
Reprinted from the Encyclopedia of Computer Science, 3rd ed., Van Nostrand Reinhold, NY, 1993, pp. 1302-1308

String Processing Languages

Ralph E. Griswold
Department of Computer Science, The University of Arizona

Tucson, AZ 85721

David R. Hanson
Department of Computer Science, Princeton University

Princeton, NJ 08544

For articles on related subjects see List Processing Languages;
Lists and List Processing; Macrolanguages; Programming
Languages; Programming Linguistics; and String.

Principles

In programming contexts, the term string usually refers to a sequence of charac-
ters. For example, ABC is a string of three characters. Strings are more prevalent
in computing than is generally realized. In most cases, computer input is in the
form of strings, e.g., commands entered at a terminal. Similarly, computer out-
put is in the form of strings; printed lines are simply strings of characters. In
spite of this fact, string processing has received comparatively little attention.

Strings and String Processing

The facilities of the most widely used and well-known programming languages
are concentrated on numerical and business data processing. However, a sub-
stantial amount of string processing is performed. For example, compilers ac-
cept strings as input, analyze them, and usually produce other strings as output.
Command interpreters analyze command strings and perform appropriate ac-
tions. These kinds of programs are used heavily, so they must be extremely
efficient. For this reason, they are usually written in systems programming
languages, e.g., C, rather than in higher-level string-processing languages.

Nevertheless, higher-level string-processing languages offer many advantages
for solving complex problems. Examples of such problems are language trans-
lation, computational linguistics, symbolic mathematics, text editing, and doc-
ument formatting.

1

Developers of string-processing languages are in a less well-defined position
than developers of numerical processing languages. While mathematical nota-
tion for numerical computation has developed over centuries, and its current
form is widely known and fairly well standardized, string processing is a new
area. There is no general agreement on what operations should be performed
in string processing, nor is there a standard notation. The developers of string-
processing languages started largely without conventions. As a result, notation,
program structure, and approach to problem formulation are often radically
different from those of more conventional programming languages.

Operations on Strings

While there were no generally agreed-upon string operations when string-processing
languages were first developed, four operations have achieved general accep-
tance: concatenation, identification of substrings, pattern matching, and trans-
formation of strings to replace identified substrings by other strings.

Concatenation (sometimes called “catenation”) is the process of appending
one string to another to produce a longer string. Thus, the result of concate-
nating the strings AB and CDE is the string ABCDE. This operation is a natural
extension of the concept of a string as a sequence of characters. A substring is
a string within another string. For example, BC is a substring of ABCDE.

The most important string operation is pattern matching. Stated in general
terms, pattern matching is the process of examining a string to locate substrings
or to determine if a string has certain properties. Examples are the presence
of a specific substring, substrings in certain positions, substrings in a specified
relationship to each other, and so on. Transformation of strings is typically
accomplished in conjunction with pattern matching, using the results of pattern
matching to effect a replacement of substrings.

The language descriptions below emphasize approaches to string processing
and the major facilities that deal with strings. No attempt has been made to
describe these languages completely; details can be found in the references.

Languages

Comit

Comit [11], designed in 1957–58, was the first string-processing language. It was
motivated by the need for a tool for mechanical language translation. Comit
strongly reflects these origins and is oriented toward the representation of nat-
ural languages.

2

Basic Concepts

In Comit, unlike most other string-processing languages, a string is composed
of constituents, which may consist of more than one character. Thus, a word
composed of many characters may be a single constituent in a string. A string
is written as a series of constituents separated by + signs, e.g.,

FOURSCORE + AND + SEVEN + YEARS + AGO

The character - represents a space (blank). Thus, to include spaces between
words, the string above becomes

FOURSCORE + - + AND - + SEVEN + - YEARS + - AGO

All characters other than letters have syntactic meaning. A star (asterisk) in
front of a character other than a letter indicates that the character is to be
taken literally rather than for its syntactic meaning. For example,

33 ARE IN THE TOP 1/2.

is written

*3*3 + - + ARE + - + IN + - + THE + - + TOP + - + *1*/*2*.

Attention focuses on a workspace, which contains the string currently being
processed. There are 128 shelves, any of which may be exchanged with the
workspace to change the focus of attention. Thus, there may be at most 129
distinct strings in a program at any one time.

