
- 5 9 -

The Y Programming Language~

David R. Hanson

Department of Computer Science, The University of Arizona,
Tucson, Arizona 85721

!. In t roduc t ion

Y is a structured, general-purpose programming
language intended for use in simple systems programming
applications. More specifically', it is designed for applica-
tions similar to those described in the book Software Tools"
[ker76]. Y is, in fact, meant to replace Ratfor [ker75] for
those sorts of applications and in programming courses
based on Software Tools.

",' is a relatively simple language. Syntactically, it falls
about midway between Ratfor and C [ker78]. Semanti-
cally, it leans towards C except that it does not support all
of the C types. Y programs are collections of modules,
,~hich contain global and local static data and procedures.
Procedures are recursive and are composed of local data
declarations and statements. Statements are made up from
the usual structured control flow constructs and expres-
sions. Y supports integers, characters, and reals, and singly
dimensioned arrays of them.

In addi t ion to the intended application areas mentioned
above, Y is the experimental realization of some recent ideas
concerning separate compila t ion [han79b] and block struc-
ture [han80a]. It also provides a testbed for experimental
work in program portabili ty and code optimization
[davS0,fra79,han80b]. The remainder of this paper
describes the syntax and semantics of Y and illustrates its
u s e .

!.1 Syntax Notation
Where possible, the syntax of Y is described informally

using English prose. Where the syntax is more complicated,
a formal metalanguage is used in which syntactic classes are
denoted bv italic type and literal characters and symbols are
denoted b~" bold type. Alternatives are separated by vertical
bars (I) or are listed on separate lines. Optional items are
enclosed in brackets ([]), and ellipses (...) indicate indefin-
ite repetition of the item they immediately follow.

In cases where the literal use of bars, brackets, and
periods is not clear in context or conflicts with their
metalinguistic use, they are enclosed in quotes. Program
examples are given in a s a n s - s e r i f type.

2. Lexical Structure
Y programs are composed of identifiers, reserved words.

constants, operators, and other separators. The "official"
character set of Y is ASCII fans77]. Blanks and tabs are
ignored but, unlike Fortran, are required if necessary to
separate some lexical elements such as identifiers and
reserved words; e.g. in t ege ra and in teger a are not
equivalent.

2.1 Reserved Words
Reserved words introduce language constructs and may

not be used for other purposes (e.g. as a variable name).
Reserved words must be given in lower-case. The reserved
words are

break for next
case fortran real
character from repeat
char if return
default import switch
else integer to
export int until
end module while

2.2 Identifiers
Identifiers name language elements such as procedures

and variables. An identifier is a sequence of letters, digits,
or underscores that begins with a letter, Corresponding
upper- and lower-case letters are treated as different. Iden-
tifiers may be of any length, but some implementat ions may
use only the first 5 to 8 characters internally.

2.3 Integer and Character Constants
Integer constants are denoted by sequences of digits in

the usual manner. If a leading O is specified, the constant is
assumed to be given in octal.

Single character constants are treated as integers with
numerical values corresponding to their AS C l l code. A
character constant is specified by enclosing the desired char-
acter in single quotes, e.g. 'x'. Some characters, such as the
single quote, cannot be entered directly because of their spe-
cial function. The following escape convention may be used
to enter these kinds of characters.

*1 hi, ~ork ~as supported b) the National Science Foundation under Grant

M ('S7~;02545

- 6 0 -

character code

newline \ n
single quote V
double quote \ "
backslash \ \
tab \ t
any character \ d d d

[h e specification \ d d d represents the character with ASCII
code octal ddd; only enough digits to specify the code need
be given.

2.4 Real Constants
Real constants are specified in the standard fashion

except that exponential notation (e.g. 3 . 4 5 e l O) is not sup-
ported. For magnitudes less than 1, a leading 0 is required.

2.5 String Constants

String constants are specified by delimiting the sequence
of characters by double quotes ("). Single quotes may be
used for strings of 2 or more characters, Special characters,
including quotes, may be specified using the escape conven-
tion described above. In addition to the specified charac-
ters. a null character (ASCII code 0j is placed at the end of
each string by the compiler.

2.6 Commel,:~
The sharp character (#) causes the rest of the line on

which it appears to be ignored and therefore serves to intro-
duce comments.

3. Program Structure
A v program consists of one or more modules. A

module is simply a file whose contents have the general
fo~m

module."
module identifier

[import~export-declaration]...
[variable-declaration]...
[procedure-declaration]...
end

Executable portions of a program appear only within pro-
cedures. Program execution begins by invoking the pro-
cedure named main, which must appear in only one
module.

