenting each entry. The cache
consists of entries (r, £, [) where [is a ‘level’ number that corresponds to the stack height of the
entry. Searching is restricted to those entries for which / is greater than level - searchdepth,
where level is the current stack height and is incremented and decremented by push and pop,
respectively.

Searching can be avoided altogether by permitting only one cache association for any
subtree ¢. In this case, r and / can be included as fields in the nodes of the DAGs. Code
generation for subtree 7 reduces to using r if it is present and / satisfies the condition given
above, or generating the appropriate code and annotating ¢ with the resulting r and L.

Another, less obvious, aspect of the cache technique is that subtrees can arise from other
than syntactic sources. For example, on the DEC-10 integer division also computes the
remainder. When the DEC-10 code generator generates an integer division, it creates a subtree
and cache entry for the corresponding remainder. If the remainder later appears, its
computation may be avoided. The typical decimal output procedure is an example:

1. putd(n)

2. integer n

3. if (n/10)

4, putd(n/10)

5. putc('0’ + n%10)
6. end

(putc outputs the character given by its ASCII code argument). The division at line 3 causes a
subtree and cache entry for n%10 to be created. When this expression is encountered in line 5,
the previously computed value is used. The resulting DEC-10 code for the body of putd is

move 2,n ; h to register 2
idivi 2,10 ; n/10 to register 2, n%10 to register 3
jumpe 2,L1 ; jump to L1 if n/10is 0
push 15,2 ; call putd{n/10)
pushj 15,putd
adjsp 15,1
L1; addi 3,48 ; N%10 + "0’ to register 3
push 15,3 ; call putd{(n%10 + '0")
pushj 15putc
adjsp 15,-1

The combined effect of this simplified implementation of the cache system and the other two
optimizations yields good code for a large percentage of programs. The following procedure,
which is from an eight queens program,3 demonstrates many of the benefits.

queens(c)
intr, c
for(r=1r<=8r=r+1)
if (rows[r] & up[r-c+8] & down[r+c-1]} {
rows[r] = up[r-ct8] = down[r+c-1] = 0
X[cl=r

760

end

Omitting the procedure entry and exit sequences, the optimized'_DEC-lO code is

if (¢ == 8)

print()
else

DAVID R. HANSON

queens{c + 1)
rows[r] = up[r-c+8] = down[r+c-1] = 1

1. movei 2,1 ;r=1

2. movem 2,r

3. L1t move 3, ;r <=8

4, caile 3,8

5. jrst L2

6. move 4,rows-1(3) ; test rows[r]

7. jumpe 4,L3

8. sub 3,c ; test up[r-c+8]

9. move 5,upt7(3)

10. jumpe 5,L3

11. move 6,1 ; test down[r+c-1]
12. add 6,c

18. move 7,down-2(6)

14, jumpe 7,L3

15. move 8,r

16. setzb 9,down-2(6) ; down[r+c-1] = 0
17. movem 9,up+7(3) ; up[r-c+8] = 0
18. movem S,rows-1(8) ; rows[r] =0

19. move 4. ; x[el=r

20. movem 8,x-1(4)

21. caie 4.8 ; test € ==

22. jrst L4

23. pushj 15,print

24, jrst L5

25. L4 addi 4,1 ; call queens{c + 1)
26. push 15,4

27. pushj 15,queens

28. adjsp 15,-1

29. L5 movei 4,1

30. movem 4,down-2(6) ; down[r+c-1] = 1
31. movem 4,up+7(3) ; up[r-c+8] = 1
32. movem 4,rows-1(8) ; rows[r] = 1
33. L3: aos r cr=r+
34. jrst L1
35. L2 :

The effects of lazy instruction selection appear in the use of immediate mode instructions in
lines 1, 4, 21, 25, and 29 and in the use of the setzb instruction in line 16 to clear both
down[r+c-1] and register 9. The addressing offsets in lines 9, 13, 16-18, 20, and 30-32 and the
increment instruction (aos) in line 33 illustrate the effects of expression rearrangement. The

SIMPLE CODE OPTIMIZATIONS 761

use of the cache to track resources is shown in lines 6 and 8 where register 3 contains I, in lines
21 and 25 where C is in register 4, and in lines 16-18 and 29-32 where the righthand side of the
multiple assignments is reused. Significant improvement appears in the addressing of the
arrays rows, down, and up. Repetition of the computation of the subscripts for up and down
done in lines 8-12 is avoided in the assignment code in lines 16-18, and these subscript
computations are still available for the subsequent assignment in lines 30-32. For this example,
use of the cache alone accounted for a 24% improvement.