Comit programs are a sequence of rules, each of which has five parts:

name left-half = right-half // routing goto

The name identifies the rule. The left-half is a pattern applied to the workspace,
and the right-half specifies processing to be performed on the portion of the work
space matched by the left-half. The routing performs operations other than
pattern matching. If a rule has no routing field, the slashes are not required.
The goto controls program flow.

Pattern Matching

The left-half may specify full constituents as written in a string, a specific num-
ber of constituents of unspecified value, an indefinite number of constituents,
an earlier constituent referenced by its position in the left-half, and so on.
A full constituent is written as it is in a string. Other left-half constituents
are represented by special notations. For example: $n matches n consecutive
constituents, regardless of their value; $ matches any number of constituents.
The integer n matches the same string that the nth constituent of the left-half
matched. For example, the left-half

3

THE + $1 + $ + 2

has four constituents: the characters THE, followed by any single constituent,
followed by any number of constituents until one is encountered that is the same
as the one matched by the second constituent, namely, $1. Pattern matching is
left to right. Left-half constituents must match consecutive constituents in the
workspace.

If the workspace contains

THE + FIRST

1 2

+ MAN + IN + LINE + IS + SERVED + FIRST

3 4

the match for each of the constituents is as shown. Note that the fourth con-
stituent of the left-half matches the same constituents as the second constituent
of the left-half. The third constituent of the left-half consequently matches the
intervening five constituents. When a match occurs, workspace constituents are
associated with the left-half constituents they matched and are subsequently
referenced by the number of the corresponding left-half constituent.

The right-half may contain full constituents and integers that correspond
to the constituents of the left-half. The matched portion of the workspace is
replaced by constituents specified in the right-half. Continuing the example
above, the rule

THE + $1 + $ + 2 = 1 + SECOND + 3 + 4

transforms the workspace into

THE + SECOND + MAN + IN + LINE + IS + SERVED + FIRST

Other Facilities

The routing part of a rule permits operations that cannot be performed in the
right-half. Examples are exchange of the workspace with a shelf, movement of
constituents between the workspace and shelves, printing the workspace, reading
data into the workspace, and so on.

The goto part of a rule controls program flow. Control may be transferred
to a named rule, back to the same statement for execution again, to the next
statement, and so on.

Loops may be programmed in a number of ways. One conditional operation
is left-half matching, which may fail. For example, the left-half $10 would fail
to match the workspace given above because the workspace does not contain

4

ten constituents. When a left-half fails to match, the remainder of the rule is
not performed and control passes to the next rule in line. Special notations are
used for names and gotos in writing loops. A * may be used for the name of a
rule that needs no other specific identification. A * in the goto indicates that
control is to be transferred to the next rule in line. A / in the goto indicates
that control is to be returned to the present rule if it is executed successfully.
Thus,

* THE = /

which has a blank right-half and a / in the goto, removes all occurrences of
THE from the workspace. When the left-half finally fails to match, execution
continues with the next rule in line.

Status

The current version of Comit is Comit II, which has been implemented on the
IBM 7000 series and the IBM 360/370. Because of its early origin, Comit lacks
a number of features that are available in more recently developed languages.

SNOBOL and SNOBOL3

The first SNOBOL (string-oriented symbolic language) language was designed
and implemented in 1962–63. The major motivation was the need for a general-
purpose language for string processing. Manipulation of symbolic mathematical
expressions was also an important consideration.

Basic Concepts

In SNOBOL, unlike Comit, a string is simply a sequence of characters. Enclosing
quotation marks delimit the string, but are not part of the string. An example
is

’FOURSCORE AND SEVEN YEARS AGO’

Such a string is said to be specified literally. Strings may be assigned to names
for subsequent reference, e.g.,

FIRST = ’MORGAN’

assigns the string MORGAN to the name FIRST. There is no limit to the number
of distinct strings. Storage management is automatic; there are no declarations.
Concatenation is denoted by the juxtaposition of strings. Such strings can be
given literally or as the value of names, e.g.,

FULLNAME = FIRST ’ SMITH’

5

assigns the string MORGAN SMITH to the name FULLNAME. The blank, shown here
as for clarity, is simply a character like any other.

