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!. In t roduc t ion  

Y is a structured, general-purpose programming 
language intended for use in simple systems programming 
applications. More specifically', it is designed for applica- 
tions similar to those described in the book Software Tools" 
[ker76]. Y is, in fact, meant to replace Ratfor [ker75] for 
those sorts of applications and in programming courses 
based on Software Tools. 

",' is a relatively simple language. Syntactically, it falls 
about midway between Ratfor  and C [ker78]. Semanti-  
cally, it leans towards C except that it does not support all 
of the C types. Y programs are collections of modules, 
,~hich contain global and local static data and procedures. 
Procedures are recursive and are composed of local data 
declarations and statements. Statements are made up from 
the usual structured control flow constructs and expres- 
sions. Y supports  integers, characters, and reals, and singly 
dimensioned arrays of them. 

In addi t ion to the intended application areas mentioned 
above, Y is the experimental  realization of some recent ideas 
concerning separate compila t ion [han79b] and block struc- 
ture [han80a]. It also provides a testbed for experimental 
work in program portabili ty and code optimization 
[davS0,fra79,han80b]. The remainder of this paper 
describes the syntax and semantics of Y and illustrates its 
u s e .  

!.1 Syntax Notation 
Where possible, the syntax of Y is described informally 

using English prose. Where the syntax is more complicated, 
a formal metalanguage is used in which syntactic classes are 
denoted bv italic type and literal characters and symbols are 
denoted b~" bold type. Alternatives are separated by vertical 
bars ( I ) or are listed on separate lines. Optional  items are 
enclosed in brackets ( [ ] ), and ellipses ( ... ) indicate indefin- 
ite repetition of the item they immediately follow. 

In cases where the literal use of bars, brackets, and 
periods is not clear in context or conflicts with their 
metalinguistic use, they are enclosed in quotes. Program 
examples are given in a s a n s - s e r i f  type. 

2. Lexical Structure 
Y programs are composed of identifiers, reserved words. 

constants, operators, and other separators. The "official" 
character set of Y is ASCII fans77]. Blanks and tabs are 
ignored but, unlike Fortran,  are required if necessary to 
separate some lexical elements such as identifiers and 
reserved words; e.g. in t ege ra  and in teger  a are not 
equivalent. 

2.1 Reserved Words 
Reserved words introduce language constructs and may 

not be used for other purposes (e.g. as a variable name). 
Reserved words must be given in lower-case. The reserved 
words are 

break for next 
case fortran real 
character from repeat 
char if return 
default import switch 
else integer to 
export int until 
end module while 

2.2 Identifiers 
Identifiers name language elements such as procedures 

and variables. An identifier is a sequence of letters, digits, 
or underscores that begins with a letter, Corresponding 
upper- and lower-case letters are treated as different. Iden- 
tifiers may be of any length, but some implementat ions  may 
use only the first 5 to 8 characters internally. 

2.3 Integer and Character Constants 
Integer constants are denoted by sequences of digits in 

the usual manner.  If a leading O is specified, the constant  is 
assumed to be given in octal. 

Single character constants  are treated as integers with 
numerical values corresponding to their AS C l l  code. A 
character constant  is specified by enclosing the desired char- 
acter in single quotes, e.g. 'x'. Some characters, such as the 
single quote, cannot  be entered directly because of their spe- 
cial function. The following escape convention may be used 
to enter these kinds of characters. 

*1 hi, ~ork ~as supported b) the National Science Foundation under Grant 
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character code 

newline \ n  
single quote V 
double quote \ "  
backslash \ \  
tab \ t  
any character \ d d d  

[ h e  specification \ d d d  represents the character with ASCII  
code octal ddd; only enough digits to specify the code need 
be given. 

2.4 Real Constants 
Real constants are specified in the standard fashion 

except that exponential notation (e.g. 3 . 4 5 e l  O) is not sup- 
ported. For  magnitudes less than 1, a leading 0 is required. 

2.5 String Constants 

String constants are specified by delimiting the sequence 
of characters by double quotes ("). Single quotes may be 
used for strings of 2 or more characters, Special characters, 
including quotes, may be specified using the escape conven- 
tion described above. In addition to the specified charac- 
ters. a null character (ASCII  code 0j is placed at the end of 
each string by the compiler. 

2.6 Commel,:~ 
The sharp character (#) causes the rest of the line on 

which it appears to be ignored and therefore serves to intro- 
duce comments. 

