SIGPLAN Notices 40 April 1977
An Overview of SL5H¥
Ralph E. Griswold and David R. Hanson?t

Department of Computer Science, The University of Arizona,
Tucson, Arizona 85721

1. Introduction

SL5 is a programming language designed primarily as a tool for
programming-language research, mainly in the areas of string and
list processing. SL5 derives many of its characteristics from
SNOBOLY [1] and recent programming-language research L[2-71.
Although SL5 has clear roots in SNOBOL4, its primary role is in
research; it is not intended as a replacement for SNOBOLY or as
a step in the evolution of the SNOBOL languages. In fact, many
of the features of SL5 are esoteric, and the generality of the
implementation necessary to support research applications makes
SL5 inappropriate for general-purpose use.

Structurally, SL5 is very different from SNOBOL4 -- SL5 is an
expression-oriented language with many of the conventional con-
trol mechanisms (although some have novel interpretations).
Among the notable characteristics of SL5 is its procedure mecha-
nism, which permits the decomposition of procedure invocation
into more elementary components. This mechanism provides a
natural method for coroutine programming. Runtime flexibility
is an important aspect of SL5 and is motivated by the research
orientation of its intended applications. SL5 has no type
declarations and supports a variety of data types with runtime
coercion and checking for appropriateness of type in context.
Scoping of identifiers is dynamic and establishes bindings at
runtime that permit flexible use of coroutine methodologies.

SL5 1s designed to support programming language research at
two levels. At the higher level, the SL5 language provides a
tool for exploring a variety of programming techniques that are
awkward or impractical in other languages. At the lower, imple-
mentation level, SL5 is organized into modules that are bound at
load time. There are a number of features that constitute the
SL5 language nucleus. Other modules can be developed indepen-
dently and appended to the nucleus to provide language variants
and extensions. Thus, individual researchers can work on inde-
pendent (and possibly incompatible) features without interfering

¥This work was supported by the National Science Foundation
under Grant DCR75-01307.

+Present address: Department of Computer Science, Yale
University, New Haven, Connecticut 06250.



SIGPLAN Notices 41 April 1977

with each other. This linguistic modularity has been used to
develop modules for string analysis and synthesis (8,91, data~
structure processing [10], programmer-defined process associa-
tions [111, and facilities for accessing the abstract machine
that underlies the implementation of SL5 [12].

The remainder of this document describes the main features of
SL5. It is assumed that the reader has some familiarity with
SNOBOL4. A more complete description of SL5 is given in Refer-
ences 13-16.

2. Syntax

Unlike SNOBOL4, the syntax of SL5 is expression-oriented,
similar to that of BLISS or Algol 68. An SL5 program is a single
expression; a sequence of expressions can be grouped together
using the begin ... end or { ... } constructs. SL5 possesses
most of the "modern" control structures described below, each of
which 1s an expression and returns a result. Reserved words are
used to specify control expressions.

SL5 supports unary and binary operators. There are two types
of unary operators: prefix and suffix. For example, the expres-
sion J+ causes the value of the variable j to be incremented by
1 with the result returned as the value of the expression. All
operators in SL5 return a value although in many cases, such as
with the binary comparison operators, that value is the null
string.

Built-in operators include the usual numeric binary and prefix
operators, binary comparators, and strlng operators such as con-
catenation (||) and comparison (==, “==), Assignment (:=) is a
binary operator, which returns its right argument as its result.
There are a variety of built-in procedures. An example is
section(s,n,k), which returns the section of s that is k charac-
ters long and begins at character n. section is similar to the
PL/I function SUBSTR, but differs in that the offset is zero-
based. Examples of other built-in procedures are given in
Section 5.

3. Control Expressions and Signaling

An expression returns a signal (typically "success” or "fail-
ure") as well as a value. The combination of a value and a sig-
nal is called the result of the expression. Control structures
are driven by signals rather than by boolean values. For an
example, consider the control expression

if el then e2 else e$d

The expression el is evaluated first. If the resulting signal
is success, e2 is evaluated. Otherwlse, ed 1is evaluated.



SIGPLAN Notices 42 April 1977

For example, the expression

if x > y then x =z - y else y 1= y -z
first evaluates the expression x > y. If that expression suc-
ceeds, ¢ := & ~ y is evaluated; ctherwise y = y - z 1s evalu-
ated.

The if-then-else construction is itself an expression and its
result (value and signal) is the result of e2 or e¢3 (whichever
is evaluated).

Note that although the signaling mechanism is similar to that
of SNOBOL4, a value is returned even if the signal 1s failure.
Signals are not limited to success and failure; see References
13 and 15 for details.