Generally speaking, language constructs, such as
declarations, statements, and expressions, are terminated
by the end of the line on which they appear much as in Rat-
for and Icon [gri80]. Within a construct, howeveL newtines
may be used as desired to improve readability provided it it
is obvious that the construct is continued on the next line.}

3.1 Scope and Import/Export Declarations
Unless specified otherwise, the scope of all variables and

procedures declared within a module is restricted to that
module. Static communication among separately compiled
modules--accessing variables and procedures declared in
another module-- i s indicated by import and export
declarations [han79b]:

+ I¢¢hnleal]3, a ne'aline i~ treated as white space except at points where it is in the
lollon set [aho77] of a construct, in which case it signals the end of the construct.

import / export-dec[arat ion:
import identifier [, ident~ier]... from string-literal
export identoCier [, identoqer]... to string-literal

These declarations cause the compiler to access the file
whose name is givcn by the string literal and read or write
information about the listed identifiers. These files, called
description files, are constructed and maintained by the
compiler: they are not meant to be edited by programmers.
By restricting access to description files, programmers have
some control over the sharing of variables and procedures
among separately compiled modules.

The import declaration lists those variables and pro-
cedures that are referenced in the current module but
defined in another. The compiler reads the characteristics
of the identifiers, such as the type, from the description file,
provided it is accessible. References to the identifiers are
external references, which are resolved during linking, but
the type checking associated with operations on them is per-
formed during compilation.

The export declaration lists those variables and pro-
cedures that are defined in the current module but may bc
referenced in another. After compiling the module, the
compiler writes the characteristics of the identifiers to the
description file, provided it is accessible for writing. If an
entry for an identifier already appears in a description file, it
is overwritten by the new entry.

Note that ihe impor t /expor t mechanism cannot handle
'mutual ' dependencies. For example, suppose module a
contains

export f to " f l "
import g f rom " f2 "
f(. . .)

g(...)

end

and module b contains

export O to "f2"
import f f rom " f l "
g(-,.)

f(...)

end

Module a must be compiled before b and vice versa. The
solution is to place both f and 9 in one module. Like most
high-level language facilities, the i m p o r t export scheme
imposes a particular structure on programs that does not
suit some cases, just as most structured control statements
and type systems do not cater well to every possible situa-
tion.

3.2 Variable Declarations

Variables that are declared outside of any procedure are
static and are global to the module in which they are
declared. The syntax is

- 6 1 -

variable,declaration:
type gtobat-declarator [, global-declarator]...

global-declarator:
identi~er
ictentijier '[' integer-literal ']"

type:
character
char
integer
int
real

As indicated, scalars and arrays of type character, integer,
or real may be declared. Character scalars are equivalent to
inleger sca!ars, however. For arrays, the integer literal gives
the number of elements in the array, and the array bounds
are from 1 to that number. A reference to an element of a
character array (e.g. s[i]) has type integer.

3.3 Procedure Declarations
Procedures are declared as follows.

procedure-deck
[type] identifier ([identifier [, identifier]...])

[local-declaration]...
[statement],..
end

local-declaration:
t.179e local-declarator [, local-declarator]...

Iocal-declar at or :
identifier
identifier '[" [integer-literal] "]"
identifier ()

Procedures are recursive.

If the type of a procedure is omitted, it is typeless and
cannot be used in a context requiring a type. It is essentially
a subroutine. Procedures of type character are equivalent
to procedures of type integer.

Communication among procedures is via arguments or
global variables (see above). Transmission of actual argu-
ments is by value for scalars and by reference for array
names (see below).

The declarations for local variables within a procedure
must include specifications for the formal parameters. For
array parameters, the array size is ignored since the storage
for an array transmitted as an actual argument is allocated
by the caller. It is normally unnecessary to declare other
procedures referenced within a procedure. This is the case if
the referenced procedure appears in the module before the
procedure in which it is used, is imported, or is used in a
context that does not require a type. If the type is required
and the referenced procedure is as yet undefined, a local
declaration of the indicated form may be given to specify
the type. Such declarations must be consistent with the sub-
sequent procedure declaration.

4. Expiessioas

Expressions compute values. Expression evaluation
proceeds according the the precedence and associativity of
the operators involved. Evaluation is generally left-to-right.
but the precise order is undefined except in a few cases.