3. Program Structure 
A v program consists of one or more modules. A 

module is simply a file whose contents have the general 
fo~m 

module." 
module identifier 

[ import~export-declaration ]... 
[ variable-declaration ]... 
[ procedure-declaration ]... 
end 

Executable portions of a program appear only within pro- 
cedures. Program execution begins by invoking the pro- 
cedure named main,  which must appear  in only one 
module. 

Generally speaking, language constructs, such as 
declarations, statements, and expressions, are terminated 
by the end of the line on which they appear  much as in Rat-  
for and Icon [gri80]. Within a construct, howeveL newtines 
may be used as desired to improve readability provided it it 
is obvious that the construct is continued on the next line.} 

3.1 Scope and Import/Export Declarations 
Unless specified otherwise, the scope of all variables and 

procedures declared within a module is restricted to that 
module. Static communication among separately compiled 
modules--accessing variables and procedures declared in 
another module-- i s  indicated by import  and export 
declarations [han79b]: 

+ I¢¢hnleal]3, a ne'aline i~ treated as white space except at points  where it is in the 
lollon set [aho77]  of a construct,  in which case it signals the end of  the construct. 

import / export-dec[arat ion: 
import  identifier [,  ident~ier ]... from string-literal 
export identoCier [, identoqer ]... to string-literal 

These declarations cause the compiler to access the file 
whose name is givcn by the string literal and read or write 
information about the listed identifiers. These files, called 
description files, are constructed and maintained by the 
compiler: they are not meant to be edited by programmers.  
By restricting access to description files, programmers have 
some control over the sharing of variables and procedures 
among separately compiled modules. 

The import declaration lists those variables and pro- 
cedures that are referenced in the current module but 
defined in another. The compiler reads the characteristics 
of the identifiers, such as the type, from the description file, 
provided it is accessible. References to the identifiers are 
external references, which are resolved during linking, but 
the type checking associated with operations on them is per- 
formed during compilation. 

The export declaration lists those variables and pro- 
cedures that are defined in the current module but may bc 
referenced in another. After compiling the module, the 
compiler writes the characteristics of the identifiers to the 
description file, provided it is accessible for writing. If an 
entry for an identifier already appears in a description file, it 
is overwritten by the new entry. 

Note that ihe impor t /expor t  mechanism cannot handle 
'mutual '  dependencies. For  example, suppose module a 
contains 

export  f to " f l  " 
import  g f rom " f2 "  
f(. . .)  

g(...) 

end 

and module b contains 

export  O to "f2" 
import  f f rom " f l "  
g(-,.) 

f(...) 

end 

Module a must be compiled before b and vice versa. The 
solution is to place both f and 9 in one module. Like most 
high-level language facilities, the i m p o r t  export scheme 
imposes a particular structure on programs that does not 
suit some cases, just as most structured control statements 
and type systems do not cater well to every possible situa- 
tion. 

3.2 Variable Declarations 

Variables that are declared outside of any procedure are 
static and are global to the module in which they are 
declared. The syntax is 
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variable,declaration: 
type gtobat-declarator [ ,  global-declarator ]... 

global-declarator: 
identi~er 
ictentijier '[ ' integer-literal ']" 

type: 
character 
char 
integer 
int 
real 

As indicated, scalars and arrays of type character, integer, 
or real may be declared. Character scalars are equivalent to 
inleger sca!ars, however. For arrays, the integer literal gives 
the number of elements in the array, and the array bounds 
are from 1 to that number. A reference to an element of a 
character array (e.g. s[i]) has type integer. 

3.3 Procedure Declarations 
Procedures are declared as follows. 

procedure-deck 
[ type ] identifier ( [ identifier [ , identifier ]... ] ) 

[ local-declaration ]... 
[ statement ],.. 
end 

local-declaration: 
t.179e local-declarator [ , local-declarator ]... 

Iocal-declar at or : 
identifier 
identifier '[" [ integer-literal ] "]" 
identifier ( ) 

Procedures are recursive. 

If the type of a procedure is omitted, it is typeless and 
cannot be used in a context requiring a type. It is essentially 
a subroutine. Procedures of type character are equivalent 
to procedures of type integer. 

Communication among procedures is via arguments or 
global variables (see above). Transmission of actual argu- 
ments is by value for scalars and by reference for array 
names (see below). 