Other typical control expressions are:

while el do e2

until el do e2

repeat e

for v from el to e2 by e3 while e4 do e$b
el or e2

el and e2

The while expression repeatedly evaluates e¢2 as long as el suc-
ceeds, and returns the last result of e¢2 when el fails. The
until expression behaves in a similar manner except e2 is repeat-
edly evaluated as long as el falls. The repeat expression evalu-
ates e repeatedly until e fails. The result of the repeat ex-
pression is the last (failing) result of e. The for expression
behaves in the conventional manner. The phrases from el, to e2,
by e3, while e4 are optional. The result of the for expression
is the last result returned by e6. The or expression evaluates
el and returns its result if it succeeds. Otherwise e¢2 is evalu-
ated and its result is returned. The and expression evaluates

el and returns its result if it falls. Otherwise e2 is evaluated
and 1ts result is returned.

There are other, complementary control expressions provided
for convenience. See Reference 13 for a complete list.

4, Procedures

One of the novel features of SL5 is that procedures and their
environments (Mactivation records") are source-language data
objects. Thus a procedure is "constructed" by assigning it to a
variable, e.g., the expression



SIGPLAN Notices 43 April 1977

ged := procedure (z, y)
while x ~= y do
if z >y then x =z - y else y := y - x;
succeed
end

assigns to ged a procedure that computes the greatest common
divisor of 1ts arguments.

SL5 procedures can be used as recursive functions or as corou-
tines. The invocation of a procedure in the standard recursive
fashion is accomplished by using the usual functional notation --
f(el,e2,...,en). This expression results in the invocation of
the procedure that is the current value of the variable f, not
a procedure named f. The actual arguments are given by the
expressions el through en.

Procedure activation may be decomposed into several distinct
source-language operations that allow SL5 procedures to be used
as coroutines. These operations are the creation of an environ-
ment for the execution of the given procedure, the binding of
the actual arguments to that environment, and the resumption of
the execution of the procedure.

The first component, environment creation, is accomplished by
the create operator:

e := create f

The create operator takes a single argument of datatype procedure
and creates an environment for its execution. This environment
is a source-language data object, and in the above expression is
assigned to e.

The with operator is used to bind the actual arguments to an
environment. The expression

e with (el, e2, ...,en).

binds the actual arguments, el through en, to the environment
that is the value of e.

The execution of a procedure is effected by "resuming" it
using the resume operator. The expression ;

resume €

causes the execution of the current procedure to be suspended
and the execution of the procedure for which the value of e is
an environment to begin or continue.



SIGPLAN Notices 44 April 1977

A procedure usually "returns" a result to the "calling", or
the "resuming", procedure. This is accomplished by the expres-
sions

succeed e
fail e

which return e as the value of the procedure and signal either
success or faillure as indicated. If e is omitted, the null
string is assumed.

If the procedure is activated by a resume expression, the
result given in the succeed or falil expression is transmitted
and becomes the result of the resume expression. The execution
of succeed or fall causes the suspension of that particular
instance of the procedure. If the environment representing that
execution is again resumed, execution proceeds from where it left
off. It is possible to resume a procedure with a result (value
and signal), which becomes the result of the succeed or fail
operator.

4.1 Argument Transmitters

A transmitter is associated with each formal argument for a
procedure. Transmitters are specified in the procedure heading,
e.g.

ged := procedure (x:val, y:val)

specifies that the transmitter associated with the arguments =z
and y is the value of the identifier val, which corresponds to
transmission by value. If the transmitter is omitted, transmis-
sion by value is assumed.

A transmitter may be a bulilt-in procedure, a programmer-
defined procedure, or an environment. The built-in transmitters
are val, which transmits arguments by value, ref, which transmits
arguments by reference, and exp, which transmits arguments by
expression (similar to transmission by name in Algol 60).

When argument binding occurs, either by explicit use of with
or by procedure Iinvocation using functional notation, each actual
argument expression is passed to the transmitter associated with
the corresponding formal argument. The value returned by the
transmitter 1s used as the value of the formal argument. If any
of the transmitters signal failure, the binding operation fails.

Prggrammer—defined transmitters can be used for datatype
checking, tracing, or common preprocessing of arguments. For



SIGPLAN Notices 45 April 1977

example, the expression

positiveint := procedure (n)
if (n := integer(n)) > 0
then succeed »n
else fail
end

assigns to positiveint a procedure that succeeds and returns =

if n is a positive integer, and fails otherwise. The procedure
integer(n) is a built-in procedure that converts n to an integer
and returns it as its result, or fails if = 1s not convertible

to an integer. The procedure positiveint can be used as a trans-
mitter for x and y in ged, for example, by including 1t in the
procedure heading:

ged := procedure (x:positiveint, y:positiveint)
This mechanism can also be used to replace similar operations
at the beginning of several procedures that put the arguments in
a canonical form by a single transmitter.