A SNOBOL program consists of a sequence of statements. There are three
kinds of statements: assignment, pattern matching, and replacement. The re-
spective forms are

label subject = object goto
label subject pattern goto
label subject pattern = object goto

An optional label identifies the statement. The subject provides the focus for
the statement and is the name on which operations are performed. The goto
controls program flow and is optional. An assignment statement assigns a value
to a name. A pattern-matching statement examines the value of a name for a
pattern, and a replacement statement modifies that part of the subject matched
by the pattern.

Pattern Matching

Patterns in SNOBOL consist of a sequence of components. There are two types
of components: specific strings and string variables. A specific string may be
given literally or referred to by name. A string variable is indicated by delimiting
asterisks, which bracket a name. There are several types of string variables. An
arbitrary string variable can match any string. It is similar to the Comit $
notation, except that whatever the string variable matches is assigned to the
name between the asterisks. Pattern matching is left to right, and components
of the pattern must match consecutive substrings of the subject. For example,
in

Z ’T’ *FILL* ’N’

the value of Z is matched for any string that begins with a T and ends with an
N. The substring between the T and N is assigned to the name FILL. If the value
of Z is TEEN, the value assigned to FILL is EE.

A balanced string variable matches a string that is properly balanced with
respect to parentheses like an ordinary mathematical expression. A fixed-length
string variable matches any string of a specific length and are indicated by a /
and a quoted number following the name. For example,

TEXT ’,’ *C/"1"*

examines the value of TEXT for a comma and assigns the character following the
comma to C.

Replacement is a combination of pattern matching and assignment in which
the matched substring is replaced by the object. The statement

FULLNAME ’SMITH’ = ’JONES’

6

replaces the substring SMITH by JONES and consequently changes the value of
FULLNAME to MORGAN JONES.

Indirect Referencing

A string may be computed and then used as a name. A $ placed in front of a
string uses the value of that string as a name. For example, the statements

X = ’NUM’
N = ’3’
HOLIDAY = X N
$HOLIDAY = ’EASTER’

first assign the value NUM3 to HOLIDAY and then assign the value EASTER to
NUM3. The indirect referencing operator, similar in concept to indirect address-
ing in assembly language, provides a way of constructing names of data during
execution.

Other Facilities

Input and output take place using specially designated names as subjects. Arith-
metic facilities are rudimentary, e.g., integer arithmetic on strings of digits.

The goto part of a statement controls program flow. Gotos can be uncon-
ditional to a labeled statement, or conditional on the success or failure of pat-
tern matching. Loops are programmed using the conditional nature of pattern
matching.

Status

SNOBOL was superseded by SNOBOL3 in 1965. SNOBOL3 is similar to
SNOBOL, but has several additional features, including a number of built-in
functions and a facility for programmer-defined, recursive functions. SNOBOL3
was in turn superseded by SNOBOL4 in 1967.

SNOBOL4

SNOBOL4 [8] is a natural descendant of earlier SNOBOL languages and is based
on many of the same ideas and approaches to string processing. SNOBOL4,
however, introduced a number of new concepts. The most important, from a
string-processing poing of view, are those dealing with pattern matching.

Patterns

In Comit and the earlier SNOBOL languages, different types of patterns are
indicated by specific notations. In SNOBOL4, patterns are data objects that

7

are constructed by functions and operations. Consequently, quite complicated
patterns can be built piecemeal.

There are two basic pattern-construction operations: alternation and con-
catenation. The alternation of two patterns is a pattern that will match anything
either of its two components will match. The concatenation of two patterns is a
pattern that will match anything its two components will match consecutively.
Alternation is represented by a vertical bar and concatenation by a blank, e.g.,

PET = ’CAT’ | ’DOG’
PETKIND = PET ’-LIKE’

The pattern PET matches either of the strings CAT or DOG, and PETKIND matches
anything PET matches followed by the string -LIKE (i.e., CAT-LIKE or DOG-LIKE).