The declarations for local variables within a procedure 
must include specifications for the formal parameters. For 
array parameters, the array size is ignored since the storage 
for an array transmitted as an actual argument is allocated 
by the caller. It is normally unnecessary to declare other 
procedures referenced within a procedure. This is the case if 
the referenced procedure appears in the module before the 
procedure in which it is used, is imported, or is used in a 
context that does not require a type. If the type is required 
and the referenced procedure is as yet undefined, a local 
declaration of the indicated form may be given to specify 
the type. Such declarations must be consistent with the sub- 
sequent procedure declaration. 

4. Expiessioas 

Expressions compute values. Expression evaluation 
proceeds according the the precedence and associativity of 
the operators involved. Evaluation is generally left-to-right. 
but the precise order is undefined except in  a few cases. 

Operator precedence and associativity is summarized in the 
following table. 

operators associativity precedence 

= right-to-left lowest 
1 left-to-right 
& left-to-right 
. . . .  < <= >= > >> << left-to-right 
+ - left-to-right 
* / % left-to-right 
"~ unary highest 

Parentheses may be used as usual to override the buih-in 
precedence and associativity rules. 

4.1 Variables 
The most basic expression refers to a variable--either a 

scalar or an array element: 

variable: 
identifier 
identifier '[" expression '] '  

For an array reference, the type of the subscript expression 
must be integer. If it is not, the appropriate conversion is 
provided automatically. The type of a variable is deter- 
mined by its declaration. The type of a reference to an ele- 
ment of a character array (e.g. a[i]) is integer. 

4.2 Primary Expressions 
The primary expressions are: 

primary-expresston: 
integer-literal 
real-literal 
string-literal 
variable 
identifier ( [ expression [ ,  expression ]... ] ) 
( expression ) 

The type of a literal depends on its form as described in Sec. 
2, The type of a parenthesized expression is the type of the 
expression itself. The type of a procedure call is determined 
by the type given in the procedure declaration. It is permis- 
sible to have a procedure without a type, providing it is 
never used in a context that reqmres one. If a procedure 
name is undeclared, it is assumed to be a procedure without 
a type, which will presumably be declared in a subsequent 
procedure declaration. If a type is required, a local declara- 
tion for the procedure may be given (see See. 3.3). 

The actual arguments to a procedure are evaluated in an 
unspecified order. For scalar variables and expressions. 
copies of the actual argument values are passed to the pro- 
cedure. For expressions consisting of only an array name. 
the address of the array is passed. Thus, argument 
transmission is by value for scalars and by reference for 
arrays. Note that. unlike Fortran (and Ratfor). an array 
reference such as a[i] is a scalar. It is not possible, therefore, 
to pass portions of an array to a procedure. Actual argu- 
ment types and the number of arguments are not checked 
for consistency with the formal parameters given in the pro- 
cedure declaration. 
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4.3 Unary Operators 

unary-expression: 
- expression 
+ expression 

expression 

The unary - and + operators denote negation and affirma- 
tion, respectively. Negation has its usual arithmetic mean- 
ing and affirmation is a null operation. Fo r  both operators,  
the type of  the result is the type of the operands. If the types 
of both operands are the same (integer or  real), the type of 
the result is the type of the operands. F o r  'mixed mode'  
usage, integer operands are converted to real. 

The unary ,v operator  returns the ones-complement of 
its operand. The type of the result is integer, but no conver- 
sion of the operand is performed. 

4.4 Multiplicative Operators 

muhiplicative-expression: 
expression * expression 
expression / expression 
expression % expression 
expression << expression 
expression >> expression 

The binary * and / operators denote multiplication and 
division, respectively. If the types of  both operands are the 
same (integer or real), the type of the result is the type of the 
operands. In the case of  "mixed mode'  usage, integer 
operands are converted to real and the result is real. 

In integer division, the result is truncated as in Fortran.  
No check for division by 0 is made; the result in that case is 
machine-dependent.  

The binary % operator  denotes the residue operation. 
The result is an integer and is the remainder of the first 
expression divided by the second. The operands of % must 
be integer; the appropria te  conversions are performed 
automatical ly if they are not. 

The binary << and • >  operator  denote the left and right 
shifting, respectively. The result is an integer. The first 
expression may be either integer or real; no conversion is 
performed. The Second expression must be integer; the 
appropr ia te  conversions is performed automatical ly if it is 
not. For  both operators,  the value of the first expression is 
intepreted as a bit pattern and is shifted by the amount  
given by the second expression. For  left shifting, vacated 
bits are filled with zeros. For  right shifting, the value of 
vacated bits is undefined. 