Operator precedence and associativity is summarized in the
following table.

operators associativity precedence

= right-to-left lowest
1 left-to-right
& left-to-right
. . . . < <= >= > >> << left-to-right
+ - left-to-right
* / % left-to-right
"~ unary highest

Parentheses may be used as usual to override the buih-in
precedence and associativity rules.

4.1 Variables
The most basic expression refers to a variable--either a

scalar or an array element:

variable:
identifier
identifier '[" expression '] '

For an array reference, the type of the subscript expression
must be integer. If it is not, the appropriate conversion is
provided automatically. The type of a variable is deter-
mined by its declaration. The type of a reference to an ele-
ment of a character array (e.g. a[i]) is integer.

4.2 Primary Expressions
The primary expressions are:

primary-expresston:
integer-literal
real-literal
string-literal
variable
identifier ([expression [, expression]...])
(expression)

The type of a literal depends on its form as described in Sec.
2, The type of a parenthesized expression is the type of the
expression itself. The type of a procedure call is determined
by the type given in the procedure declaration. It is permis-
sible to have a procedure without a type, providing it is
never used in a context that reqmres one. If a procedure
name is undeclared, it is assumed to be a procedure without
a type, which will presumably be declared in a subsequent
procedure declaration. If a type is required, a local declara-
tion for the procedure may be given (see See. 3.3).

The actual arguments to a procedure are evaluated in an
unspecified order. For scalar variables and expressions.
copies of the actual argument values are passed to the pro-
cedure. For expressions consisting of only an array name.
the address of the array is passed. Thus, argument
transmission is by value for scalars and by reference for
arrays. Note that. unlike Fortran (and Ratfor). an array
reference such as a[i] is a scalar. It is not possible, therefore,
to pass portions of an array to a procedure. Actual argu-
ment types and the number of arguments are not checked
for consistency with the formal parameters given in the pro-
cedure declaration.

- 6 2 -

4.3 Unary Operators

unary-expression:
- expression
+ expression

expression

The unary - and + operators denote negation and affirma-
tion, respectively. Negation has its usual arithmetic mean-
ing and affirmation is a null operation. Fo r both operators,
the type of the result is the type of the operands. If the types
of both operands are the same (integer or real), the type of
the result is the type of the operands. F o r 'mixed mode'
usage, integer operands are converted to real.

The unary ,v operator returns the ones-complement of
its operand. The type of the result is integer, but no conver-
sion of the operand is performed.

4.4 Multiplicative Operators

muhiplicative-expression:
expression * expression
expression / expression
expression % expression
expression << expression
expression >> expression

The binary * and / operators denote multiplication and
division, respectively. If the types of both operands are the
same (integer or real), the type of the result is the type of the
operands. In the case of "mixed mode' usage, integer
operands are converted to real and the result is real.

In integer division, the result is truncated as in Fortran.
No check for division by 0 is made; the result in that case is
machine-dependent.

The binary % operator denotes the residue operation.
The result is an integer and is the remainder of the first
expression divided by the second. The operands of % must
be integer; the appropria te conversions are performed
automatical ly if they are not.

The binary << and • > operator denote the left and right
shifting, respectively. The result is an integer. The first
expression may be either integer or real; no conversion is
performed. The Second expression must be integer; the
appropr ia te conversions is performed automatical ly if it is
not. For both operators, the value of the first expression is
intepreted as a bit pattern and is shifted by the amount
given by the second expression. For left shifting, vacated
bits are filled with zeros. For right shifting, the value of
vacated bits is undefined.

4.5 Additive Operators

additive-expression:
expression - expression
expresslbn + expression

The binary - and + operators denote subtraction and addi-
tion. respectively. If the types of both operands are the
same (integer or real), the type of the result is the type of the
operands. For "mixed mode ' usage, integer operands are
converted to real and the result is real.

4.6 Relational Operators

relational-expression:
expression < expression
expression <= expression
expression == expression
expression "~= expression
expression >= expression
expression > expression

The relational operators are < (less than), <= (less than or
equal), == (equal to), ~ = (not equal to), >= (greater than or
equal to), and • (greater than). They all yield an integer
result: 0 if the relation is false, I if it is true. If the types of
the operands are not the same (integer or real), integer
operands are converted to real.

4.7 Logical Operators

logical-expression:
expression '1" expression
expression & expression

The binary I and & operators denote inclusive OR and AND,
respectively. When used in a context requiring a value, I
returns the bitwise inclusive OR of its operands and &
returns the bitwise AND of its operands. The type of the
result is integer. Any combinat ion of integer and real
operands is permissible; no conversions are performed.

