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ABSTRACT

Garbage collection algorithms rely on invariants to permit the identification of pointers
and to correctly locate accessible objects. These invariants translate into constraints on
object layouts and programming conventions governing pointer use. There are recent vari-
ations of collectors in which the invariants are relaxed. Typically, rules governing pointer
use are relaxed, and a ‘conservative’ collection algorithm that treats all potential pointers
as valid is used. Such pointers are ‘ambiguous’ because integers and other data can mas-
querade as pointers. Ambiguous pointers cannot be modified and hence the objects they
reference cannot be moved. Consequently, conservative collectors are based on mark-and-
sweep algorithms. Copying algorithms, while more efficient, have not been used because
they move objects and adjust pointers. This paper describes a variation of a copying
garbage collector that can be used in the presence of ambiguous references. The algorithm
constrains the layout and placement of objects, but not the location of referencing point-
ers. It simply avoids copying objects that are referenced directly by ambiguous pointers,
reclaiming their storage on a subsequent collection when they are no longer ambiguously
referenced. An implementation written in the ANSI C programming language is given.
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Introduction

Traditional garbage collection algorithms [1] are based on the assumption that memory use obeys well-defined
rules. Such rules typically specify the layout of objects allocated in the heap, the use of ‘root’ or ‘tended’
pointers, and the representation of data. These kinds of rules are designed to maintain invariants necessary
for successful garbage collection. Rules concerning root pointers enforce invariants that permit all active
objects to be located starting from a (small) set of root pointers. Rules concerning object layout and data
representation permit pointers to objects to be distinguished from other data.

These kinds of rules exert a strong influence on the design and implementation of systems that use
garbage collection for storage management. Programming languages, such as Icon [2] and ML [3], are prime
examples, but garbage collection constraints affect the design of other applications, such as editors [4].

Evolving systems that lack garbage collectors initially may suffer because adding garbage collection
late in the development can be prohibitively difficult. Adding garbage collection to an existing or nearly
completed system often requires adherence to rules that can lead to massive re-design and re-implementation.
Bugs in a garbage collector that has not matured concurrently with its host system are notoriously difficult
to repair [5].

Garbage collection is sufficiently useful that several attempts have been made to provide garbage col-
lectors that can be used in systems without the accompanying rules and consequent impact outlined above.
Such garbage collectors must deal with ill-defined root sets and ambiguous references, i.e., apparent refer-
ences to objects that cannot be distinguished from other data, such as integers. In the most general case,
these references arise from data in the root set and from within other objects.

The approach usually taken is ‘conservative’: All global data including the runtime stack is treated as
the root set, and any object that is potentially accessible is treated as active. Thus, any bit pattern in the
root set or in an accessible object that, when treated as a pointer, points to an object marks that object as
active.

While numerous such facilities have undoubtedly been implemented, few are documented. The galloc
facility in the ninth edition of UNIX is an example of this conservative approach [6]. galloc and gfree
are generalizations of the malloc and free facility from the C programming language library [7]. The
latter functions allocate and deallocate storage explicitly, but do not reclaim storage. galloc and gfree are
similar, except that inaccessible space is reclaimed via garbage collection when free space is exhausted.

More recent facilities are similar [8, 9] and take special efforts to minimize the additional overhead
incurred by programs that do not make use of the garbage collector. These recent efforts have also demon-
strated the use of the garbage collector as a debugging tool. Adding a garbage collector to an existing system
in which storage is supposedly managed explicitly can often help detect ‘storage leaks’ and similar storage
management bugs.

Some garbage collection algorithms move accessible objects and adjust pointers to them to reflect this
movement. In the presence of ambiguous references, however, pointers cannot be adjusted because they
cannot be identified conclusively as pointers. Thus, objects accessible via ambiguous references cannot be
moved. For this reason, collectors like galloc are based on mark-and-sweep algorithms with an associated
free space list [1].

Copying garbage collection algorithms [10] are generally superior to mark-and-sweep. Copying algo-
rithms require time proportional to the number of accessible objects whereas mark-and-sweep algorithms
require time proportional to the number of accessible and inaccessible objects. With the increasing preva-
lence of large memories, the additional space required by copying algorithms is of decreasing importance
[11].