4.5 Additive Operators 

additive-expression: 
expression - expression 
expresslbn + expression 

The binary - and + operators denote subtraction and addi-  
tion. respectively. If the types of both operands are the 
same (integer or real), the type of the result is the type of the 
operands. For  "mixed mode '  usage, integer operands are 
converted to real and the result is real. 

4.6 Relational Operators  

relational-expression: 
expression < expression 
expression <= expression 
expression == expression 
expression "~= expression 
expression >= expression 
expression > expression 

The relational operators are < (less than), <= (less than or 
equal), == (equal to), ~ =  (not equal to), >= (greater than or 
equal to), and • (greater than). They all yield an integer 
result: 0 if the relation is false, I if it is true. If the types of 
the operands are not the same (integer or real), integer 
operands are converted to real. 

4.7 Logical Operators 

logical-expression: 
expression '1" expression 
expression & expression 

The binary I and & operators denote inclusive OR and AND, 
respectively. When used in a context requiring a value, I 
returns the bitwise inclusive OR of its operands and & 
returns the bitwise AND of  its operands. The type of the 
result is integer. Any combinat ion of  integer and real 
operands is permissible; no conversions are performed. 

When the I and & operators  are used in a context that 
does not require a value, such as in the condit ional  expres- 
sion in an if, while, or for statement, one may not be gen- 
erated. More importantly,  in expressions involving several 
I and & operators,  only enough of  the expression to deter- 
mine the ultimate truth value (zero or non-zero) may be 
evaluated. For  example, in 

if (f(x) I g(x)) x = 0 

it is undefined whether both f and g are invoked. 

4.8 Assignment Operator 

assignment-expression: 
variable = expression 

The binary = operator  denotes assignment. The value of 
the expression is stored in the location denoted by the vari- 
able. The value is converted, if necessary, to the type associ- 
ated with the variable. The value of  the expression (after 
conversion) becomes the result of the = operator .  

The = operator  associates to the right, permitting multi- 
ple assignments, e.g., 

a = b = c = 6  

associates as in 

a = ( b =  (c = 6)) 

Evaluation of a single assignment is defined to be left-to- 
right so that, for example,  in 

a[i] = fix,y) 

the value of  i before the invocation o f f  is used to index into 
a. Note that this rule is for single assignments only; the 
order of evaluation of the variables involved in a multiple 
assignment is undefined. Thus, in 

a[i] = i =  i +  1 

it is undefined whether the value of  i before or after it is 
incremented is used to index a. 
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4,9 Conversions 

As indicated above, conversions between integer and real 
values may be performed in certain circumstances. Such 
conversions are provided automatically as appropriate. 

Conversion from an integer to a real value corresponds 
to the 'float" operation in Fortran.  Note that, on some 
machines, some precision may be lost in converting large 
integers to real values. 

Conversion from a real value to an integer corresponds 
to the ' f ix '  operation in Fortran.  Specifically, the real value 
is truncated to its integral part. If the result is not within the 
range of integers, the result is undefined. In addition, the 
direction of truncation of negative real values is undefined 
since it seems to be very machine-dependent. 

Despite the machine-dependent aspects of conversion, it 
is intended that the results in Y be similar, if not equivalent, 
to the results of  the corresponding operation in Fortran. 

5. S ta tements  

Statements are executed sequentially in the order in 
which they appear.  Various control structures provide for 
other orders of  execution. 

As mentioned above, statements are usually terminated 
by the en~ of the line on which they appear. In most cases, 
however, , tatements may be spread out over several lines 
for readabili ty provided they are broken at points where it is 
obvious that they are continued on subsequent lines. 

5.1 Express ion Statement 

Most statements are simply expressions: 

e x p r e s s i o n - s t  a t e m e n t  : 
e x p r e s s i o n  

Typical expression statements are assignment expressions 
and procedure calls. 

5.2 Nul l  S tatement  
A lone semicolon is treated as a null statement: 

n u l l - s t a t e m e n t :  

Null statements are sometimes used as the body of loops in 
cases where an empty body is needed. The null statement is 
the one case in which a statement may immediately follow 
another without an intervening newline. As such, semi- 
colons may be used to place several statements on the same 
line, e.g. 

a = 2; f(a, b); b = a + 1 

5.3 C o m p o u n d  Statement 
The compound statement permits several statements to 

be grouped together as one statement: 

c o m p o u n d - s t a t e m e n t :  
{ s t a t e m e n t  [ s t a t e m e n t  ]... } 

5.4 if  Statement  
The if statement is the basic conditional statement and 

permits a one-, two-, or multi-way branch on the result of 
an expression: 

i f i s t a t e m e n t :  
i f  ( e x p r e s s i o n  ) s t a t e m e n t  
i f  ( e x p r e s s i o n  ) s t a t e m e n t  else s t a t e m e n t  

In both forms, the expression is evaluated and if the result is 
non-zero the first substatement is executed. If the else is 
specified, a zero result causes execution of the second sub- 
statement. 