When the I and & operators are used in a context that
does not require a value, such as in the condit ional expres-
sion in an if, while, or for statement, one may not be gen-
erated. More importantly, in expressions involving several
I and & operators, only enough of the expression to deter-
mine the ultimate truth value (zero or non-zero) may be
evaluated. For example, in

if (f(x) I g(x)) x = 0

it is undefined whether both f and g are invoked.

4.8 Assignment Operator

assignment-expression:
variable = expression

The binary = operator denotes assignment. The value of
the expression is stored in the location denoted by the vari-
able. The value is converted, if necessary, to the type associ-
ated with the variable. The value of the expression (after
conversion) becomes the result of the = operator .

The = operator associates to the right, permitting multi-
ple assignments, e.g.,

a = b = c = 6

associates as in

a = (b = (c = 6))

Evaluation of a single assignment is defined to be left-to-
right so that, for example, in

a[i] = fix,y)

the value of i before the invocation o f f is used to index into
a. Note that this rule is for single assignments only; the
order of evaluation of the variables involved in a multiple
assignment is undefined. Thus, in

a[i] = i = i + 1

it is undefined whether the value of i before or after it is
incremented is used to index a.

- 6 3 -

4,9 Conversions

As indicated above, conversions between integer and real
values may be performed in certain circumstances. Such
conversions are provided automatically as appropriate.

Conversion from an integer to a real value corresponds
to the 'float" operation in Fortran. Note that, on some
machines, some precision may be lost in converting large
integers to real values.

Conversion from a real value to an integer corresponds
to the ' f ix ' operation in Fortran. Specifically, the real value
is truncated to its integral part. If the result is not within the
range of integers, the result is undefined. In addition, the
direction of truncation of negative real values is undefined
since it seems to be very machine-dependent.

Despite the machine-dependent aspects of conversion, it
is intended that the results in Y be similar, if not equivalent,
to the results of the corresponding operation in Fortran.

5. S ta tements

Statements are executed sequentially in the order in
which they appear. Various control structures provide for
other orders of execution.

As mentioned above, statements are usually terminated
by the en~ of the line on which they appear. In most cases,
however, , tatements may be spread out over several lines
for readabili ty provided they are broken at points where it is
obvious that they are continued on subsequent lines.

5.1 Express ion Statement

Most statements are simply expressions:

e x p r e s s i o n - s t a t e m e n t :
e x p r e s s i o n

Typical expression statements are assignment expressions
and procedure calls.

5.2 Nul l S tatement
A lone semicolon is treated as a null statement:

n u l l - s t a t e m e n t :

Null statements are sometimes used as the body of loops in
cases where an empty body is needed. The null statement is
the one case in which a statement may immediately follow
another without an intervening newline. As such, semi-
colons may be used to place several statements on the same
line, e.g.

a = 2; f(a, b); b = a + 1

5.3 C o m p o u n d Statement
The compound statement permits several statements to

be grouped together as one statement:

c o m p o u n d - s t a t e m e n t :
{ s t a t e m e n t [s t a t e m e n t]... }

5.4 if Statement
The if statement is the basic conditional statement and

permits a one-, two-, or multi-way branch on the result of
an expression:

i f i s t a t e m e n t :
i f (e x p r e s s i o n) s t a t e m e n t
i f (e x p r e s s i o n) s t a t e m e n t else s t a t e m e n t

In both forms, the expression is evaluated and if the result is
non-zero the first substatement is executed. If the else is
specified, a zero result causes execution of the second sub-
statement.

The familiar 'dangling else' ambiguity in nested if state-
ments is resolved by associating an else with the closest if
that does not have an else. For example, in

if (a > = O)
if (a > b)

m a x = a
e l s e

m a x = b

the else is associated with the second if. A compound state-
ment may be used to obtain alternate interpretations, e.g.

if (a > = O) {
if (a > b)

m a x = a
}

e l s e
m a x = b

Us ing an i f s ta temen t as the subs ta temen t f o l l o w i n g an
else is a general way of writing a multi-way decision and
corresponds to a linear search. The general form is

if (e x p r e s s i o n)
s t a t e m e n t

else if (e x p r e s s i o n)
s t a t e m e n t

else if (e x p r e s s i o n)
s t a t e m e n t

else
s t a t e m e n t

The conditional expressions are executed in the order given
and the first non-zero result causes the execution of the
associated statement and termination of the search. If none
of the expressions yields a non-zero result, the statement
associated with the last else is executed. Note that this latter
statement, which corresponds to a 'defau l t ' case, is optional.