4,2 Declarations

Unlike SNOBOLY, SL5 has declarations for identifiers. These
declarations, however, are used to determine only the interpreta-
tion and scope of identifiers that appear 1in a procedure; not
their type. The declarations are motivated by the decomposition
of procedure activation described above, and are designed to
provide the inter-procedure communication that 1s suitable and
convenient for coroutine programming.

Identifiers may be declared either public or private. These
declarations have the form

public 2d1, ©d2, ..., idn
private #d1, id2, ..., idn

The value of a private identifier is available only to the
procedure in which 1t is declared; it cannot be examined or modi-
fied by any other procedure. Private identifiers are used for
data that is local to a particular instance of a procedure. For
example, when a procedure is used in a coroutine fashion, private
identifiers can be used to "remember" information necessary to
reverse effects during backtracking.

Public identifiers are used as the principal means of dynamlc
inter-procedure communication. The value of a public identifier
is accessible to the procedure in which it is declared and to
any other procedure whose environment is a descendant of the
environment for the procedure containing the public declaration.
This is equivalent to the dynamic scope of identifiers in SNOBOLMA
when procedures are invoked in the usual recursive fashion.



SIGPLAN Notices 46 April 1977

If an identifier does not appear in any of the declarations
for a procedure, it is said to be free. The interpretation of a
free identifier i1s dynamic and occurs when an environment for
the procedure containing the free identifier is created (i.e.,
by the create operation). The interpretation is obtained by
searching for an environment for a procedure that contains a
public declaration for the identifier., This search is guided by
creation history. Each environment contains information that
indicates its creator, which is the environment that caused its
creation via the create operator. The search for the interpreta-
tion of a free identifier is performed by examinling each creator
until one is found whose procedure contains a public declaration
for the identifier. That environment is called the custodian of
the identifier. After the custodian is located, the free ildenti-
fier, in the environment that i1s being created, henceforth refers
to the public identifilier located in the custodian.

If the search fails to find an interpretation, an "implicit"
public interpretation is provided for the identifilier. The envi-
ronment whose creation resulted in the unsuccessful search be-
comes a custodian of the identifier just as if the identifier
had been declared public.

5. Programming Examples

The following procedure illustrates a simple example of corou-
tine usage.

nexte := procedure=(g) private #un, ¢}
repeat '
for »n from 0 while ¢ := gsection(s,n,1) do
succeed e;
fail;
==
end

An environment for nexte returns the next character from its
argument s each time it is resumed. If the environment is re-
sumed after the last character of s has been returned, failure

is signalled to indicate the end of the string. Subsequent
resumption, however, begins the process anew, returning each
character in the argument until the string is once again exhausted.

For example, the expression
neh := create nextc with "SNOBOLA4"

assigns to neh an environment for nexte with the argument
"SNOBOL4"™,., The value of the expression

resume nch

is the next character in "SNOBOLL". The eighth resumption of nch
signals failure, the ninth resumption returns "3S", and so on.



SIGPLAN Notices 47 April 1977

The following procedure, find, returns the next line in the
file f that contains the string given in str. It fails at end
of file.

find := procedure (str:string, f:file) private line, match;
while Zine := readline(f) do {
mateh := 0;
for < from 0 to length(line) - length(str)
while mateh = 0 do
if substring(str,line,i) then
match+;
1f mateh > 0 then
succeed line;

>
fail
end

This procedure illustrates the use of the built-in procedures
string and file as argument transmitters that perform datatype
coercion. Both procedures attempt to convert thelr argument to
the indicated type and return it as their. result. They fail if
the conversion i1s not possible.

The procedure readline(f) returns the next line from file f,
failing at end of file. The procedure. length(s) returns the
number of characters in its argument, and substring(str,line,i)
succeeds 1if str is a substring of Iline beginning at character
position 7 and fails otherwise.

For example, the sequence

getnext := create find with ("programmer", "manual");
repeat writeline(outfile, resume getnext);

prints all lines in the file "manual" that contain the word "pro-
grammer" on the file given by the value of outfile. The built-in
procedure writeline(f,s) writes string s to theifile f.

The next example computes all the permutations of*the integers
1 to 7 using Knuth's Method 1 [17]. The procedure assigned to
the varlable permutations returns the next permutation of the
integers from 1 to % each time it 1is resumed. This is done by
creating an environment for itself to compute the permutations
for the integers 1 to n-1, and inserting » in all possible posi-
tions to form 7» permutations of the integers 1 to n.

public wid, permutatiouns;

permutations := procedure (n) private s, p, 7;
if n = 1 then
" succeed Zpad("1", wid)
else
p := create permutations with (n - 1);



SIGPL.AN Notices 48 April 1977

while s := resume p do
for < from 0 to wid¥(n-1) by wid do
succeed section(s,0,7) || ilpad(n,wid) ||
) section(s,i,length(s)-1);
3

fail
end;

wid = length(n) + 1;
p := create permutations with n;
repeat writeline(outfile, resume p);

The public identifier wid 1is used to format the integers in a
permutation into columns whose width is determined by the length
of n. 1Ipad(s,n) is a bullt-in procedure that returns a string
consisting of s padded on the left with blanks to form an’
n-character string. For n = 3, the output of this program is

0 N W
PNW WD
WP PDWH

6. Conclusions

SL5 is written in Si1/2 [18], a language designed for the
implementation of transportable interpreters. SL5 is currently
running on the DECsystem-10.

