—

oA

v

Computer Languager. Vol 3. pp. 181 (82 0096-0551 TR.0%01-012130200 0
€ Pergamon Press. Lid 197%. Printed 1n Great Britain

DATA STRUCTURES IN SLS§*

Davip R. Hanson
Department of Computer Science, The University of Arizona. Tucson. AZ 85721, US.A.

(Received 28 October 1977 in revised form 7 February 1978 received for publication 6 March 1978)

Abstract—The procedural approach to data structures used in the SL5 programming language
is described. The SL5 procedure mechanism forms the basis for this approach to data structures
by treating procedures and their activation records (environments) as data objects and by decom-
posing the traditionally atomic operation of procedure invocation into more elementary com-
ponents. The basic idea is that environments, since they are data objects. can also be used
as data structures. The result is a single unified linguistic mechanism for constructing both
procedures and data structures. Several examples are given.

Programming languages Data structures SNOBOL4 SLS Coroutines

INTRODUCTION

Two ofF the major components of any programming language are the procedure mechan-
ism and the datatype mechanism. Most high-level languages provide a set of built-in
procedures and a facility for including programmer-defined procedures. Most languages
also provide a set of built-in datatypes. but facilities for defining additional datatypes
are found in only the more recent languages.

Following early work in datatype definition mechanisms [1-4], Pascal [5] was the
first widely available language that provided and emphasized facilities for defining ad-
ditional datatypes. Although Simula [6] appeared earlier. the importance of its class
facility for datatype definition was not immediately recognized. SNOBOL4 [7] also pre-
ceeded Pascal. but the emphasis on string pattern matching and the “typeless™ nature
of the language obscured the presence of its datatype definition facilities.

More recent research has been concerned with facilities that permit the definition
of datatypes and data structures. Some of this work is performed by designing new
languages. CLU [8] and Alphard [9] are examples of this approach. Other work (cf.
[10.11]) has concentrated on language-independent mechanisms. The basic approach
is to view an datatype as a set of values and a collection of procedures that operate
on these values.

Another way to view a data structure 1s as a form of procedure. This view leads

_to the notion of “functional”. or “procedural”, data structures. The distinction between

procedures and data structures is blurred in this approach, resulting in a single concept
upon which to base language facilities. An attractive property of this approach is that
the resulting facilities are usually quite simple yet very flexible. Procedural data struc-
tures are frequently mentioned in the description of applicative programming languages
[12]. in some Al languages [13]. and in languages based on the lambda calculus [14].

This paper describes the procedural approach to data structures used in SLS [15]. The
SLS procedure mechanism [16] encourages this approach by treating procedures and
their activation records as data objects and by decomposing the traditionally atomic
operation of procedure invocation into more elementary operations. As a result, pro-
cedures may be used as recursive functions or as coroutines. The basic idea is that
SL5 procedure activations can also be used as data structures.

Most other approaches to procedural data structures are based on recursive functions.
Recursive functions are often unsuitable for use as data structures because pure recursive
functions do not have “memory”, which is frequently required to implement complex

* This work was supported in part by the National Science Foundation under Grant DCR75-01307.

181



182 Davib R. HansoN

data structures. In the absence of an alternative. global variables are usually used for
this purpose. The use of SL5 procedures as coroutines leads to the use of coroutines
as data structures. This is the distinguishing characteristic of the SL5 approach. Because
coroutines “remember” their state from one activation to the next. it is unnecessary
to resort to global variables or other static mechanisms to obtain the effect of “memory™.

The remainder of this paper describes SLS3, its procedure mechanism. and the use
of coroutines as data structures. The description of SL5 given in this paper reflects
the current state of an implementation for the DECsystem-10.

THE SL 5 PROGRAMMING LANGUAGE

SLS is a language for investigating control mechanisms and advanced string and
structure processing. SL5 derives many of its characteristics from SNOBOLA4. but there
are several important differences. For example. SL5 is an expression-oriented language
and includes most of the “modern”™ control structures. SL5 has no type declarations.
A varjety of datatypes are provided along with the appropriate runtime coercions. A
brief overview of SLS follows: additional details are given in [15-17].