5.5 switch Statement

The switch statement is similar to the if statement in that
it permits a multi-way branch on the result of an expression.
The important difference is that only c o n s t a n t s may be
compared with the resulting value to control flow. it is,
therefore, a special case of the if-else chain described in the
previous section.

switch-statement:
switch (expression) {

[case case-label [, case-label t . . : [statement]...]...
[defaull : [statement]...]

case-labeh
[- I +] integer-literal
[- [+] integer-literal .. [- I +] integer-literal

The expression is evaluated and the resulting value is com-
pared to all of the cases. Execution continues with the
statement sequence that follows the case containing the
resulting value. Upon completion of that statement
sequence, execution continues after the switch statement.

- 6 4 -

Note that this behavior is different than in C where control
falls through to the next case.

If the value of the expression does not appear in any of
the case lists, execution continues with the statement
sequence that 1011ows the case labeled default. The default
case is optional; if it is omitted and the expression value
does not appear in any case list, execution continues after
the switch statement. The default case may appear any-
where within the switch statement, but only once.

5.6 while Statement
In the while statement

while-statement:
while (expression) statement

the expression is repeatedly evaluated until it yields a zero
result. The substatement is executed after each evaluation
that resulted in a non-zero value. Note that the result of the
expression is tested before the substatement is executed.
Thus, if the initial evaluation of the expression yields zero,
the substatement is never executed.

5.7 repeat Statement
I n the repeat statement

repeat-statement:
repeat statement
repeat s t a t e m e n t until (expression)

The substatement is executed repeatedly, provided that
after each execution, the expression yields a non-zero value.
Note that the result of the expression is tested after the sub-
statement is executed. Thus, the substatement is always
executed at least once.

The until portion of the repeat statement is optional in
which case the repeat statement is a non-terminating loop.
In this case, the loop can be terminated by other means, e.g.
via a break or return statement.

5.8 for Statement
The for statement

for-statement:
for ([expression1] : [expression2] ; [expression3])

statement

is equivalent (in the absence of next statements) to

expressionl
while (expression2) {

statement
expression3

In typical usage, expressionl and expression3 are assign-
ments or procedure calls, and expression2 is a conditional
expression. For example,

s u m - 0
f o r (i = 1 : i < = 1 0 ; i = i + l)

s u m = s u m + a [i]

c o n i p u t e s the sum o f the e l e m e n t s o f an a r r a y . T h e e x p r e s -
s ions in the for statement can, of course, be arbitrary
expressions. For example,

f o r (c - ge teO; c = = " ' I c = = ' \ t ' ; c = ge tc ())

reads the standard input umil the first non-blank character,
which is left in c. Note the use of the null statement as the

loop body.

All of the expressions in the for statement are optional.
If they are omitted, the meaning of the statement is identical
to the corresponding expansion in terms of the while state-
ment. Note that omitting all three expression yields

for (;;)
statement

which is a non-terminating loop. In this case, the loop can
be terminated by other means, e.g. via a break or return
statement.

5.9 break and next Statements
The following statements are used to alter the flow of

control within loops:

break-statement:
break

next-statement:
next

The break statement causes immediate termination of the
innermost loop (e.g. while, repeat, or for) in which it
appears. Execution continues with the statement following
the loop. Note that only the innermost loop is terminated,
even if break appears in a nested for, repeat, or while state-
ment.

The next statement causes immediate transfer to the
'next i teration' point of the innermost loop in which it
appears. For a while statement, this point corresponds to
the beginning of the conditional expression, i.e. to the ' top '
of the loop. For a repeat statement, it corresponds to the
beginning of the until port ion of the statement, i.e. to the
'bo t tom' of the loop. For a repeat statement without an
until, next causes a transfer to the beginning of the substate-
ment. Fo r a for statement, control is transferred to the
beginning of its expression3.

5.10 return Statement

The return statement is used to transfer control from a
procedure to its caller:

return-statement:
return
return (expression)

If an expression is given, it is evaluated and the result is
transmitted to the caller of the procedure as the result of the
procedure call. If necessary, the returned value is converted
to the type of the procedure in which it appears, In the case
of a bare return, the returned value is undefined. An impli-
cit return statement is supplied at the end of each procedure
so that flowing off the end of a procedure causes a return
(with an undefined value).

6. Programming Examples

The following examples illustrate the use of Y. Most of
them are taken from similar examples in Ratfor and C. It is
assumed that the i /o routines described in Software Tools
and in [han79a] are available. In addit ion, some of the
examples use defined constants (e.g. EOF), which are han-
dled by processing the Y source with macro prior to compi-
lation (see Chap. 7 of Software Tools).

