
Encyclopedia of Computer Science, 4th ed., Nature Publishing Group, 2000, 1694-1701.

STRING PROCESSING

For articles on related subjects see CONCATENATION; LIST PROCESSING; MUMPS; PROGRAMMING LANGUAGES;
and PROGRAMMING LINGUISTICS.

PRINCIPLES

In programming contexts, the term string usually refers to a sequence of characters. For example,
ABC is a string of three characters. Strings are more prevalent in computing than is generally real-
ized. In most cases, computer input is in the form of strings (e.g. commands entered at a terminal).
Similarly, computer output is in the form of strings since printed lines are simply strings of charac-
ters.

Strings and String Processing

The facilities of the most widely used programming languages are concentrated on numerical and
business data processing. However, a substantial amount of string processing is performed. For
example, compilers accept strings as input, analyze them, and produce either bit or character strings
as output. Command interpreters analyze command strings and perform appropriate actions. These
kinds of programs are used heavily, so they must be extremely efficient. For this reason, they are
usually written in systems programming languages such as C (q.v.) rather than in higher-level string
processing languages. Nevertheless, higher-level string processing languages offer many advantages
for solving complex problems. Examples of such problems are language translation (q.v.), computa-
tional linguistics, computer algebra (q.v.), text editing (q.v.), and document formatting (see DESKTOP

PUBLISHING).

While mathematical notation for numerical computation has developed over centuries, string pro-
cessing is a new area. There is no general agreement on what operations should be performed in
string processing, nor is there a standard notation. The developers of string processing languages
started largely without conventions. As a result, notation, program structure, and approach to prob-
lem formulation are often radically different from those of more conventional programming lan-
guages.

Operations on Strings

Four string processing operations have achieved reasonably general acceptance: concatenation,
identification of substrings, pattern matching, and transformation of strings to replace identified
substrings by other strings.

Concatenation (sometimes called “catenation”) is the process of appending one string to another to
produce a longer string. Thus, the result of concatenating the strings AB and CDE is the string
ABCDE. This operation is a natural extension of the concept of a string as a sequence of characters.
A substring is a string wholly contained within another string. For example, BC and CDE are
substrings of ABCDE.

The most important string operation is pattern matching, examining a string to locate substrings or to
determine if a string has certain properties. Examples are the presence of a specific substring,
substrings in certain positions, substrings in a specified relationship to each other, etc. Transforma-
tion of strings is typically accomplished in conjunction with pattern matching, using the results of
pattern matching to effect a replacement of substrings.

The language descriptions below emphasize approaches to string processing and the major facilities
that deal with strings. No attempt has been made to describe these languages completely; details can
be found in the references.

LANGUAGES

Comit

Comit (Yngve, 1963), designed in 1957–58, was the first string processing language. It was moti-
vated by the need for a tool for mechanical language translation. Comit strongly reflects these
origins and is oriented toward the representation of natural languages.

Basic Concepts

In Comit, unlike most other string processing languages, a string is composed of constituents which
may consist of more than one character. Thus, a word composed of many characters may be a single
constituent in a string. A string is written as a series of constituents separated by + 1 signs—e.g.

FOURSCORE + AND + SEVEN + YEARS + AGO

The character – represents a space (blank). Thus, to include spaces between words, the string above
becomes

FOURSCORE + – + AND – + SEVEN + – YEARS + – AGO

All characters other than letters have syntactic meaning. A star (asterisk) in front of a character other
than a letter indicates that the character is to be taken literally rather than for its syntactic meaning.
For example,

33 ARE IN THE TOP 1/2.

is written

*3*3 + – + ARE + – + IN + – + THE + – + TOP + – + *1*/*2*.

Attention focuses on a workspace, which contains the string currently being processed. There are
128 shelves, any of which may be exchanged with the workspace to change the focus of attention.
Thus, there may be at most 129 distinct strings in a program at any one time.

Comit programs are a sequence of rules, each of which has five parts:

name left-half = right-half / / routing goto

The name identifies the rule. The left-half is a pattern applied to the workspace, and the right-half
specifies processing to be performed on the portion of the workspace matched by the left-half. The
routing performs operations other than pattern matching. If a rule has no routing field, the slashes are
not required. The goto controls program flow.