Pattern-valued functions generalize the concept of patterns and avoid special
notations for each type. For example, the value returned by LEN(n) is a pat-
tern that matches n characters, and the pattern returned by TAB(n) matches a
substring through the nth character of the subject string. For example,

OPER = TAB(6) ’X’

creates a pattern that will match any string containing an X as its seventh char-
acter. Other pattern-valued functions create patterns that match any one of
a number of specific characters, search for specific characters, and so on. Ex-
amples are SPAN(’0123456789’), which matches a substring consisting only of
digits, and BREAK(’;,’), which matches the substring beginning at the current
position up to the next comma or semicolon.

As in SNOBOL, pattern matching is left to right, and components must
match consecutive substrings of the subject string. When a component fails
to match, alternative matches are attempted. If no alternative is specified,
the pattern-matching process backs up to earlier, successfully matched com-
ponents, seeking other ways in which the entire pattern match can succeed.
Conceptually, the pattern-matching process manipulates a cursor, which is an
imaginary marker in the subject string indicating the current position of the
match. Movement of the cursor is implicit, not under direct control of the pro-
grammer, although in some patterns there is a direct correlation. Thus LEN(3)
moves the cursor to the right three characters. The cursor cannot be moved to
the left by a successful match.

Names may be attached to components of patterns so that when the compo-
nent matches a substring, that substring is assigned to the name. Attachment
is indicated by the binary $ operator, e.g.,

HEAD = LEN(7) $ LABEL

constructs a pattern that matches seven characters. The seven characters, when
matched, are assigned to LABEL, so

CARD HEAD

8

assigns the first seven characters of the value of CARD to LABEL. If the match
fails (because CARD is less than seven characters long), no assignment is made
to LABEL.

Another aspect of pattern matching is the ability to modify the pattern dur-
ing matching depending on substrings matched by earlier components. Evalua-
tion of an expression in a pattern may be deferred by prefacing the expression
by *. The expression is then left unevaluated until it is encountered in pattern
matching. An example of the power of this facility is given by

LIT = (’"’ | "’") $ C BREAK(*C) . STRING LEN(1)

When LIT is used in pattern matching, the argument of BREAK is not evaluated
until after the first part of the pattern has matched. The pattern matches a
single or double quote and assigns it to C. The remainder of the pattern matches
everything up to the next occurrence of character just assigned to C, assigns
that substring to STRING, and then LEN(1) matches the second quote. Thus,
LIT matches literal string constants as used in many programming languages.

Other Facilities

Other string processing facilities include alphabetical comparison of strings,
mappings from one set of characters to another, and deletion of trailing blanks.
Earlier SNOBOL languages were purely string processing languages; SNOBOL4
includes many types of data. In addition to types such as integer and real,
SNOBOL4 includes arrays as data objects, tables that provide associative look-
up features, and a facility for defining record types during execution. In many
cases, it is possible to perform data-type conversions between various types of
data. It is possible to convert a string into program statements during pro-
gram execution, and hence to modify or extend the program while it is run-
ning. SNOBOL4 is actually a general-purpose language that strongly empha-
sizes string processing and contains a number of exotic features.

Status

SNOBOL4 is a widely used and generally available string-processing language.
It and a number of dialects have been implemented on a wide range of machines
from personal computers to mainframes.

Icon

The major emphasis in pattern matching in the SNOBOL languages, as in
other string-processing languages, is on the specification of patterns that analyze
strings. There is little facility for indicating how the matching is accomplished or
for describing the synthesis of new strings from the results of pattern matching.

9

In many cases, this bias toward pattern specification is useful; it frees the
programmer from the necessity of spelling out too much detail concerning the
actual matching. This is especially the case in SNOBOL4, in which the pro-
cess of matching embodies a powerful search and backtrack algorithm that is
particularly complex and obscure.

In other cases, however, programming tasks may fall outside the capabilities
of the pattern matching facility. Faced with this dilemma, programmers resort
to inefficient or obscure techniques that are typically unrepresentative of the
capabilities of the language as a whole. This situation is due largely to the
inextensibility of the pattern matching facility. In SNOBOL4, for example, the
pattern matching facility is not as extensible as is the rest of the language. While
there is a facility for programmer-defined functions and datatypes, there is no
facility for programmer-defined matching procedures, i.e., procedures, which
are invoked during matching, that describe how a particular pattern is to be
matched. This deficiency can be better understood by considering the pattern
assigned to HEAD above:

HEAD = LEN(7) $ LABEL

LEN(7) constructs and returns a pattern that, when applied, attempts to ad-
vance the cursor by 7 characters. LEN itself plays no role in the matching —
it merely constructs a data object that contains an indication of the action to
be taken during pattern matching. It is this latter component of the pattern
that corresponds to the matching procedure and that cannot be defined by the
programmer.