- 6 5 -

6.1 Word Counting

The following program counts the number of lines,
words, and characters in its input. It is a simple version of
the we utility on UNIX [rit74] and is described in both
[ker76] and [ker78].

wc - count l ines, words , and characters in input
modu le w c

def ine(EOF,(-1))

impor t pr int f , getc f rom "y l ib d"

main()
in teger c, nw, nl, nc
in teger i nword

nJ = n w = nc = 0
i n w o r d = 0
wh i l e ((c = getcO) ~ = EOF) {

nc = nc + 1
if (c == " \n ')

nl = nl + I
if (c == " ' (c == " \n ' I c - - " \ t ')

i nwo rd = 0
else if (i nword ~ 0) {

i nwo rd = 1
n w = n w + 1
}

}
pr in t f ("%d %d % d \ n " , nl, nw, nc)

end
end

6.2 8 Queens

The 8-queens problem is commonly used (and over-used)
as an example of backtracking (cf. [wir76], Sec. 3.5). The
object is to determine all of the ways 8 queens can be placed
on a chess board so that no queen can take any of the oth-
ers. The following recursive solution prints all 92 solutions
(although only 12 are unique).

module e igh tqueens

import putc f r om "y l ib .d"

integer up [15] # up - f ac i ng d iagonals
in teger d o w n [1 5] # d o w n - f a c i n g diagonals
in teger r o w s [8] # r o w s
in teger x [8] # holds solut ion

main()
in teger i

for (i ~ 1; i <= 15; i = i + 1) # f ree the board
up[i] = d o w n [i] = 1

for (i = 1; i <= 8; i = i t 1)
r ows [i] = 1

q u e e n s (I) # place 1st and subsequent queens
end
queens(c)

in teger r, c

for (r = 1; r <= 8; r = r -~ 1)
i f (r ows [r] & u p [r - c + 8] & d o w n [r + c - 1]) {

r ows [r] = u p [r - c + 8] = d o w n [r + c - 1] = 0
x [c] = r# record so lu t ion so far
if (c == 8)

print()
e lse

queens(c + 1)

r ows [r] = u p [r - c + 8] = d o w n [r + c - 1] = 1
}

end
print()

integer k

for (k = 1; k <= 8; k = k + 1) {
putc(" ")
putc('0 ' + x[k])

putc('Xn')
end

end

6.3 Pocket Calculator

The following program simulates a simple reverse Polish
pocket calculator. It is similar to the program described in
See. 4.4 of [ker78], but includes a facility for storing values
and operates on real values. Input consists of numbers,
single-letter variable names, and operators, This example
also illustrates separate compilation and the use of modules
for information hiding. In the stack module, only the pro-
cedures clear, dump, pop, and push are exported. The
representation of the stack is hidden within its module.

dc - reverse pol ish pocket ca lcu la to r
module dc

def ine(EOF,(-1))

import getc. pr in t f f rom "yl ib d"
import push, pop, clear, dump f rom "stack, d"

real var iab les [26] # var iable s torage
integer peek # pushed back charac ter

main()
in teger c, i, ngetc0, getvar()
real t, g e t n u m 0

clear()
peek = 0
for (i = 1; i <= 26; i = i + 1)

var iab les[i] = 0
wh i l e ((c = ngetc0) ~ = EOF)

sw i tch (c) {
defaul t :

pr in t f ("%c ? \ n " , c)
case " ", " \ t ' , " \n ' :
case 'a ' . /z ' :

push(var iab les[c - "a' -~ 1])
case "A'.. 'Z':

push(var iables[c - "A' ÷ 1])
case '0 ' . . '9 ' , ". ' :

ungetc(c)
push(getnum0)

c a s e """
if (i = getvarO)

var iab les[i] = pop()
case "+':

push(pop() + pop())
case "- ' :

t = pop()
push(pop() - t)

c a s e ",':
push(pop() • pop())

c a s e ' / ' :
t = pop()
i f (t ~ = 0.0)

posh(pop() / t)
e lse

pr in t f ("d iv is ion by 0 \ n ")