In general, copying algorithms cannot be used with ambiguous references because accessible objects are
moved [12–14]. The general situation does not always apply, and in some cases, the details of specific systems
relax some of the general constraints and admit more flexibility. The remainder of this paper describes
a simple copying garbage collector that can be used when there are relatively few ambiguous references
and when those references appear only in the root set. As detailed below, the collector simply declines
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to move objects directly accessible from ambiguous references, reclaiming their storage on a subsequent
collection when they are no longer referenced by ambiguous pointers. The collector is written in the ANSI
C programming language [7].

The algorithm described below is less general than the one described recently by Bartlett [12, 13].
Bartlett’s algorithm handles ‘derived pointers’ and ambiguous pointers from within the heap. It does,
however, require that pages with ambiguously referenced objects remain allocated until none of the objects
on the page are ambiguously referenced.

Environment

Systems in which space is allocated without any knowledge of the contents are rare in practice. Most
often, dynamic memory allocation is used with specific data structures having known layouts. For example,
compilers often use general-purpose storage allocators, but usually allocate relatively few different types of
objects, such as symbol table entries and tree nodes. In some object-oriented systems, such as Objective-C
[15], may have many different kinds of objects, but they obey simplifying rules and conventions. When the
details of the allocated objects are known, general-purpose techniques can often be simplified.

The copying garbage collector described below is intended for use in systems in which dynamically
allocated objects are used as described above. Specifically, it is assumed that

(1) the layout of objects is known;
(2) objects are self-identifying;
(3) the memory spaces from which objects are allocated contain only objects;
(4) all pointers to an object point to the head of an object, i.e., there are no ‘derived

pointers’; and
(5) objects do not contain untagged ‘unions’ (i.e., variant records that can hide pointers).

These assumptions constrain the layout and placement of objects, but they do not constrain the placement
of pointers from outside the allocation space. The garbage collector treats any pointer to an object as valid
and preserves the referenced object.

Objects are defined by

typedef struct object Object;
struct object { /* generic object: */

int size; /* number of fields */
Object *alink; /* link for ambiguous object list */
Object *fields[1]; /* pointers to other objects */

};
#define sizeInBytes(n) (((n)-1)*sizeof(Object *) + sizeof(Object))

Instances of Object are as large as necessary to accommodate their fields. sizeInBytes computes the size of
an object in bytes given its size in fields. The size field is unnecessary where the size can be deduced from
other fields [2]. Also, assuming that all fields are pointers simplifies the exposition; in applications involving
heterogenous objects, a pointer map would be used to find pointers within objects. Pointer maps, one per
object type, are generated by hand or by the compiler. alink is described below.

Memory is divided into two spaces defined by

typedef struct space { /* memory space: */
char *start; /* start of memory space */
char *end; /* 1 past end of memory space */
char *next; /* next free location */
Object *limit; /* 1 past end of free chunk */
Object *alist; /* ambiguous object list */

} Space;
Space A, B, *old = &A, *new = &B;

A and B are initialized to n-byte memory regions during initialization, start and end give the bounds of a
space, and the allocation pointers next and limit and alist are described below.
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Allocation and Garbage Collection
New objects are allocated and cleared by calling newObject(n) where n is the number of fields required
(n > 0):

Object *newObject(int n) {
Object *p;

p = (Object *) alloc(sizeInBytes(n), old);
if (p == 0) {

gc();
p = (Object *) alloc(sizeInBytes(n), old);
if (p == 0)

error("memory overflow");
}
p->alink = 0;
p->size = n;
while (--n >= 0)

p->fields[n] = 0;
return p;

}

alloc(int n, Space *s), described below, allocates n bytes in the memory space pointed to by s.
As shown, objects are allocated in old space. When an allocation fails, indicated by alloc returning

0, the garbage collector, gc, is called. In the absence of ambiguous references, gc would use the standard
copying algorithm: Copy accessible objects in old to new space, exchange old and new, and return. If the
second call to alloc fails, the system is out of memory.

gc cannot move objects pointed to by ambiguous references. It leaves ambiguously referenced objects
behind, but adds them to the alist — the ambiguously referenced object list — for that memory space.
The alist for space s begins at s->alist and is threaded through the alink fields of objects in order
of increasing object addresses. s->alist is initialized to s->end, which permits non-zero alink fields to
indicate an object’s presence on an alist. Objects are added to old->alist by aref:

void aref(Object *p) {
Object **q, *r;

if (inSpace(p, old) && p->alink == 0) {
q = &old->alist;
for (r = *q; p > r; r = *q)

q = &r->alink;
p->alink = r;
*q = p;

}
}

inSpace(Object *p, Space *s) is non-zero if p points to an object in space s and is implemented by
checking that p is within s->start and s->end and points to the head of an object. Note that the length
of the alist at each garbage collection gives the number of ambiguously referenced objects.