Expressions return results. which are composed of two parts: a value and a signal.
The value is used in the traditional fashion. The signal, which is a small non-negative
integer. is used to control the flow of execution. For the most part, two signal values
are used: | meaning “success”. and 0 meaning “failure”. Signals are used to drive control
structures much like Boolean values. Some examples of control structures are (brackets
enclose optional phrases)

if e, then e, [else ¢;]

while ¢, do e,

for v [from ¢,] [to ¢;] [by e3] (while e,] do e5
case ¢ of I,: e,:...: I, :e,: [default: ¢,,,] end

These expressions behave in the conventional manner except that execution is controlled
by signals rather than by values. There are several control expressions that are not
typical:

¢y Or ¢;
e; and e,
repeat ¢

The result of the or expression is e, if e, succeeds. otherwise the result is e,. The
and expression is complementary: its result is e, if e, fails. otherwise it is e,. The
repeat expression repeatedly evaluates e until e fails.

SL5 includes the usual scalar types, such as integers and real numbers. In addition.
strings are scalar types. That is, a string can be manipulated as a single entity: it
is not an array of characters. There are built-in functions for accessing the individual
characters of a string. and a comprehensive string scanning facility [18].

Lists permit an aggregate of values of any type to be manipulated as a single entity.
A list is specified by enclosing its elements within square brackets. e.g.

x: = ["string”. a + b, 25]
The elements of a list are accessed using the infix operator ! For example. x!2 refers
to the second element in the list assigned to x. The indices of a list are 1 to the
number of elements in the list. If the index is outside this range, the reference fails.

An alternative method of building a list is list (n, x). which returns a list of n elements
each initialized to x.

PROCEDURES
SLS procedures are data objects that are created at runtime by expressions of the
form

procedure (formal arguments)

“r



Data structures in SL5 183

declarations
body
end

The expression return e returns e as the result of the procedure. Explicit signalling
is provided by succeed e and fail e. If e is omitted. the null string is assumed.

Procedure invocation may be decomposed, at the source-language level, into three
components: environment creation. argument binding, and procedure resumption.

The create expression takes a procedure as its argument and creates an environment
for the execution of the procedure. An environment is an activation record for the
procedure, and is a data object capable of being manipulated in the source language.
For example. the expression

y: = create p

assigns to y an environment for the procedure p.
The with expression binds the actual arguments to the formal arguments in an environ-
ment. For example. the expression

y with (q,..... a,)

binds the values of a,-a, to the formal arguments of p. Unless otherwise specified.
argument transmission is "by value”. Other modes of argument transmission are pro-
vided [16]. Null strings are supplied for omitted arguments, and excess arguments are
ignored.

The actual execution of a procedure is activated by the expression resume e. which
causes the execution of the current procedure to be suspended. and the execution of
the procedure for which e is an environment to resume. When the environment is
subsequently reactivated. resume returns its result. The functional notation fle,..... e,)
may be used and is equivalent to

resume (create f with (e,..... €))

An environment for a procedure contains the storage for all of the identifiers appearing
in the procedure. An identifier name appearing in a procedure simply denotes a location
in an environment where its value is stored. Hence the identifiers are more appropriately
thought of as “belonging to” the environment rather than to the procedure.

An environment also contains the information necessary for the execution of its associ-
ated procedure. There are two components of an environment, in addition to the storage
for the identifiers that appear in the procedure. that are implicitly accessed during the
execution of create, with, resume. and return. An environment whose execution caused

.the creation of an environment is called the creator for that environment. An environ-
ment’'s resumer is the environment that caused its most recent resumption via resume.

These definitions provide the terminology necessary to describe the important differ-
ence between resume and return: return does not establish a new resumer for the environ-
ment to which control is being returned. Only resume, which explicitly indicates the
environment to be resumed. establishes the resumer: return always returns control to
the resumer of the environment in which it is executed.

The life span of an environment is completely determined by its accessibility at the
source-language level. This is a consequence of defining an environment as a data object.
There is is no correspondence between the activation of a procedure and the life span
of its environment: an environment is not destroyed upon the execution of return. This
is in marked contrast to most other languages having procedure mechanisms based
on recursive functions where an activation record cannot outlive the expression that
caused its creation.

Most of the procedure activation expressions described above accept a procedure
as an argument wherever an environment is required and vice versa. If a procedure
is used where an environment is expected. an environment for the given procedure



184 Davip R. HANSON

is created. If. on the other hand. an environment is given in place of a procedure.
that environment is used directly or the procedure associated with the environment
1s used.