This example also illustrates the effect of the ‘one-pass’ nature of the cache-based approach.
The value of ris loaded into register 3 in line 3 and used in lines 4, 6, and 8. Line 8, however,
changes register 3 to r-C, thereby ‘losing’ r. Lines 11 and 12 show a similar effect in computing
r+c. Since ris used again, it must be reloaded (lines 11 and 15). More sophisticated algorithms
might move r to other registers to compute r-C and r+c to avoid the additional loads, if that
proved cost effective (saving 1 instruction in this example). Loop optimization algorithms
would go one step further and dedicate a register to r for the entire loop, which would also
permit the instructions in lines 33 and 34 to be replaced by one instruction.

CONCLUSIONS

Despite the approximate nature of the optimizations described in the previous sections, they
are very effective in practice. This experience substantiates claims that simple improvements
tend to pay the greatest dividends.®!5!4 The success of using a cache to track subtree
computations is another indication of the general effectiveness and importance of caching.

The implementation of the optimizations is relatively straightforward and has little impact
on the performance and size of the compiler. Expression rearrangement and lazy instruction
selection were the easiest to implement. The cache mechanism was not much more difficult,
but the unpredictable lifetimes of resources, such as registers, required additional code to keep
track of them properly. In addition, relating the cache operations (push and pop) to source
language constructs requires care; an error can cause unpredictable results.

All three optimizations must be implemented to achieve their maximum effect. Expression
rearrangement enhances the effectiveness of cache-based resource allocation by exposing
common subexpressions, especially those that deal with addressing. Lazy instruction selection
adds a final touch, polishing the rough edges off the instruction sequence.

The obvious disadvantages of these optimizations are the lack of completeness,
retargetability, and guaranteed correctness of the automated approaches to code generation.
When available, tools using the automated approaches are to be preferred, assuming their cost
is bearable. The quality of the code produced by such tools is comparable to, or better than,
that produced by the three optimizations. Their cost, in terms of compiler size and additional
passes, remain considerably higher, however. If such tools are unavailable or inapplicable,
these three optimizations are a cost-effective alternative, especially for one-pass compilers.

This disadvantage can be overcome by automating the optimizations described in this paper
and other similar improvements. For example, expression rearrangement and lazy instruction
selection are similar to the pattern matching and replacement schemes used in some peephole
optimizers“ and may be amenable to similar automation. Likewise, it may be possible to
include the specification of the use of the cache in the grammar or semantic specification32 for
the language and have the appropriate actions generated automatically. Current research
efforts are directed towards such automation, emphasizing the application of the improvements
to one-pass compilers without sacrificing their simplicity and effectiveness.

762 DAVID R. HANSON

ACKNOWLEDGEMENTS

Conversations and competition with Chris Fraser and Jack Davidson contributed to this work
and to its explanation,

REFERENCES

1. S. S. Muchnick and N. D. Jones, eds., Program Flow Analysis: Theory and Applications, Prentice
Hall, Englewood Cliffs, NJ, 1981.

2. J. P. Banning, ‘An Efficient Way to Find the Side Effects of Procedure Calls and the Aliases of
Variables’, Conference Record of the Sixth Annual ACM Symposium on Principles of Programming
Languages, San Antonio, TX, 29-41(1979).

3. E. W. Myers, Jr., ‘A Precise Interprocedural Data Flow Algorithm’, Conference Record of the
Eighth Annual ACM Symposium on Principles of Programming Languages, Williamsburg, VA,
219-230 (1981).

4. J. L. Hennessy and T. R. Gross, ‘Code Generation and Reorganization in the Presence of Pipeline
Constraints’, Conference Record of the Ninth Annual ACM Symposium on Principles of
Programming Languages, Albuquerque, NM, 120-127 (1982).

5. M. Ganapathi and C. N. Fischer, ‘Description-Driven Code Generation using Attribute Grammars’,
Conference Record of the Ninth Annual ACM Symposium on Principles of Programming
Languages, Albuquerque, NM, 108-119 (1982).

6. R. S. Glanville and S. L. Graham, ‘A New Method for Compiler Code Generation’, Conference
Record of the Fifth Annual ACM Symposium on Principles of Programming Languages, Tucson,
AZ,231-240(1978).