Pattern Matching

The left-half may specify full constituents as written in a string, a specific number of constituents of
unspecified value, an indefinite number of constituents, an earlier constituent referenced by its
position in the left-half, etc. A full constituent is written as it is in a string. Other left-half constitu-
ents are represented by special notations. For example: $n matches n consecutive constituents,
regardless of their value; $ matches any number of constituents. The integer n matches the same
string that the nth constituent of the left-half matched. For example, the left-half

THE + $1 + $ + 2

has four constituents: the characters THE, followed by any single constituent, followed by any
number of constituents until one is encountered that is the same as the one matched by the second
constituent, namely, $1. Pattern matching is left to right. Left-half constituents must match consecu-
tive constituents in the workspace.

If the workspace contains

FIG. 1.

the match for each of the constituents is as shown. Note that the fourth constituent of the left-half
matches the same constituents as the second constituent of the left-half. The third constituent of the
left-half consequently matches the intervening five constituents. When a match occurs, workspace
constituents are associated with the left-half constituents they matched and are subsequently refer-
enced by the number of the corresponding left-half constituent.

The right-half may contain full constituents and integers that correspond to the constituents of the
left-half. The matched portion of the workspace is replaced by constituents specified in the right-
half. Continuing the example above, the rule

THE + $1 + $ + 2 = 1 + SECOND + 3 + 4

transforms the workspace into

THE + SECOND + PERSON + IN + LINE + IS + SERVED + FIRST

SNOBOL

The first SNOBOL (string-oriented symbolic language) language was designed and implemented in
1962–63. Its major motivation was the need for a general-purpose language for string processing.
Manipulation of symbolic mathematical expressions was also an important consideration.

Basic Concepts

In SNOBOL, unlike Comit, a string is simply a sequence of characters. Enclosing quotation marks
delimit the string, but are not part of the string. An example is

'FOURSCORE AND SEVEN YEARS AGO'

Such a string is said to be specified literally. Strings may be assigned to names for subsequent
reference, e.g.

FIRST = 'MORGAN'

assigns the string MORGAN to the name FIRST. There is no limit to the number of distinct strings.
Storage management is automatic; there are no declarations. Concatenation is denoted by the juxta-
position of strings. Such strings can be given literally or as the value of names, e.g.

FULLNAME = FIRST ' SMITH'

assigns the string MORGAN SMITH to the name FULLNAME. The blank, shown here as for
clarity, is simply a character like any other.

A SNOBOL program consists of a sequence of statements. There are three kinds of statements:
Assignment, pattern-matching, and replacement. The respective forms are

label subject =object goto
label subject pattern goto
label subject pattern = object goto

An optional label identifies the statement. The subject provides the focus for the statement and is the
name on which operations are performed. The goto controls program flow and is optional. An as-
signment statement assigns a value to a name. A pattern-matching statement examines the value of a
name for a pattern, and a replacement statement modifies that part of the subject matched by the
pattern.

Pattern Matching

Patterns in SNOBOL consist of a sequence of components. There are two types of components:
specific strings and string variables. A specific string may be given literally or referred to by name.
A string variable is indicated by delimiting asterisks, which bracket a name. There are several types
of string variables. An arbitrary string variable can match any string. It is similar to the Comit $
notation, except that whatever the string variable matches is assigned to the name between the
asterisks. Pattern matching is left to right, and components of the pattern must match consecutive
substrings of the subject. For example, in

Z 'T' *FILL* 'N'

the value of Z is matched for any string that begins with a T and ends with an N. The substring
between the T and N is assigned to the name FILL. If the value of Z is TEEN, the value assigned to
FILL is EE.

A balanced string variable matches a string that is properly balanced with respect to parentheses like
an ordinary mathematical expression. A fixed-length string variable matches any string of a specific
length and is indicated by a / and a quoted number following the name. For example,

TEXT ',' *C/”1/*

examines the value of TEXT for a comma and assigns the character following the comma to C.

Replacement is a combination of pattern-matching and assignment in which the matched substring is
replaced by the object. The statement

FULLNAME 'SMITH' = 'JONES'

replaces the substring SMITH by JONES and consequently changes the value of FULLNAME to
MORGANJONES.