Declarations are used to determine the scope of identifiers, not their type. Identifiers
may be declared either public or private. Private idenfifiers are accessible only to the
procedure in which they are declared and are used for data that is local to a particular
environment. Unless otherwise declared. the formal arguments of a procedure are private
identifiers. Public identificrs are accessible to the procedure in which they are declared
and to any procedure whose environment is within the dynamic scope of the environ-
ment for the procedure containing the public declaration.

Identifiers that do not appear in any of the declarations for the procedure in which
they are used are termed nonlocal identifiers. Nonlocal identifiers are bound by reference
to the appropriate public identifiers upon the creation of an environment for the pro-
cedure in which they appear. This is accomplished by examining successive creators
until one is found whose procedure contains a public declaration for the nonlocal identi-
fier. When procedures are used in the usual recursive fashion. this is equivalent to
the kind of dynamic scope used in SNOBOL4 and LISP.

DATA STRUCTURES

The SL3 approach to data structures is motivated by. and is a consequence of. its
procedure mechanism. The basic idea is that environments. as source-language data
objects, can be used to fabricate data structures. Thus data structures and procedures
are defined using a single mechanism. since in many situations. a portion of data struc-
ture is procedural in nature. and vice versa. As described below. data structures are
environments and may be used as such when the need arises. The converse is also
true: environments are data objects and may be manipulated as such.

To some degree, the use of environments as data structures is accomplished by observ-
ing a few programming conventions. The conventions described below have been used
to implement of a wide variety of frequently used data structures. It is possible. however.
to use whatever conventions best suit the specific application. This flexibility is a conse-
quence of treating environments as data objects.

Using environments as records

The identifiers in an environment can be viewed as attributes of that environment.
Another way to access them is by the environment reference operator. which is indicated
by an infix dot. The expression e.x refers to the identifier x in the environment e.
This operator provides a means of accessing the values of identifiers in an environment
independent of scoping conventions. and permits accessing the identifiers in an inactive
environment. This operator also permits environments to be used as records. When
used in this manner. the identifiers constitute the fields of the record. For example.

employee: = procedure (name. age. salary) end

assigns 1o employee a procedure whose environments are used as records. An environ-
ment for emplovee is an instance of the record:

newhire: = create employee
The ficlds of the record could be filled in using the expressions

newhire .name: = "Smith™:
newhire .age: = 32:
newhire . salary: = 12000.00;

or. since the attributes are also the arguments. the record can be created and initialized
by the single expression

newhire: = create emplovee with ("Smith”. 32. 12000.00)

-y



R4

Data structures in SL3 185

The attributes are not restricted to the arguments. For example. employee could be
defined as

employee: = procedure (name. age. salary)
private daysworked:
end

Record creation may also require some initialization in addition to setting the argu-
ments to the given values. For example. assume that a new employee is credited with
5 working days. and that the record must also contain the number of years until the
employee is 65 and the percentage for the monthly tax deduction. If the record is
defined as

employee: = procedure (name, age. salary)
private daysworked. yearstogo, taxrate:
end

a new employce can be entered as follows:

newhire: = create emplovee with ("Smith”. 32, 12000.00):
newhire .daysworked: = 5:

newhire . yearstogo: = 65 — newhire . age:

newhire. taxrate: = findrate (newhire . salary):

The point is that the creation of a record, or any data structure. often requires some
computation in addition to its creation. This “procedural activity” is easily accommo-
dated since a record is an environment. The record employee can now be redefined
as

employee: = procedure (name. age. salary)
private daysworked. yearstogo. taxrate:
davsworked: = 5:
yearstogo: = 65 — age:
taxrate: = findrate (salary):
return

end

To create an instance of the record, the environment is created and is resumed once
in order to initialize itself:

newhire: = create employee with (“Smith”. 32, 12000.00):
resume newhire:

‘Notice that the result returned by the initial resumption is ignored: it 1s the environment

itself that is of interest. ‘
It would be simpler if a record could be created by executing an expression such
as

newhire: = employee ("Smith”. 32. 12000.00)

If this is done. however. newhire is not assigned the desired environment. but rather
the null string that is returned. This problem is remedied by having the procedure
return its own environment instead of the null string. This is accomplished by using
the built-in function self (). which returns the environment in which it is evaluated.
Thus. emplovee may be rewritten as

employee: = procedure (name. age. salary)
private daysworked. yearstogo. taxrate:
davsworked: = 5:
yearstogo: = 65 — age:
taxrate: = findrate (salary):



186 Davinp R. HansoN

return self()
end
Thus. the general form for a procedure whose environments are intended to be used
as records is
procedure (...)
... initialization part ...
return self()
end

Using environments as data structures

Records provide a convenient way to represent data objects with a fixed number
of fields whose names are known. They are not suitable. however. for use when the
“field names” are computed or some sort of subscript is used to access the elements,
as in arrays and matrices.