SNOBOL4 and its variants suffer a common problem: They are each, in
reality, composed of two languages — a basic language and a pattern matching
language [6]. In each language, the programmer is burdened with the construc-
tion of pattern matching “programs.” This corresponds to construction of a
pattern, which is subsequently applied, or to the construction of the set of pro-
cedures, which eventually cooperate during pattern matching. This two-step
process — pattern construction and pattern application — is due largely to the
central role of patterns as distinguished objects in string processing languages.
It is the elimination of patterns, but not of pattern matching, that differentiates
the newest string processing language, Icon, from its predecessors.

Icon [5], developed in late 1970s, has a number of relatively low-level lexi-
cal primitives, some of which are related to patterns in SNOBOL4. Icon also
has control structures and a goal-directed evaluation mechanism that make pat-
tern matching — called string scanning in Icon — an integral part of the lan-
guage. The central feature of Icon is this evaluation mechanism, which embod-
ies a search and backtrack algorithm similar, but simpler, than that used in
SNOBOL4 pattern matching. An important aspect of this mechanism is that it
pervades the entire language, instead of being restricted to a component of the
language. The combination of the lexical primitives and the evaluation mecha-
nism yields string scanning capabilities comparable to those of SNOBOL4.

10

String scanning in Icon is accomplished in a manner that appears similar to
SNOBOL4 but does not involve anything like pattern construction. The expres-
sion s ? e establishes s as the subject to which string processing operations in
e apply. The expression e typically includes string analysis operations, but may
include any Icon operation. A scanning environment is characterized by a pair
of implicit variables {subject, pos}; subject is the string to which scanning
operations apply and pos is a location with the subject and usually changes as
the subject is analyzed. The expression s ? e establishes a new scanning envi-
ronment {s, 1}, and then evaluates e. After evaluating e, the previous scanning
environment is restored.

Some of the scanning operations in Icon operate on the position in the ab-
sence of other specifications. An example is move(n), which attempts to advance
the position by n characters. If the advancement is successful, move returns the
n-character substring between the initial and final positions. For example,

line ? write("[", move(7), "]")

writes the first 7 characters of line enclosed in brackets to the output. The
equivalent SNOBOL4 program

HEAD = LEN(7) $ LABEL
LINE HEAD
OUTPUT = "[" LABEL "]"

first constructs the necessary pattern and assigns it to HEAD, then applies this
pattern to LINE, which causes the first 7 characters to be assigned to LABEL,
and finally writes the desired result.

This simple example illustrates an important aspect of string scanning in
Icon: move does not construct a pattern, but simply carries out the analysis
in the current scanning environment. The SNOBOL4 equivalent involves con-
struction of a pattern, followed by its application, and finally the output of the
desired result.

Another important advantage resulting from the integration of string pro-
cessing with the rest of Icon is that any language operation can be performed
during string scanning. An example is

line ? while t := t || move(1) || "."

which produces a string t containing the characters of line separated by pe-
riods. The || operator denotes string concatenation, and while repeatedly
evaluates

t := t || move(1) || "."

until it fails, which occurs when move(1) is invoked at the end of the subject
string. Note the use of a standard control structure, while, within the ? ex-
pression. To accomplish the same thing in SNOBOL4 requires the separation

11

of the analysis of the subject and the synthesis of the result since there is no
provision for using arbitrary constructs within a pattern. Thus, the SNOBOL4
equivalent requires two statements:

LOOP TEXT LEN(1) $ C = :F(DONE)
T = T C "." :(LOOP)

DONE

If the pattern in the first line fails to match, control is transferred to the line
labeled DONE; otherwise the matched character and a period are appended to T,
and control is returned to the line labeled LOOP.