The root set consists of the active portion runtime stack, stack[0..sp]. Other locations, such as the
machine registers and global data, could also be added. gc considers all references from the root set to be
ambiguous, adding them to old’s alist by calling aref:

gc(void) {
int i;
Space *t;
Object *p;

old->alist = (Object *) old->end;
for (i = 0; i <= sp; i++)

aref(stack[i]);
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old->limit = old->alist;
head = 0;
tail = &head;
for (p = old->alist; (char *)p != old->end; p = p->alink)

scan(p);
for (p = new->alist; (char *)p != new->end; p = p->alink)

scan(p);
while (head) {

p = head;
head = head->alink;
if (head == 0)

tail = &head;
p->alink = 0;
scan(p);

}
t = old;
old = new;
new = t;
new->next = new->start;

}

old->limit is reset to old->alist for use in alloc, described below. Once old->alist is constructed,
those objects are treated as the root set for the remainder of the collection. That is, objects pointed to by
objects on the alist are copied to the new space using scan. Similar comments apply for those objects on
new->alist, which are ambiguously referenced objects left over from the previous collection. This top-level
copying is accomplished by the second and third for loops in gc.

scan moves the object’s referents using move:

void scan(Object *p) {
int i;

for (i = 0; i < p->size; i++)
p->fields[i] = move(p->fields[i]);

}

Whenever move copies an object to new space, it appends the copy onto a queue of unscanned objects. This
queue is formed by linking through the alink fields, which are not as yet used in the newly copied objects.
head points to the first object on the queue and tail points to link at the end of the queue. The while
loop in gc is the equivalent of the breadth-first code from the standard copying algorithm; it removes and
scans objects from the unscanned queue, copying their referents by calling move.

The unscanned queue is unnecessary a standard copying collector; the breadth-first loop advances a
pointer toward new->next, scanning intervening, recently copied objects, e.g.,

for (unscanned = new->start; unscanned < new->next; ) {
scan((Object *) unscanned);
unscanned += sizeInBytes(p->size);

}

This code cannot be used in the present collector because the free space in new is not contiguous; ambiguously
referenced objects left over from a previous collection fragment the free space in new.

move copies a unambiguously referenced object from old to new space, marks it as moved, leaves a
forwarding pointer in its old place, and adds it to the unscanned queue:

Object *move(Object *p) {
int i;
Object *q;

if (!inSpace(p, old) || p->alink)
return p;

if ((p->size&MARKED) == 0) {
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q = (Object *) alloc(sizeInBytes(p->size), new);
if (q == 0)

error("memory overflow during collection");
q->alink = 0;
q->size = p->size;
for (i = 0; i < p->size; i++)

q->fields[i] = p->fields[i];
p->fields[0] = q;
p->size |= MARKED;
*tail = q;
tail = &q->alink;

}
return p->fields[0];

}

MARKED is the sign bit of the size field. If p->alink is non-zero, p points to an ambiguously referenced
object, which is not moved. move is similar to the code used in the standard copying algorithm [1]. The
differences are the test for an ambiguously referenced object, the possibility that alloc will fail, and the
use of a mark bit. In the standard algorithm, testing if fields[0] points into new space was sufficient to
determine if the object needed to be copied. Here, however, fields[0] might point to an object that was
previously referenced by ambiguous pointer and was left behind in new space on a previous collection, which
necessitates the mark bit.