Although lists, described above. provide a simple and efficient mechanism for handling
an aggregate of values, they are not meant to be used as the primary realization of
a data structure. Rather they are intended to be used in conjunction with the techniques
described in this section. Lists themselves do not provide much more than simple FOR-
TRAN-like arrays of one dimension and. as such. suffer the same limitations when
used in other than that manner.

These types of data structures are also represented by environments. The general
form of the procedure from which to create an instance of a data structure is similar
to that given above. with an additional portion called the accessor:

x: = procedure (a;..... a,)
. initialization part . ..
return self():
. daccessor ...
end

After its creation and initialization. an environment for x representing the data struc-
ture is resumed with appropriate arguments in order to access an element of the struc-
ture. For example. if y is assigned an environment representing a two-dimensional array.
the expression ¥(5.2) causes the accessor to reference an element of the array stored
within the environment. The decomposition of procedure invocation. described above,
makes this scheme possible. Notice that the use of y does not require a knowledge
of how a two-dimensional array is implemented or even that y is an environment.

This schema is an example of a “segmented™ procedure. Notice that the arguments
in a segmented procedure of this type are used for two purposes. When the data structure
is created, the arguments are used to pass information that is required for initialization.
When the environment is subsequently resumed to access an element. the arguments
are used to obtain the values of the subscripts. The initialization part is executed only
once whereas the accessor may be executed many times.

As a simple example. consider the implementation of vectors with arbitrary bounds.

vector: = procedure (a, b) private lb. ub. v:
vi=list(b—a+ 1)
b: = a:
ub: = b:
return self():
repeat
return ¢! (a — b + 1)
end

An instance of a vector is returned by an expression such as

x: = vector (—2.10)

-~



Data structures in SLS 187

which specifies a vector with a lower bound of —2 and an upper bound of 10. Since
the formal arguments are changed when a vector is accessed. the lower and upper
bounds must be copied to other variables. The accessor consists of the repeat expression.
In an expression such as x(k). x is resumed with the argument k. If k is within the
bounds of the vector. the expression a — Ib + 1 evaluates to a valid index for v. and
the appropriate element is returned. If k is outside the bounds of the vector. the list
indexing operation fails causing the accessor to fail. Note that the action to be taken
if the subscript is out of range can be defined in SLS.

Neither the return expression nor the ! operator dereference their argument. This
permits expressions that access elements of a vector to be used in contexts requiring
a variable, for example. in an assignment expression.

Other versions of vector are possible. For example. to avoid the dual -use of the
arguments. or the use of two arguments for initialization and one for accessing. the
following version can be used.

vector: = procedure (public /b. public ub)
return (create procedure (i) private v:
v: = list (ub — b + 1);
repeat
return t! (i — Ib + 1)
end)
end

In this implementation. the accessor is isolated in a separate unnamed procedure and
an environment for that procedure is returned as the value of vector. The use of public
identifiers in vector insures that the nonlocal identifiers by the same nanie in the accessor
will refer to the correct environment for vector. In addition. the list that houses the
vector elements i1s not allocated until the first time the vector is accessed.

These implementations are only two of the many possible ways to achieve the desired
result. Other implementations may also be used, e.g. for sparse vectors the elements
could be stored in a linked list. Conversely, very large vectors can be accommodated
by using secondary storage for portions of the vector. The use of vectors is independent
of their implementation and is accomplished by resuming the environment returned
by vector.

There is no distinction between environments that are used primarily as records and
those that are used primarily as data structures. On the contrary. many complex data
structures require the use of both forms of access. In the implementations of rector
given above, the attributes /b and ub specify the bounds of the vector. If x has been
assigned a vector. the expressions x.lb and x.ub can be used to refer to the lower and
apper bounds of x. respectively.

EXAMPLES

Stacks

A common example of a datatype and its associated operations is a stack. This kind
of methodology can be achieved in SLS by defining the operations during initialization.
A stack p is an environment with the following operations: p.push(x) pushes x onto
p and returns x: p.pop() returns the top element of p and pops p. or fails if p is empty:
and p.rop() returns the top element of p, or fails if p is empty.