String synthesis often accompanies string scanning. In the example above,
t is synthesized during scanning, and it is t that is the result of interest. In
some cases, the result of interest can be returned as the value of the scanning
expression. The result of s ? e is the result of e, so both of the expressions

line ? write("[", move(7), "]")
write("[", line ? move(7), "]")

the same output.
The function move(n) is called a matching function because it returns the

substring of the subject that is “matched” as a result of changing the position.
Another matching function is tab(i), which moves to position i in the subject
and returns the substring between the old and new positions. For both move
and tab, the new position can be to the left of the old position.

Lexical functions return positions in the subject instead of substrings in the
subject. For example, find(s) returns the position of the string s in the subject
following the current position, so the output of

"Icon is a programming language" ? write(find("program"))

is 11. Likewise, upto(s) returns the position of any of the characters in string
s, and many(s) returns the position following the longest possible substring
containing only characters in s starting at the current position.

It is important to note that functions like many return positions, but the
specific values of those positions are rarely important. Positions are used most
often as arguments to matching functions like tab. For example,

line ? while tab(upto(&letters)) do
write(tab(many(&letters)))

writes the “words” in line. The value of the keyword &letters is a string con-
taining all of the upper- and lower-case letters. The expression tab(upto(&letters))
advances the position up to the next letter, and tab(many(&letters)) matches
and returns the word, which is passed to write. The while loop terminates
when tab(upto(&letters)) fails because there are no more words in line.

12

Most changes to the scanning environment, e.g., changing the position, are
made implicitly by matching functions. Explicit reference to the scanning envi-
ronment can be made through the keywords &subject and &pos, e.g.,

&pos := 1

sets the scanning position to 1. This assignment is equivalent to tab(1). Like-
wise,

&subject := read()

changes the subject to the next line of input. Assignments to &subject cause
&pos to be set to 1. It is usually undesirable to access or change the subject
and position explicitly. However, doing so is necessary when writing match-
ing procedures to augment the built-in repertoire of matching functions. See
Reference [3] for details.

Icon’s alternation expression resembles alternation in SNOBOL4: e1 | e2.
The important difference is that while the SNOBOL4 alternation operator con-
structs a pattern, alternation in Icon simply carries out the operation directly.
The operation is similar to that performed during pattern matching in SNOBOL4
when the pattern constructed by P1 | P2 is applied.

In the Icon expression e1 | e2, e1 is evaluated first and if that evaluation
succeeds, the value if e1 is the result of the entire expression. If, however,
evaluation of e1 fails, the result is the result of evaluating e2. Another way in
which e2 can be evaluated is if the entire expression is used in a context where
the value of e1 is unacceptable. An example is

move(10 | 5)

The expression 10 | 5 has two literal subexpressions and the first 10, succeeds.
Suppose, however, that the subject is only six characters long. In this case,
move(10) fails. This causes the re-evaluation of 10 | 5, which yields the value
5. This time, move(5) succeeds. Note that

move(10 | 5)

is equivalent to

move(10) | move(5)

which corresponds to the SNOBOL4 pattern

LEN(10) | LEN(5)

Note, however, that SNOBOL4 has no direct counterpart to move(10 | 5).
Alternation in SNOBOL4 is restricted to specific contexts; alternation in Icon
may be used anywhere an expression may be used.

In Icon, operations that have the capacity for producing alternative values
are required by the context in which they appear are called generators. In

13

addition to alternation, many of the low-level lexical primitives are generators
whose behavior when used in string scanning is designed to facilitate string
processing. For example, find(s) is capable of generating all of the positions
at which s appears in the subject. If only one value is needed, only one is
generated, so the output of

"a fish is a fish is a fish" ? write(find("fish"))

is 3. Additional values are generated as demanded by the context in which find
is used; for example, in

"a fish is a fish is a fish" ? write(find("fish") > 20)

the first value produced by find is 3, which is less than 20. The comparison
(>) fails, which causes find to be resumed. It produces 13 and the comparison
again fails. Finally, find produces 23 and the comparison succeeds. A successful
comparison returns its right operand, so the output is 20.