7. J. W. Davidson and C. W. Fraser, ‘The Design and Application of a Retargetable Peephole
Optimizer’, ACM Trans. Prog. Lang. and Systems, 2, 191-202 (1980).

8. D. E. Knuth, ‘An Empirical Study of FORTRAN Programs’, Software— Practice & Experience, 1,
105-133 (1971).

9. J. L. Bentley, Writing Efficient Programs, Prentice Hall, Englewood Cliffs, NJ, 1982.

10. R. P. Cook and 1. Lee, ‘A Contextual Analysis of Pascal Programs’, Software— Practice &
Experience, 12, 195-203 (1982).

11. S. C. Johnson, ‘A Portable Compiler: Theory and Practice’, Conference Record of the Fifth Annual
ACM Symposium on Principles of Programming Languages, Tucson, AZ, 97-104 (1978).

12. R. L. Sites, ‘Programming Tools: Statement Counts and Procedure Timings’, SIGPLAN Notices, 13,
98-101 (1978).

13. J. Cocke and P. Markstein, ‘Measurement of Program Improvement Algorithms’, Tech. Rep. RC-
8111, 1BM Research, Yorktown Heights, NY, 1980.

14. W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs and C. M. Geschke, The Design of an
Optimizing Compiler, American Elsevier, New York, NY, 1975.

15. D. R. Hanson, ‘The Y Programming Language’, SIGPLAN Notices, 16, 59-68 (1981).

16. B. W. Kernighan, ‘RATFOR-—A Preprocessor for a Rational Fortran’, Software— Practice &
Experience, 8, 395-406 (1975).

17. B. W. Kernighan and P. J. Plauger, Sofrware Tools, Addison Wesley, Reading, MA, 1976.

18. B. W. Kernighan and D. M. Ritchie, The G Programming Language, Prentice Hall, Englewood
Cliffs, NJ, 1978.

19. A.V.Aho and J. D. Ullman, Principles of Compiler Design, Addison Wesley, Reading, MA, 1977.

20. G. Logothetis and P. Mishra, ‘Compiling Short-Circuit Boolean Expressions in One Pass’,
Software— Practice & Experience, 11, 1197-1214 (1981),

21. U. Ammann, ‘On Code Generation in a Pascal Compiler’, Software— Practice & Experience, 7,391-
423 (1977).

22. J. J. Arsac, ‘Syntactic Source to Source Transforms and Program Manipulation’, Comm. ACM, 22,
43-54 (1979).

23

24,

25.
26.

27.

28.

29.

30.
31.

32.

SIMPLE CODE OPTIMIZATIONS 763

. A. S. Tanenbaum, ‘Implications of Structured Programming for Machine Architecture’, Comm.
ACM, 21, 237-246 (1978).

S. L. Graham, R. R. Henry and R. A. Schulman, ‘An Experiment in Table Driven Code Generation’,
Proceedings SIG PLAN ‘82 Symposium on Compiler Construction, Boston, MA, 32-42 (1982).

D. R. Hanson, ‘Code Improvement via Lazy Evaluation’, Inf. Proc. Letters, 11, 163-167 (1980).

P. Henderson and J. H. Morris, ‘A Lazy Evaluator’, Conference Record of the Third Annual ACM
Symposium on Principles of Programming Languages, Atlanta, GA, 95-103 (1976).

C. W. Fraser and J. W. Davidson, ‘Eliminating Redundant Object Code’, Conference Record of the
Ninth Annual ACM Symposium on Principles of Programming Languages, Albuquerque, NM,
128-132 (1982).

W. E. Weihl, ‘Interprocedural Data Flow Analysis in the Presence of Pointers, Procedure Variables,
and Label Variables’, Conference Record of the Seventh Annual ACM Symposium on Principles of
Programming Languages, Las Vegas, NV, 83-94 (1980).

F. Baskett, ‘The Best Simple Code Generation Technique for While, For, and Do Loops’, SIGPLAN
Notices, 13, 31-32 (1978).

N. Wirth, Algorithms + Data Structures = Programs, Prentice Hall, Englewood Cliffs, NJ, 1976.

D. A. Lamb, ‘Construction of a Peephole Optimizer’, Software— Practice & Experience, 11, 639-6438
(1981).

R. Sethi, ‘Control Flow Aspects of Semantics Directed Compiling’, Proceedings SIGPLAN 82
Symposium on Compiler Construction, Boston, MA, 245-260 (1982).