The storage for the stack is represented using a singly linked list of records called
nodes that have two fields. value and link.

stack: = procedure
private push, pop. top:
public stk:
push: = create procedure (x)



188 Davib R. HansoN

repeat
stk: = node (x. stk):
return X

end:
pop: = create procedure private r:
repeat
if ident (stk) then
fail
else |
t: = stk.value:
stk: = stk.link:

return [

end:
top: = create procedure
repeat
if ident (stk) then
fail
else return stk.value
end:
return self ():
end

(ident (x. y) succeeds if x is identical to y and fails otherwise. Null strings are supplied
for omitted arguments.)

The public identifier stk is the head of the list of nodes representing the stack. The
attributes push. pop. and top are assigned environments for procedures in which stk
is a nonlocal identifier so that the nonlocal identifier stk appearing in each procedure
refers to the public identifier stk in srack.

The attributes are written using the repeat expression so their environments may
be resumed using functional notation. For example. if p is assigned a stack by the
expression p: = stack(). then p.push (“cat”) pushes “cat™ onto the top of p. The expression
p.top(): = ~dog” changes it to “dog”. and writeline (outfile. p.pop(})) writes “dog” to the
standard output file.

Tahles

The table. which is an associative store facility. is one of the more useful built-in
datatypes in SNOBOL4. The elements in a table ¢ are referenced by expressions such
as 1("angle™). which returns the value of the entry associated with the string “angle™.
Unlike array or vector subscripts. the elements of a table are conceptually unordered.

In the implementation given below. tables behave like SNOBOL4 tables. If a reference
is made to a nonexistent element, one is created and given the default value specified
when the table is created. This action can be defined in SLS, whereas in SNOBOL4
it is fixed by the implementation. The elements in the table are stored as a singly
linked list of records. A new element is inserted at the head of the list. The elements
of the linked list are records defined by

entry: = procedure (index. value. next)
return self():

end
Tables are defined as follows.

table: = procedure (x) private init. tlist. t:
init: = x:
tlist: =7



Data structures in SLS 189

return self ():
repeat |
1= tlist:
while differ(t) and differ(r.index. x) do
[: = rnext:
if ident(1) then !
t: = entry (x. init, tlist): # add a new element
thist: =1
iR
return t.value

end

(differ is the complement of ident.)

Of course. this implementation of tables is not very efficient if the number of entries
becomes large. But the implementation may be changed without affecting the behavior
of tables. And since the implementor of tables does not have to divuige the details
of the implementation, different techniques may be used without affecting the use of
tables in various programs. For example. the accessor might be written to collect sta-
tistics on the use of tables. Such data could then be used to suggest better implemen-
tation schemes.

A more interesting feature is that the representation of a data structure does not
have to remain constant throughout program execution. Only the behavior must remain
invariant. The accessor can be written to modify the representation depending on the
use of that particular instance of the data structure. For example. a table can be imple-
mented to start out with the elements stored in a singly linked list as above. If subsequent
accessing of the table indicates that the table is getting large. the representation can
be reorganized to provide faster access. The following implementation of tables operates
in this fashion: When the table becomes too large. the representation is changed from
a list to a hash table.

table: = procedure (x)
private init. tlist. n. buckets. 1. h, hashno:
nit: = x:
tlist: = =7
n:=0;
buckets: = "
hashno: = procedure (x)
return length{datatype(x))
end:
return self ():
while n < 25 do { # access as singly linked list

t: = tlist:
while differ(1) and differ(t.index. x) do
1! = Lnext;

if ident(t) then !
t: = entry(x. init. tlist):
thist: = r1:
n:=n+1

return r.value

Y.
¥ oo

buckets: = vector (1.37): # re-organize into a hash table
while differ (tlist) do |

h: = remdr (hashno (tlist.index). 37) + 1:

t: = tlist.next



190 Davip R. Hansox

tlist.next: = buckersth):
bucketsth): = tlist:

tlist: =1

repeat | # access as a hash table
h: = remdr(hashno(x). 37) + 1:
1. = buckets(h);
while differ(t) and differ(t.index. x) do
t: = tnext:
if ident(t) then !
t: = entry{(x. init. buckets(h)):
buckets(h): = t:
n:=n+1
)
return r.value

1
l

end

The hash table is organized using linked lists to resolve collisions. When a particular
table contains 25 or more entries, the next resumption causes that table to be reorganized
from the singly linked list into the hash table format.