The familiar 'dangling else' ambiguity in nested if state- 
ments is resolved by associating an else with the closest if 
that does not have an else. For  example, in 

if (a > =  O) 
if (a > b) 

m a x  = a 
e l s e  

m a x  = b 

the else is associated with the second if. A compound state- 
ment may be used to obtain alternate interpretations, e.g. 

if (a > =  O) { 
if (a > b) 

m a x  = a 
} 

e l s e  
m a x  = b 

Us ing  an i f  s ta temen t  as the  subs ta temen t  f o l l o w i n g  an 
else is a general way of  writing a multi-way decision and 
corresponds to a linear search. The general form is 

if  ( e x p r e s s i o n  ) 
s t a t e m e n t  

else if  ( e x p r e s s i o n )  
s t a t e m e n t  

else if  ( e x p r e s s i o n )  
s t a t e m e n t  

else 
s t a t e m e n t  

The conditional expressions are executed in the order given 
and the first non-zero result causes the execution of the 
associated statement and termination of  the search. If none 
of the expressions yields a non-zero result, the statement 
associated with the last else is executed. Note that this latter 
statement, which corresponds to a 'defau l t '  case, is optional. 

5.5 switch Statement 

The switch statement is similar to the if statement in that 
it permits a multi-way branch on the result of an expression. 
The important difference is that only c o n s t a n t s  may be 
compared with the resulting value to control flow. it is, 
therefore, a special case of the if-else chain described in the 
previous section. 

switch-statement: 
switch ( expression ) { 

[ case case-label [,  case-label t . .  : [ statement ]... ]... 
[ defaull : [ statement ]... ] 

case-labeh 
[ -  I + ] integer-literal 
[ - [ + ] integer-literal .. [ - I + ] integer-literal 

The expression is evaluated and the resulting value is com- 
pared to all of  the cases. Execution continues with the 
statement sequence that follows the case containing the 
resulting value. Upon completion of  that statement 
sequence, execution continues after the switch statement. 
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Note that this behavior is different than in C where control 
falls through to the next case. 

If the value of the expression does not appear  in any of 
the case lists, execution continues with the statement 
sequence that 1011ows the case labeled default. The default 
case is optional; if it is omitted and the expression value 
does not appear  in any case list, execution continues after 
the switch statement. The default case may appear  any- 
where within the switch statement, but only once. 

5.6 while Statement 
In the while statement 

while-statement: 
while ( expression ) statement 

the expression is repeatedly evaluated until it yields a zero 
result. The substatement is executed after each evaluation 
that resulted in a non-zero value. Note that the result of the 
expression is tested before the substatement is executed. 
Thus, if the initial evaluation of the expression yields zero, 
the substatement is never executed. 

5.7 repeat Statement 
I n the repeat statement 

repeat-statement: 
repeat statement 
repeat s t a t e m e n t  until ( expression ) 

The substatement is executed repeatedly, provided that 
after each execution, the expression yields a non-zero value. 
Note that the result of the expression is tested after the sub- 
statement is executed. Thus, the substatement is always 
executed at least once. 

The until portion of the repeat statement is optional  in 
which case the repeat statement is a non-terminating loop. 
In this case, the loop can be terminated by other means, e.g. 
via a break or return statement. 

5.8 for Statement 
The for statement 

for-statement: 
for ( [ expression1 ] : [ expression2 ] ; [ expression3 ] ) 

statement 

is equivalent (in the absence of next statements) to 

expressionl 
while ( expression2 ) { 

statement 
expression3 

In typical usage, expressionl and expression3 are assign- 
ments or procedure calls, and expression2 is a conditional 
expression. For example, 

s u m  - 0 
f o r ( i = 1 :  i < = 1 0 ;  i = i + l )  

s u m  = s u m  + a [ i ]  

c o n i p u t e s  the  sum o f  the  e l e m e n t s  o f  an  a r r a y .  T h e  e x p r e s -  
s ions  in the for statement can, of course, be arbitrary 
expressions. For  example, 

f o r  (c - ge teO;  c = =  " ' I c = =  ' \ t ' ;  c = ge tc ( ) )  

reads the standard input umil the first non-blank character, 
which is left in c. Note the use of the null statement as the 

loop body. 