- 6 6 -

case "=':
p r i n t f (" \ t%~ n", push(pop()))

case '?':
pr intf("stack =")
dump()
p r in t f f " \n ")
for (i = 1; i < = 26; i = i + 1)

if (variables[i])
printf("%c =%fXn" , i + 'a" - 1, variables[i])

case ";':
clear()

case '!':
pop()

case '$':
break

end
g e t n u m - read and return number
real getnum0

integer c, ngetc0
real r, t

r = 0.0
for (c = ngetc0; c >= "0' & c <= "9'; c = ngetc0)

r = 10.0*r + c - '0"
if (c == '.') {

t = 1.0
for (c = ngetc0; c >= '0' & c <= '9"; c = ngetc0) {

r = l O.O*r ~- c - '0"
t = 10.0*t

, = r / t

I
ungetc(c)
return (r)

end
g e t v a r - get next variable name
integer getvar0

integer c, ngetc0

c = ngetc0
whi le (c == " ' I c == ' \ t ')

c = ngetc0
if (c >= 'a" & c <= 'z')

return (c - "a" + 1)
if (c >= 'A' & c <= 'Z')

return (c - 'A' + 1)
else [

printf("%c ? variable name expectedNn", c)
ungetc(c)
return (0)
}

end
n g e t c - get next input character
integer ngetc0

integer c

if (peek)
c = peek

else
c = getc0

peek = 0
return (c)

end
ungetc - put a character back on it :put
ungetc(c)

integer c

peek = c
end

end

module stack

def ine~MAXSTACK,20)# stack size

import printf f rom "yl ib.d"
export clear, dump, pop, push to "stack.d"

integer sp # stack pointer
real s tack[MAXSTACK] # stack
clear - c lear stack
clear()

sp = 0
end
dump - pr int contents of stack
dump0

integer i

for (i = sp; i > 0; i = i - 1)
p r i n t f f " \ t% f \ n " , stack[i])

end
pop - pop top value from stack
real pop()

real x

if (sp > 0) {
x = stack[sp]
sp = sp - 1
}

else {
printf("? stack emp ty \n ")
x = O
}

return (x)
end
push - push x onto stack
real push(x)

real x

if (sp >= MAXSTACK)
printf("? stack fu l l \ n ")

else {
sp = sp + 1
stack[sp] = x
}

return (x)
end

end

6.4 Word Frequencies

The following program computes the frequency of
occurrence of the words in its input, treating upper- and
lower-case letters as equivalent. It uses a binary tree to
store the words and their associated counts. Note the use of
recursion to locate and install words in the tree (lookup)
and to print the tree (tprint).

w f - pr int word frequencies
module w f

import getc, putc, printf, exit f rom "yl ib.d"

layout of tree nodes
define(COUNT,O) # number of t imes word appears
define(LLINK,1) # pointer to left subtree
define(RUNK,2) # pointer to r ight subtree
define(WORD,3) # pointer to word
define(NODESIZE,4)

def ine(MAXWORD, 15)
define(TBU FSIZE,2000)
define(CBUFSIZE,2000)

max imum word length
size of node storage
size of char storage

- 6 7 .

define(EOF,(-1))

integer tbuf[TBUFSlZE] # holds trees
char cbuf~C~UFSIZE] # holds chars
integer next tbuf # index of next f ree word in tbuf
integer nextcbuf # index of next f ree char in cbuf
integer total # total number of words

main()
integer p, lookup(), getword0
char wo rd [MAXWORD]

tbu f [1] = O# root of the tree
next tbuf = 2
nextcbuf = 1
total = O
wh i le (getword(word)) {

p = lookup(word, 1)
tbuf [p+COUNT] = tbuf [p+COUNT] + 1

tpr int (tbuf~l])
end
ge tword - get next input word into bur, return length
integer getword(buf)

char buf []
in teger i, c. is let ter0

wh i le ((c = getcO) ~ = EOF)
if (isletter(c))

break
for (i = 1; c = isletter(c); c = getc0)

if (i < MAXWORD) {
bur[i] = c
i = i + l
}

buf[i] = 0
re turn (i - 1)

end
is le t te r - re turn fo lded c i f it is a letter. 0 otherwise
integer isletter~c)

integer c

i f (c >= 'A' & c <= 'Z')
c = c + "a" - "A'

i f (c >= "a" & c < = 'z')
re tu rn (c)

else
re tu rn (0)

end
lookup - lookup wo rd in tree; install if necessary
integer lookup(word, tree)

char word []
integer tree, cond, p, strcmp(), strlen()

i f (p = tbuf~tree]) {
cond = strcmp(word, 1, cbuf, tbuf[p+WORD])
if (cond < O)

re tu rn (lookup(word, p + LLINK))
else if (cond > O)

re turn (lookup(word, p + RLINK))
else

re turn (p)
I

else { # new entry
p = next tbuf
next tbuf = next tbuf + NODESIZE
if (nex t tbu f > TBUFSIZE) I