Sequencing through the elements of a data structure

Tables are convenient because of their associative nature. There is no means. however.
to sequence through all the elements without knowing all the subscripts. Such an
operation is needed. for example, to print the elements. This problem is resolved in
SNOBOL4 by providing a built-in function that converts a table to a two-dimensional
array. A table is converted to an array because an array has a well-defined method
of sequencing through every element. The same solution can be used for the tables
defined above by writing a procedure that “knows™ about the internal structure of
tables and produces an array containing all of the elements.

This problem arises whenever it is necessary to sequence through all the elements
of a data structure in which the elements are conceptually unordered [11]. Sequencing
through the elements in a set is another example. The usual solution to this problem
is to map the data structure into an array. as in SNOBOLA4. or to reveal to the user
enough implementation details of the data structure to permit sequencing through all
the elements by explicitly manipulating the underlying representation. Because SL5 pro-
cedures can be used as coroutines, it is possible to include a procedure to perform
this sequencing operation as a part of the data structure. For example. the following
expression, when included in the initialization for tables. assigns to seq an environment
that returns the value of the next element in the table each time the environment is
resumed. failing after all of the elements have been returned. In addition. the identifiers
tlist and buckets in table must be declared public. (This version of seq does not handle
the case where elements are being added to the table while sequencing through all
of the elements.)

seq: = create procedure private p. i:
if ident (buckets) then {
p: = tlist: # table is a linked list
while differ(p) do !
return p.value:
p. = p.next

t
§

i

else # table is a hash table



Data structures in SLS 191

for i from buckets. Ib to buckers.ub do |
p: = buckers(i):
while differ(p) do !
return p.ralue:
p: = p.next

1
'

V.
I

fail
end

The point is that the sequencing operation can be provided as an attribute of the
data structure. To illustrate the use of seq. assume that count is a table of integers.
The sum of all of the elements is computed by

sum: = 0;

next: = create count.seq:

while x: = resume next do
sum: = sum + x:

This technique suggests that all data structures should contain a seq attribute. pro-
vided that such an operation is meaningful. If this requirement is adopted. syntactic
structures can be provided to make use of the seq attribute. For instance. the above
sequence might be written as

sum: = 0
foreach x in count do
sum: = sum + X:

This scheme is similar to that used for the Alphard iteration constructs [9]. which allow
the definition of a function to control sequencing. SAIL [19] provides a similar construct
for its associative storage facility. But the SAIL construct is defined for only a built-in
data structure whereas SL5 permits the definition of both the data structure and its
sequencing operation.

CONCLUSIONS

This paper has described a general procedure mechanism and illustrated its use for
implementing procedural data structures. The procedure mechanism was designed to
extend the domain of applicability of procedural mechanisms beyond that of recursive
functions. The major differences between the SLS mechanism and other procedure mech-
anisms are that procedures and their environments are data objects and procedure
invocation is decomposed into separate operations. These differences are what permit
environments 1o be used as data structures.

The string scanning facilities of SL5[18] illustrate another use of environments as
data structures. Environments for certain procedures are used in a manner similar to
patterns in SNOBOL4. and may be applied to strings for analysis and synthesis pur-
poses. One of the important differences between the facilities in SL5 and SNOBOL4
is that, in SLS. a scanning procedure and its arguments are embodied in a single environ-
ment. which is manipulated at the source-language level. This is a prime example of
an application in which SL5 permits the realization of a data structure having procedural
components.

The uses of procedures and data structures often overlap. The procedural approach
provides the flexibility necessary to make effective use of this overlap while retaining
the ability to enforce a separation of the two types of use if necessary. The net result
is that data structures can be defined with attributes and access mechanisms that best
suit the particular application instead of having to rely on a limited number of built-in
facilities. This flexibility encourages the implementation to be derived from the abstract
characteristics of the data structure instead of the abstract characteristics being derived



192 Davip R. HansoN

from knowledge of the implementation of specific built-in facilities. Moreover. the lan-
guage designer is not required to anticipate which of many possible data structures
might be useful. This approach is analogous to that taken in extensible patiern matching
in SNOBOL4 [20] and string scanning in SL5. both of which include a mechanism
for defining scanning procedures so that the vocabulary of built-in pattern primitives
can be substantially reduced.