Suppose old and new are initialized as shown above to spaces A and B. At the end of the first call to gc,
all accessible unambiguously referenced objects are in B, A contains the (few) ambiguously referenced objects
on its alist, and old and new refer to B and A, respectively. When B runs out of memory, gc is invoked,
builds an alist for B and begins to move unambiguously referenced objects into A, calling alloc for space.
alloc uses A’s alist to step over ambiguously referenced objects left behind during the first call to gc:

char *alloc(int n, Space *s) {
for (;;) {

if (s->next + n < (char *)s->limit) {
s->next += n;
return s->next - n;

}
if ((char *)s->limit >= s->end)

return 0;
s->next = (char *)s->limit + sizeInBytes(s->limit->size);
s->limit = s->limit->alink;

}
}

At any point during execution, s->next and s->limit delimit the next free portion of space s. If an
allocation request cannot be satisfied, s->next is stepped over the intervening ambiguously referenced object
and s->limit is advanced to the next object on the alist. As noted above, the last object on the alist points
to s->end.

At the end of the second call to gc, all accessible unambiguously referenced objects have again been
copied, filling in the holes in A, ambiguously referenced objects have been left behind in B on its alist, and
old and new refer to A and B, respectively. Allocation continues in A, using alloc to step over ambiguously
objects left over from the first gc, as necessary. When space in A is exhausted, a third call to gc continues
the cycle. A’s alist is rebuilt, potentially releasing the space occupied by ambiguously referenced objects
found during the first collection, B’s alist is scanned, and unambiguously referenced objects are copied to B.

Improvements

One possible problem with the garbage collection algorithm is fragmentation. If an allocation request cannot
be satisfied by alloc, the space between s->next and s->limit is lost. More complex allocation schemes
can be used to avoid this problem. For example, every time alloc steps over some free space, it could add
it to a free space list. alloc would search the free space list only when its other, faster, allocation method
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failed, or when success was certain, which can be determined by keeping track of the maximum block size
on the free list. This scheme would add another two fields to Space structures.

A more serious problem is the space required by the alink field. alink’s are needed only in instances
of ambiguously referenced objects, not in every object instance, and temporarily for building the unscanned
queue. If the number of ambiguously referenced objects expected or tolerated is small, fixed-size arrays can
be used.

Alternatively, at a moderate cost in space and time, the list elements can be allocated in the old and
new spaces by calling alloc. An alist is constructed from Vnodes with fields vobj, which points to the
ambiguously referenced object, and alink, which points to the next Vnode on the alist. The limit and
alist fields in Space structures point to Vnode’s. As old’s alist is constructed, Vnode’s are allocated in new
space by aref:

void aref(Object *p) {
Vnode **q, *r, *t;

if (inSpace(p, old) && (p->size&AOBJECT) == 0) {
q = &old->alist;
for (r = *q; p > r->vobj; r = *q)

q = &r->alink;
t = (Vnode *) alloc(sizeof(Vnode), new);
if (t == 0)

error("memory overflow during collection");
t->vobj = p;
t->alink = r;
*q = t;
p->size |= AOBJECT;

}
}

Ambiguously referenced objects are marked as such because objects no longer have alink fields. The
AOBJECT marks are cleared in gc, as shown below. alloc is modified accordingly by changing all occurrences
of s->limit that refer to a ambiguously referenced object to s->limit->vobj. Note that if, as in many
applications, Vnodes are small compared to objects, they may be allocated in the space between s->next
and s->limit that would otherwise be lost because of fragmentation.

The unscanned queue can be threaded through the old space copies of non-ambiguously referenced
objects if all objects have enough room for two pointers. Space for one pointer, fields[0], is already
required to point to the new space copy, and objects in many applications have space for a second pointer.
Here, fields[0] can also be used as an element of the unscanned queue, and fields[1] points to the next
object on the queue. With these changes, move becomes

Object *move(Object *p) {
int i;
Object *q;

if (!inSpace(p, old) || (p->size&AOBJECT))
return p;

if ((p->size&MARKED) == 0) {
q = (Object *) alloc(sizeInBytes(p->size), new);
if (q == 0)

error("memory overflow during collection");
q->size = p->size;
for (i = 0; i < p->size; i++)

q->fields[i] = p->fields[i];
p->fields[0] = q;
p->fields[1] = 0;
p->size |= MARKED;
*tail = q;
tail = &q->fields[1];
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}
return p->fields[0];