prinff("OUt of node s to rage \n")
exit()
I

tbuf [p+COUNT] = 0
tbuf [p~LLINK] = tbuf[p+RLINK] = 0

tbu~p+WORD] = nextcbuf
nextcbuf = nextcbuf + str len(word) + 1
if (nextcbuf > CBUFSIZE) {

p r i n ~ " o u t of wo rd s to rage \n ")
exit()
}

strcpy(word, 1, cbuf, tbuf [p+WORD])
total = total + 1
tbuf [t ree] = p
re turn (p)
}

end
tp r in t - print t ree
tprint(tree)

integer tree, count, i

if (tree) {
tpr int(tbuf[t ree+LLINK])
count = tbuf [t ree+COUNT]
p r in t f ("%d\ t%~t " , count, lO0.O*count/total)
for (i = tbuf [t ree+WORD]; cbu'tTi]; i = i + 1)

putc(cbuf[i])
putc(' \n ')
tprint(tbuf~tree+RLINK])

end
strcmp - compare s l [i] and s2[j], return <O, O, or >O
integer strcmp(sl , i, s2, j)

char s lD , s2D
integer i, j

wh i le (s l [i] = s2[j]) {
if (s t [i] == O)

return (O)
i = i + l
j = j + l
I

if (s l [i] == O)
re turn (-1)

else if (s2[j] == O)
re turn (1)

else
return (s l [i] - s2[j])

end
strcpy - copy str ing at s l [i] to s2[j]
strcpy(sl , i, s2, j)

char s lD , s2~
integer i, j

whi le (s2[j] = s l [i]) {
i = i + l
j = i + l

I
end
s t r len - return length o f s
integer strlen(s)

char S[]
integer i

for (i = 1; s[i]; i = i + 1)

return (i - 1)
end

end

Acknowledgments
The many helpful comments and suggestions from Chris

Fraser and Jack Davidson are greatly appreciated.

- 6 8 ~

References
[aho77]

Aho, A. V. and Ullman, J. D. Principles of Compiler
Design. Addison-Wesley, Reading, MA, 1977, Scc. 5.5.

[ans77]
American National Standards Institute. USA Standard
Code for Information Interchange. X3.4-1977, New
York, 1977.

[dav80]
Davidson, J. W. and Fraser, C. W. A retargetable
peephole optimizer and its application to code genera-
tion. A CM Trans. on Prog. Languages and Systems 2, 2
(Apr. 1980), 191-202.

[fra79]
Fraser, C. W. A compact, machine-independent
peephole optimizer. Conf. Rec. Sixth A CM Ann. Symp.
on the Prin. of Prog. Languages, San Antonio, .Jan.
1979, i-.6.

[gri80]
Griswold, R. E. and Hanson, D. R. Reference Manual
for the Icon Programming Language. Tech. Rep. TR
79-1a, Dept. of Computer Science, Univ. of Arizona,
Tucson, Feb. 1980.

[han79a]
Hanson, D. R. Software Tools Programmer's Manual,
Tech. Rep. TR 79-15, Dept. of Computer Science, Univ.
of Arizona, Tucson, Aug. 1979.

[han79b]
Hanson, D. R. A simple technique for controlled com-
munication among separately compiled modules.
Software--Practice and Experience 9, 11 (Nov.]979).
921-924.

[han80a]
Hanson, D. R. ls Block Structure Necessary? Tech.
Rep. TR 80-3, Dept. of Computer Science, Univ. of
Arizona, Tucson, Mar. 1980.

[hanS0b]
Hanson, D. R. Code Improvement via Lazy Evaluation.
Tech. Rep. TR 80-8, Dept. of Computer Science, Univ.
of Arizona, Tucson, Apr. 1980.

[ker75]
Kernighan, B. W. Ratfor--a preprocessor for a rational
Fortran. Software--Practice and Experience 5, 4 (Dec.
! 975), 396-406.

[ker76]
Kernighan B. W. and Plauger, P. J. Software Tools.
Addison-Wesley, Reading, Mass., 1976.

[ker78]
Kernighan, B. W. and Ritchie, D. M. The C Program-
ruing Language. Prentice Hall, Englewood Cliffs, N J,
1978.

[rit74]
Ritchie, D. M. and Thompson, K. The UNIX timeshar-
ing system. Comm. A C M 17, 6 (Jul. 1974), 365-375.

[wir76]
Wirth, N. Algorithms + Data Structures = Programs,
Prentice Hall, Englewood Cliffs, N J, 1976.