Preliminary results in the use of SL5 have been quite encour-
aging; it is presently being used 1n several projects related to
high-level data structure processing, string analysis and synthe-
sis, and goal-oriented programming [19]. As a result of knowl-
edge gained in these applications, SL5 has undergone continual
revision. The language design and its implementation are ex-
pected to reach a state of relative stabllity in the near future.

Acknowledgements

SL5 is the result of the work of several persons and synthe-
sizes results obtained from related research. In addition to the
work sited in the following references, significant contributions
have been made by Dianne E. Britton and Frederick C. Druseikis.

References
1. Griswold, Ralph E., James F. Poage, and Ivan P. Polonsky.

The SNOBOLY4 Programming Language, 2nd ed. Prentice-Hall, Engle-
wood Cliffs, N.J. 1971.




SIGPLAN Notices 49 April 1977

2. Hanson, David R. '"Varilable Associations in SNOBOLL4",
?oftg?re -- Practice and Experience, Vol. 6, No. 2, 245-254
19706).

3. Griswold, Ralph E. "A Portable Diagnostic Facility for
SNOBOL4", Software -- Practice and Experience, Vol. 5, No. 1,
93-104 (1975).

4, Druseikis, Frederick C. and John N. Doyle. "A Procedural
Approach to Pattern Matching in SNOBOLA4", Proceedings of the
ACM Annual Conference, November, 1974, pp. 311-317.

5. Griswold, Ralph E. "Extensible Pattern Matching in SNOBOLA4",
Proceedings of the ACM Annual Conference, October, 1975, pp.
248-252,

6. Doyle, John N. A Generalized Facility for the Analysis and
Synthesis of Strings and a Procedure-Based Model of an
Implementation. SNOBOLL Project Document SHDL8, The University
of Arizona, Tucson, Arizona. February 11, 1975.

T. Hallyburton, John C. Jr. Advanced Data Structure
Manipulation Facilities for the SNOBOLI Programming Language.
SNOBOLL Project Document SA4DL2, The Unilversity of Arizona,
Tucson, Arizona. May 24, 1974.

8. Griswold, Ralph E. String Scanning in SL5..-8SL5 Project
Document S5LD5, The University of Arizona, Tucson, Arizona.
December 3, 1975.

9. Griswold, Ralph E. "String Analysis and Synthesis in SL5",
Proceedings of the ACM Annual Conference, October, 1976, to
appear.

10. Hanson, David R. A Data Structure Facility for SL5. SL5
Project Document S5LD6, The University of Arizona, Tucson,
Arizona. April 20, 1976.

11. Hanson, David R. Associated Processes in SL5. SL5 Project
Document S5LD7, The University of Arizona, Tueson, Arizona.

June 3, 1976.

12. Griswold Ralph E. The Window to Hell in SL5. SPS Project
Document SSLDéa, The University of Arizona, Tucson, Arizona.
June 1, 1976.

13. Hanson, David R. The Syntax and Semantics of SL5>. SL5
Project Document S5LD2a, The University of Arizona, Tucson,
Arizona. April 28, 1976.

14. G@riswold, Ralph E. A Catalog of Built-In SL5 Operators and
Functions. SL5 Project Document S5LD3a, The University of
Arizona, Tucson, Arizona. May 11, 1976.




SIGPLAN Notices 50 April 1977

15. Hanson, David R. and Ralph E. Griswold. The SL5 Procedure
Mechanism. SL5 Project Document S5LD4, The University of
Arizona, Tucson, Arizona. February 19, 1976.

16. Britton, Dianne E., et al. "Procedure Referencing Environ-
ments in SL5", Third ACM Symposium on Principles of Programming

Languages, January, 1976, pp. 185-191.

17. XKnuth, Donald E. The Art of Computer Programming, Volume 1,

Fundamental Algorithms, 2nd ed. Addison-Wesley, Reading, Mass.,
1973, pp. Hu4-I5.

18. Druseikis, Frederick C. The Design of Transportable
Interpreters. SNOBOLY Project Document SHDLUG, The University of
Arizona, Tucson, Arizona. February 27, 1975.

19. Hanson, David R. "A Procedure Mechanism for Backtrack Pro-
gramming", Proceedings of the ACM Annual Conference, October,
1976, to appear.