Indirect Referencing

A string may be computed and then used as a name. A $ placed in front of a string uses the value of
that string as a name. For example, the statements

X = 'NUM'
N = '3'
HOLIDAY = X N
$HOLIDAY = 'EASTER'

first assign the value NUM3 to HOLIDAY and then assign the value EASTER to NUM3. The
indirect referencing operator, similar in concept to indirect addressing in assembly language, pro-
vides a way of constructing names of data during execution.

Other Facilities

Input and output take place using specially designated names as subjects. Arithmetic facilities are
rudimentary (e.g. integer arithmetic on strings of digits).

The goto part of a statement controls program flow. Gotos can be unconditional to a labeled state-
ment, or conditional on the success or failure of pattern matching. Loops are programmed using the
conditional nature of pattern matching.

SNOBOL4

(Griswold et al., 1971) is a natural descendant of SNOBOL and is based on many of the same ideas
and approaches to string processing. SNOBOL4, however, introduced a number of new concepts.
The most important are those dealing with pattern matching.

Patterns

In Comit and the earlier SNOBOL languages, different types of patterns are indicated by specific
notations. In SNOBOL4, patterns are data objects that are constructed by functions and operations.
Consequently, quite complicated patterns can be built piecemeal.

There are two basic pattern-construction operations: alternation and concatenation. The alternation
of two patterns is a pattern that will match anything that either of its two components will match.
The concatenation of two patterns is a pattern that will match anything that its two components will
match consecutively. Alternation is represented by a vertical bar and concatenation by a blank; e.g.

PET = 'CAT' | 'DOG'
PETKIND = PET '–LIKE'

The pattern PET matches either of the strings CAT or DOG, and PETKIND matches anything PET
matches followed by the string –LIKE (i.e. CAT–LIKE or DOG–LIKE).

Pattern-valued functions generalize the concept of patterns and avoid special notations for each type.
For example, the value returned by LEN(n) is a pattern that matches n characters, and the pattern
returned by TAB(n) matches a substring through the nth character of the subject string. For example,

OPER = TAB(6) 'X'

creates a pattern that will match any string containing an X as its seventh character. Other pattern-
valued functions create patterns that match any one of a number of specific characters, search for
specific characters, etc. Examples are SPAN('0123456789'), which matches a substring consisting
only of digits, and BREAK(';,'), which matches the substring beginning at the current position up to
the next comma or semicolon.

As in SNOBOL, pattern matching is left to right, and components must match consecutive substrings
of the subject string. When a component fails to match, alternative matches are attempted. If no
alternative is specified, the pattern-matching process backs up to earlier, successfully matched
components, seeking other ways in which the entire pattern match can succeed. Conceptually, the
pattern-matching process manipulates a cursor, which is an imaginary marker in the subject string
indicating the current position of the match. Movement of the cursor is implicit, not under direct
control of the programmer, although in some patterns there is a direct correlation. Thus, LEN(3)
moves the cursor to the right three characters. The cursor cannot be moved to the left by a successful
match.

Names may be attached to components of patterns so that when the component matches a substring,
that substring is assigned to the name. Attachment is indicated by the binary $ operator, e.g.

HEAD = LEN(7) $ LABEL

constructs a pattern that matches seven characters. The seven characters, when matched, are assigned
to LABEL, so

CARD HEAD

assigns the first seven characters of the value of CARD to LABEL. If the match fails (as it would
because CARD is less than seven characters long), no assignment is made to LABEL.

Another aspect of pattern matching is the ability to modify the pattern during matching depending on

substrings matched by earlier components. Evaluation of an expression in a pattern may be deferred
by prefacing the expression with *. The expression is then left unevaluated until it is encountered in
pattern matching. An example of the power of this facility is given by

LIT = ('”' |”’”) $ C BREAK(*C).STRING LEN(1)

When LIT is used in pattern matching, the argument of BREAK is not evaluated until after the first
part of the pattern has matched. The pattern matches a single or double quote and assigns it to C. The
remainder of the pattern matches everything up to the next occurrence of character just assigned to
C, assigns that substring to STRING, and then LEN(1) matches the second quote. Thus, LIT matches
literal string constants as used in many programming languages.