Although the procedural approach to data structures has been described within the
framework of SLS. the approach is not limited to that language. The essential character-
istics are the treatment of environments as data objects and the decomposition of pro-
cedure invocation into more elementary operations. Provided that these characteristics
are maintained. this scheme can be integrated into languages with strong typing and
static scope rules. thereby gaining the protection mechanisms and execution efficiencies
attainable in such languages. Current work is focusing on ways of accomplishing this
integration without sacrificing the flexibility that makes the SL5 approach so attractive.

Acknowledgements—1 would like to thank Dianne E. Britton. Frederick C. Druseikis. John T. Korb. and
Ralph E. Griswold. for the many discussions that greatly contributed to this work. The perceptive comments
of the referees were also very helpful

REFERENCES

1. B. Galler and A. ). Perlis. A proposal for definitions in ALGOL. Comm. 4CM 10. 204-219 (1967).
2. C. A. R. Hoare, Record handling. in Programming Languages (edited by F. Genuys) pp. 291-347. Academic
Press, New York (1968).
3. C. A. R. Hoare. Notes on data structuring. in Structured Programming. Academic Press. New York.
pp- 83-174 (1972).
4. N. Wirth and H. Weber. EULER—a generalization of ALGOL and its formal definition. Comm. ACM
9. 13-23: 89-99 (1966).
5. N. Wirth, The programming language Pascal. Acta Informatica 1. 35-63 (1971).
6. G. M. Birtwistle. SIMULA Begin. Student Litteratur. PetrocellifCharter. New York (1973)
7. R. E. Griswold. J. F. Poage and 1. P. Polonsky. The SNOBOL4 Programming Language. Prentice-Hall.
Englewood Cliffs. N.J. (1971).
. B. H. Liskov. Abstraction mechanisms in CLU. Comm. ACM 20. 564-576 (1977).
. M. Shaw. W. A. Wulf and R. L. London. Abstraction and verification in Alphard: Defining and specifying
iteration and generators, Comm. ACM 20. 553-564 (1977).
10. J. G. Mitchell and B. Wegbreit, Schemes: a high level data structuring concept, in Current Trends in
Programming Methodology (edited by R. T. Yeh). Prentice-Hall, Englewood Cliffs. NJ. (10 appear).
11. D. Gries and N. Gehani. Some ideas on data types in high level languages. Comm. ACM 20. 414420
(1977
12. 1. C. Reynolds. Gendanken—a simple typeless language based of the principle of completeness and the
reference concept. Comm. ACM 13, 308-319 (1970).
13. C. E. Hewitt and B. Smith. Toward a programming apprentice. [EEE Trans. Sofiware Engng 1. 26~45
(1975)
14. W. H. Burge. Recursive Programming Techniques. Addison-Wesley. Reading. MA (1975}
15. R. E. Griswold and D. R. Hanson. An overview of SLS. SIGPLAN Notices 12. 40-50 (1977
16. D. R. Hanson and R. E. Griswold. The SL5 procedure mechanism. Comm. ACM 21, 392-400 (1978).
17. D. R. Hanson. Procedure-based linguistic mechanisms in programming languages. Ph.D. dissertation,
University of Arizona, Tucson (1976). i
18. R. E. Griswold. String analysis and synthesis in SLS. Proc. ACM Ann. Conf. pp. 410414 (1976).
19. K. A. VanLehn. SAIL User Manual. Technical Report STAN-CS-73-373. Stanford University. Stanford
(1973).
20. R. E. Griswold. Extensible pattern matching in SNOBOL4. Proc. ACM Ann. Conf. pp. 248-252 (1975).

N-X- )

About the Author—Davip R. Hansox was born in Oakland. California in 1948. He received
the B.S. degree in physics in 1970 from Oregon State University. He reccived the M.S. degree
in Optical Sciences in 1972 and the Ph.D. degree in Computer Science in 1976, both from
the University of Arizona.

From 1970 to 1973. he was a Member of the Research Staff at Western Electric Engineering
Research Center in Princeton. New Jersey where he did applied research initially in laser physics
and then in computer science. From 1976 to 1977. he was an Assistant Professor of Computer
Science at Yale University. New Haven. Connecticut. He is presently an Assistant Professor
of Computer Science at the University of Arizona. He is also a consultant for ITT Telecommuni-
cations Technology Center in Stamford, Connecticut.

His areas of interest include the design and implementation of programming languages, pro-
gramming methodology. operating systems, and software engineering. Dr. Hanson is a member
of IEEE. the Association for Computing Machinery. and the American Physical Society.

e