}

These revised representations for the alist and unscanned queue lead to the revised gc:

gc(void) {
int i;
Space *t;
Object *p;
Vnode *q;

old->alist = (Vnode *) old->end;
for (i = 0; i <= sp; i++)

aref(stack[i]);
old->limit = old->alist;
head = 0;
tail = &head;
for (q = old->alist; (char *) q->vobj != old->end; q = q->alink)

scan(q->vobj);
for (q = new->alist; (char *) q->vobj != new->end; q = q->alink)

scan(q->vobj);
while (head) {

p = head;
head = head->fields[1];
if (head == 0)

tail = &head;
scan(p);

}
for (q = old->alist; (char *)q->vobj != old->end; q = q->alink)

q->vobj->size &= ˜AOBJECT;
t = old;
old = new;
new = t;
new->next = new->start;

}

The last for loop in gc unmarks the ambiguously referenced objects in old space, which were marked by
aref, above.

Discussion
As presented, accessible objects are reached only through ambiguously referenced objects. In most appli-
cations, there are some pointers to known objects in the root set, which may or may not be referenced by
an ambiguous pointer. This situation can be handled by adding statements p = move(p) for each of these
objects, p, after old’s alist has been constructed in gc. This addition has the effect of copying the known
objects to new space and adjusting the root pointer accordingly, unless the object was also referenced by an
ambiguous pointer in which case it remains in old space.

When there are no ambiguous references, the algorithm is equivalent the standard copying algorithm.
The additional overhead in this case is the scan for ambiguous references, but this overhead must be paid
by any algorithm that copes with ambiguous references. The additional space required is minimal: A few
extra pointers in Space structures.

When there are ambiguous references, both additional time and space are required. For N ambiguously
referenced objects, the insertion sort in aref may require O(N2) time, and requires 2bN bytes of additional
space, where b is the size of a pointer. This additional space comes at the expense of future allocations since
it is taken from new space. The last for loop in gc contributes an additional time overhead of O(N).

Ambiguous references complicate alloc slightly. Allocation proceeds normally until s->next must be
advanced over a ambiguously referenced object, which occurs N times. This additional O(N) time overhead
is amortized across the allocation of an entire memory space, however.
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One of the algorithm’s most serious drawbacks, which it shares with all such algorithms, is that it saves
potentially many objects that are not really accessible. These include the ambiguously referenced objects
and the objects to which they directly or indirectly refer. The number of ambiguously referenced objects can
be minimized by reducing the probability that other data will incidently have pointer values or by reducing
the size of the root set. On machines with large address spaces, locating the memory spaces in the high part
of the address space tends to reduce the number of incidental pointer values.

The size of the root set can be reduced by using pointer maps or other information, such as stack
frame layout, to identify potential pointers in the stack and global data instead of treating the contents of
all pointer locations as potential pointers. This approach does, of course, require more assistance from the
compiler or more hand work. A simple alternative is to try to avoid exhausting storage when the root set,
i.e., the active stack, is large. This alternative can be accomplished by calling gc explicitly at appropriate
points during execution. While there is a time penalty for this approach, in many applications, gc can be
called when the system is otherwise idle, e.g., waiting for user input.

Another, potentially more serious, drawback of the algorithm is that it cannot handle derived pointers
and objects must be self-identifying. inSpace(p,s) must determine—unambiguously—whether p points to
an object in s. Doing so constrains the object layouts or their placement. For example, in systems like Icon
[2], object layouts permit the head of an object to be identified given a potential pointer because the bit
patterns that begin objects cannot occur elsewhere.

On other systems, such as Objective-C, objects must be placed so that addressing can be used to check
if a pointer points to an object. For instance, suppose all pages (logical or physical) begin with objects. For
pointer p, the head of the object at the beginning of the page into which p points can be located. From
this object, all other objects on the page can be located thereby determining if p points to an object. This
technique may increase the cost of inSpace significantly. It can, however, be used to handle derived pointers
from the root set by having inSpace return a pointer to the head of the object.

An interesting area for further investigation is adapting the algorithm to do incremental [16] and
generation-based [17] garbage collection. For example, in generation-based schemes, long-lived objects mi-
grate to a memory space that is collected infrequently thereby reducing the cost of collection. The present
algorithm might be extended with generations so that a space containing ambiguously referenced objects is
used for long-lived storage. Doing so would effectively ‘promote’ ambiguously referenced objects to long-lived
objects thereby avoiding further special treatment.
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