Other Facilities

Other string processing facilities include alphabetical comparison of strings, mappings from one set
of characters to another, and deletion of trailing blanks. Earlier SNOBOL languages were purely
string processing languages; SNOBOL4 includes many types of data. In addition to types such as
integer and real, SNOBOL4 includes arrays as data objects, tables that provide associative look-up
features, and a facility for defining record types during execution. In many cases it is possible to
perform data-type conversions between various types of data. It is possible to convert a string into
program statements during program execution, and hence to modify or extend the program while it is
running. SNOBOL4 is actually a general-purpose language that strongly emphasizes string process-
ing and contains a number of exotic features.

Status

SNOBOL4, despite its age, still is used and implementations are available for personal computers
and several workstations.

Icon

The major emphasis in pattern matching in the SNOBOL languages, as in other string-processing
languages, is on the specification of patterns that analyze strings. There is little facility for indicating
how the matching is accomplished or for describing the synthesis of new strings from the results of
pattern-matching.

In many cases, this bias toward pattern specification is useful; it frees the programmer from the
necessity of spelling out too much detail concerning the actual matching. This is especially the case
in SNOBOL4, in which the process of matching embodies a powerful search and backtrack algo-
rithm that is particularly complex and obscure.

In other cases, however, programming tasks may fall outside the capabilities of the pattern matching
facility. Faced with this dilemma, programmers resort to inefficient or obscure techniques that are
typically unrepresentative of the capabilities of the language as a whole. This situation is due largely
to the inextensibility of the pattern-matching facility. In SNOBOL4, for example, the pattern match-

ing facility is not as extensible as is the rest of the language. While there is a facility for program-
mer-defined functions and datatypes, there is no facility for programmer-defined matching proce-
dures (i.e. procedures, which are invoked during matching, that describe how a particular pattern is
to be matched). This deficiency can be better understood by considering the pattern assigned to
HEAD above:

HEAD = LEN(7) $ LABEL

LEN(7) constructs and returns a pattern that, when applied, attempts to advance the cursor by 7
characters. LEN itself plays no role in the matching—it merely constructs a data object that contains
an indication of the action to be taken during pattern-matching. It is this latter component of the
pattern that corresponds to the matching procedure and that cannot be defined by the programmer.

SNOBOL4 and its variants suffer a common problem: They are each, in reality, composed of two
languages—a basic language and a pattern matching language (Griswald and Hanson, 1980). In
each language, the programmer is burdened with the construction of pattern-matching “programs.”
This corresponds to construction of a pattern, which is subsequently applied, or to the construction
of the set of procedures, which eventually cooperate during pattern-matching. This two-step pro-
cess—pattern construction and pattern application—is due largely to the central role of patterns as
distinguished objects in string processing languages. It is the elimination of patterns, but not of
pattern-matching, that differentiates the newest string processing language, Icon, from its predeces-
sors.

Icon (Griswold and Griswold, 1996), developed in late 1970s, has a number of relatively low-level
lexical primitives, some of which are related to patterns in SNOBOL4. Icon also has control struc-
tures and a goal-directed evaluation mechanism that make pattern-matching—called string scanning
in Icon—an integral part of the language. The central feature of Icon is this evaluation mechanism,
which embodies a search and backtrack algorithm similar, but simpler, than that used in SNOBOL4
pattern matching. An important aspect of this mechanism is that it pervades the entire language,
instead of being restricted to a component of the language. The combination of the lexical primitives
and the evaluation mechanism yields string scanning capabilities comparable to those of SNOBOL4.

String scanning in Icon is accomplished in a manner that appears similar to SNOBOL4 but does not
involve anything like pattern construction. The expression s? e establishes s as the subject to which
string processing operations in e apply. The expression e typically includes string analysis opera-
tions, but may include any Icon operation. A scanning environment is characterized by a pair of
implicit variables {subject,pos}; subject is the string to which scanning operations apply, and pos is a
location with the subject and usually changes as the subject is analyzed. The expression s? e estab-
lishes a new scanning environment {s,1}, and then evaluates e. After evaluating e, the previous
scanning environment is restored.

Some of the scanning operations in Icon operate on the position in the absence of other specifica-
tions. An example is move(n), which attempts to advance the position by n characters. If the ad-
vancement is successful, move returns the n-character substring between the initial and final posi-
tions. For example,

line ? write(“[“, move(7), “]“)

writes the first seven characters of line enclosed in brackets to the output.