Icon’s procedure mechanism of allows the construction of programmer-defined
generators. This capability corresponds to defining programmer-defined match-
ing procedures in SNOBOL4. Generators are not limited to the string process-
ing aspects of Icon, but is meaningful for many operations. Generators allow
a more natural expression of some constructions than is possible in most other
programming languages. It is often possible to express constructions more con-
cisely and closer to the way programmers think in mathematical and natural
languages. For further information about this aspect of Icon, see Reference [7].
Reference [4] describes an implementation of Icon in detail.

Status

Icon has been implemented on a wide range of computers, from personal com-
puters to large-scale mainframes. It is the most widely used and generally
available high-level string processing language.

Other String-Processing Languages

Ambit [10], developed in 1964, is a string-processing language oriented toward
algebraic manipulation. Ambit is similar in many respects to Comit and the
SNOBOL languages. However, its strings are parenthesized expressions that
correspond to tree structures, and they are implemented as fully linked trees.
In Ambit, unlike most other string-processing languages, two strings are con-
sidered equivalent even if they differ in the position and number of blanks they
contain. A basic replacement rule consists of a citation, specifying a pattern,
and a replacement, which effects a transformation on the string under consid-
eration. The citation may match only one way; the replacement rule must be
unambiguous. An important aspect of Ambit pattern matching is the explicit

14

reference to pointers, which identify specific positions in strings. There are three
variants of Ambit: Ambit/S for manipulating trings, Ambit/G for manipulating
general data structures, and Ambit/L for list processing.

Convert [9] is an extension of Lisp, incorporating pattern-matching and
transformation operations. There are a number of fundamental patterns and
facilities for constructing most complicated ones. The function RESEMBLE ap-
plies patterns to strings, and REPLACE performs transformations using skeletons
that specify the structure of the replacement. A rule consists of a pattern and
a skeleton. Convert applies the pattern to a string. If a “resemblance” is found,
values of relevant parts are identified and substituted into the skeleton to effect
the conversion.

Axle [1], like Comit, has a workspace that is the focus of attention for pattern
matching and replacement. Axle has assertion tables, which specify patterns.
These specifications may be recursive. Imperative tables specify patterns to
be matched and corresponding replacements. A pattern-matching procedure
determines which imperative is applicable. Axle has markers, which may be
positioned in the work space. These markers may be used to avoid reprocessing
previously transformed parts of the workspace.

Panon [2] is based on generalized Markov algorithms and includes a num-
ber of pattern-matching facilities and rules for transforming strings. A Panon
program is itself a string, and hence susceptible to self-modification.

References

[1] Kenneth Cohen and J. H. Wegstein. AXLE: An axiomatic language
for string transformations. Communications of the ACM, 8(11):657–661,
November 1965.

[2] A. Caracciolo Forino. String processing languages and generalized Markov
algorithms. In Proceedings of the IFIP Working Conference on Symbol
Manipulation Languages, pages 141–206, Amsterdam, 1968. North Holland.

[3] Ralph E. Griswold. String scanning in the Icon programming language.
The Computer Journal, 33(2):98–107, April 1990.

[4] Ralph E. Griswold and Madge T. Griswold. The Implementation of the
Icon Programming Language. Princeton University Press, Princeton, NJ,
1986.

[5] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Lan-
guage. Prentice Hall, Englewood Cliffs, NJ, second edition, 1990.

[6] Ralph E. Griswold and David R. Hanson. An alternative to the use of pat-
terns in string processing. ACM Transactions on Programming Languages
and Systems, 2(2):153–172, April 1980.

15

[7] Ralph E. Griswold, David R. Hanson, and John T. Korb. Generators
in Icon. ACM Transactions on Programming Languages and Systems,
3(2):144–161, April 1981.

[8] Ralph E. Griswold, James F. Poage, and Ivan P. Polonsky. The SNOBOL4
Programming Language. Prentice Hall, Englewood Cliffs, NJ, second edi-
tion, 1971.

[9] Adolfo Guzman and Harold V. McIntosh. Convert. Communications of the
ACM, 9(8):604–615, August 1966.

[10] Michael S. Wolfberg. Fundamentals of the Ambit/L list-processing lan-
guage. SIGPLAN Notices, 7(10):66–75, October 1972.

[11] Victor H. Yngve. Computer Programming with COMIT II. MIT Press,
Cambridge, MA, 1963.

16