This simple example illustrates an important aspect of string scanning in Icon: move does not con-
struct a pattern, but simply carries out the analysis in the current scanning environment. The
SNOBOL4 equivalent involves construction of a pattern, followed by its application, and finally the
output of the desired result.

Another important advantage resulting from the integration of string processing with the rest of Icon
is that any language operation can be performed during string scanning. An example is

line ? while t := t ||uu move(1) ||uu “.”

which produces a string t containing the characters of line separated by periods. The || operator
denotes string concatenation, and while repeatedly evaluates

t := t || move(1) || “.”

until it fails, which occurs when move(1) is invoked at the end of the subject string. Note the use of a
standard control structure, while, within the ? expression.

String synthesis often accompanies string scanning. In the example above, t is synthesized during
scanning, and it is t that is the result of interest. In some cases, the result of interest can be returned
as the value of the scanning expression. The result of s ? e is the result of e, so both of the expres-
sions

line ? write(“[“, move(7), “]“)
write(“[“, line ? move(7), “]“)

produce the same output.

The function move(n) is called a matching function because it returns the substring of the subject
that is “matched” as a result of changing the position. Another matching function is tab(i), which
moves to position i in the subject and returns the substring between the old and new positions. For
both move and tab, the new position can be to the left of the old position.

Lexical functions return positions in the subject instead of substrings in the subject. For example,
find(s) returns the position of the string s in the subject following the current position, so the output

of

 “Icon is a programming language” ?
write(find(“program”))

is 11. Likewise, upto(s) returns the position of any of the characters in string s, and many(s) returns
the position following the longest possible substring containing only characters in s starting at the
current position.

It is important to note that functions like many return positions, but the specific values of those
positions are rarely important. Positions are used most often as arguments to matching functions like
tab. For example,

line ? while tab(upto(&letters)) do
 write(tab(many(&letters)))

writes the “words” in line. The value of the keyword &letters is a string containing all of the upper-
and lower-case letters. The expression tab(upto(&letters)) advances the position up to the next letter,
and tab(many(&letters)) matches and returns the word, which is passed to write. The while loop
terminates when tab(upto(&letters)) fails because there are no more words in line.

Icon has an alternation expression that resembles alternation in SNOBOL4: e
1
 | e

2
. The important

difference is that, while the SNOBOL4 alternation operator constructs a pattern, alternation in Icon
simply carries out the operation directly. The operation is similar to that performed during pattern
matching in SNOBOL4 when the pattern constructed by P1 | P2 is applied.

In the Icon expression, e
1
 | e

2
, e

1
 is evaluated first and, if that evaluation succeeds, the value of e

1
 is

the result of the entire expression. If, however, evaluation of e
1
 fails, the result is the result of evalu-

ating e
2
. Another way in which e

2
 can be evaluated is if the entire expression is used in a context

where the value of e
1
 is unacceptable. An example is

move(10 | 5)

The expression 10 | 5 has two literal subexpressions, and the first, 10, succeeds. Suppose, however,
that the subject is only six characters long. In this case, move(10) fails. This causes the re-evaluation
of 10 | 5, which yields the value 5. This time, move(5) succeeds. Note that

move(10 | 5)

is equivalent to

move(10) | move(5)

In Icon, operations that have the capacity for producing alternative values that are required by the
context in which they appear are called generators. In addition to alternation, many of the low-level
lexical primitives are generators whose behavior when used in string scanning is designed to facili-
tate string processing. For example, find(s) is capable of generating all of the positions at which s
appears in the subject. If only one value is needed, only one is generated, so the output of

 “a fish is a fish is a fish” ?
 write(find(“fish”))

is 3. Additional values are generated as demanded by the context in which find is used; for example,
in

 “a fish is a fish is a fish” ?
 write(find(“fish”) > 20)

the first value produced by find is 3, which is less than 20. The comparison (>) fails, which causes
find to be resumed. It produces 13 and the comparison again fails. Finally, find produces 23 and the
comparison succeeds. A successful comparison returns its right operand, so the output is 20.

Icon's procedure mechanism allows the construction of programmer-defined generators. This capa-
bility corresponds to the definition of programmer-defined matching procedures in SNOBOL4.
Generators are not limited to the string processing aspects of Icon, but are meaningful for many
operations. Generators allow a more natural expression of some constructions than is possible in
most other programming languages. It is often possible to express constructions more concisely and
closer to the way that programmers think in mathematical and natural languages. For further infor-
mation about this aspect of Icon, see Griswold et al., 1981.

Status

Icon has been implemented for many computers ranging from PCs to mainframes. It is the most
widely used and generally available high-level string processing language.

Other String Processing Languages

Ambit (Wolfberg, 1972), developed in 1964, is a string processing language oriented toward alge-
braic manipulation. Ambit is similar in many respects to Comit and the SNOBOL languages. How-
ever, its strings are parenthesized expressions that correspond to tree structures, and they are imple-

mented as fully linked trees. In Ambit, unlike most other string processing languages, two strings
having the same sequence of non-blank characters are considered equivalent even if they differ in the
position and number of blanks they contain. A basic replacement rule consists of a citation, specify-
ing a pattern, and a replacement, which effects a transformation on the string under consideration.
The citation may match only one way; the replacement rule must be unambiguous. An important
aspect of Ambit pattern-matching is the explicit reference to pointers, which identify specific posi-
tions in strings. There are three variants of Ambit: Ambit/S for manipulating strings, Ambit/G for
manipulating general data structures, and Ambit/L for list processing.

Convert (Guzman and McIntosh, 1966) is an extension of Lisp incorporating pattern-matching and
transformation operations. There are a number of fundamental patterns and facilities for constructing
more complicated ones. The function RESEMBLE applies patterns to strings, and REPLACE per-
forms transformations using skeletons that specify the structure of the replacement. A rule consists of
a pattern and a skeleton. Convert applies the pattern to a string. If a “resemblance” is found, values
of relevant parts are identified and substituted into the skeleton to effect the conversion.

Axle (Cohen and Wegstein, 1965), like Comit, has a workspace that is the focus of attention for
pattern-matching and replacement. Axle has assertion tables, which specify patterns. These specifi-
cations may be recursive. Imperative tables specify patterns to be matched and corresponding re-
placements. A pattern-matching procedure determines which imperative is applicable. Axle has
markers, which may be positioned in the work space. These markers may be used to avoid repro-
cessing previously transformed parts of the workspace.

Panon (Fotino, 1968) is based on generalized Markov algorithms and includes a number of pattern-
matching facilities and rules for transforming strings. A Panon program is itself a string, and hence
susceptible to self-modification.

References

1963. Yngve, Victor H. Computer Programming with COMIT II. Cambridge, MA: The M.I.T. Press.

1965. Cohen, Kenneth and Wegstein, J. H. “AXLE: An Axiomatic Language for String Transformations.”
Communications of the ACM, 8 (11): 657–661 (November).

1966. Guzman, Adolfo and McIntosh, Harold V. “Convert,” Communications of the ACM, 9 (8): 604–615
(August).

1968. Forino, A. Caracciolo. “String Processing Languages and Generalized Markov Algorithms.” In Pro-
ceedings of the IFIP Working Conference on Symbol Manipulation Languages, 141–206, Amsterdam: North-
Holland.

1971. Griswold, Ralph E., Poage, James F. and Polonsky, Ivan P. The SNOBOL4 Programming Language
(2nd Ed.). Englewood Cliffs, NJ: Prentice-Hall.

1972. Wolfberg, Michael S. “Fundamentals of the Ambit/L List-processing Language,” SIGPLAN Notices, 7
(10): 66–75 (October).

1980. Griswold, Ralph E. and Hanson, David R. “An Alternative to the Use of Patterns in String Processing,”
ACM Transactions on Programming Languages and Systems, 2 (2): 153–172 (April).

1981. Griswold, Ralph E., Hanson, David R., and Korb, John T. “Generators in Icon,” ACM Transactions on
Programming Languages and Systems, 3 (2):144–161 (April).

1996. Griswold, Ralph E. and Griswold, Madge T. The Icon Programming Language (3rd Ed.). San Jose, CA:
Peer-to-Peer Communications, Inc.

RALPH E. GRISWOLD AND DAVID R. HANSON