All of the expressions in the for statement are optional. 
If they are omitted, the meaning of the statement is identical 
to the corresponding expansion in terms of the while state- 
ment. Note that omitting all three expression yields 

for (;;) 
statement 

which is a non-terminating loop. In this case, the loop can 
be terminated by other means, e.g. via a break or return 
statement. 

5.9 break and next Statements 
The following statements are used to alter the flow of 

control within loops: 

break-statement: 
break 

next-statement: 
next 

The break statement causes immediate termination of the 
innermost loop (e.g. while, repeat, or for) in which it 
appears. Execution continues with the statement following 
the loop. Note that only the innermost loop is terminated, 
even if break appears in a nested for, repeat, or while state- 
ment. 

The next statement causes immediate transfer to the 
'next i teration'  point of the innermost loop in which it 
appears.  For  a while statement, this point corresponds to 
the beginning of the conditional expression, i.e. to the ' top '  
of the loop. For  a repeat statement, it corresponds to the 
beginning of  the until port ion of the statement, i.e. to the 
'bo t tom'  of the loop. For  a repeat statement without an 
until, next causes a transfer to the beginning of the substate- 
ment. Fo r  a for statement, control is transferred to the 
beginning of  its expression3. 

5.10 return Statement 

The return statement is used to transfer control from a 
procedure to its caller: 

return-statement: 
return 
return ( expression ) 

If an expression is given, it is evaluated and the result is 
transmitted to the caller of  the procedure as the result of the 
procedure call. If necessary, the returned value is converted 
to the type of the procedure in which it appears, In the case 
of  a bare return, the returned value is undefined. An impli- 
cit return statement is supplied at the end of each procedure 
so that flowing off the end of a procedure causes a return 
(with an undefined value). 

6. Programming Examples 

The following examples illustrate the use of Y. Most of 
them are taken from similar examples in Ratfor  and C. It is 
assumed that the i /o  routines described in Software Tools 
and in [han79a] are available. In addit ion,  some of the 
examples use defined constants (e.g. EOF), which are han- 
dled by processing the Y source with macro prior to compi- 
lation (see Chap. 7 of  Software Tools). 
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6.1 Word Counting 

The following program counts the number of lines, 
words, and characters in its input. It is a simple version of 
the we utility on UNIX [rit74] and is described in both 
[ker76] and [ker78]. 

# wc  - count  l ines, words ,  and characters  in input 
modu le  w c  

def ine(EOF,( -1  )) 

impor t  pr int f ,  getc f rom "y l ib  d"  

main()  
in teger  c, nw,  nl, nc 
in teger  i nword  

nJ = n w  = nc = 0 
i n w o r d  = 0 
wh i l e  ((c = getcO) ~ =  EOF) { 

nc = nc + 1 
if (c == " \n ' )  

nl = nl + I 
if (c == " ' (  c ==  " \n '  I c - -  " \ t ' )  

i nwo rd  = 0 
else if ( i nword  ~ 0) { 

i nwo rd  = 1 
n w  = n w  + 1 
} 

} 
pr in t f ( "%d %d % d \ n " ,  nl, nw,  nc) 

end 
end 

6.2 8 Queens 

The 8-queens problem is commonly used (and over-used) 
as an example of backtracking (cf. [wir76], Sec. 3.5). The 
object is to determine all of the ways 8 queens can be placed 
on a chess board so that no queen can take any of the oth- 
ers. The following recursive solution prints all 92 solutions 
(although only 12 are unique). 

module  e igh tqueens  

import  putc f r om "y l ib .d"  

integer up [15 ]  # up - f ac i ng  d iagonals  
in teger  d o w n [ 1 5 ]  # d o w n - f a c i n g  diagonals 
in teger  r o w s [ 8 ]  # r o w s  
in teger  x [ 8 ]  # holds solut ion 

main()  
in teger  i 

for  (i ~ 1; i <= 15; i = i + 1) # f ree the  board 
up[ i ]  = d o w n [ i ]  = 1 

for  (i = 1; i <=  8; i = i t 1) 
r ows [ i ]  = 1 

q u e e n s ( I )  # place 1st and subsequent  queens 
end 
queens(c) 

in teger  r, c 

for  (r = 1; r <= 8; r = r -~ 1) 
i f  ( r ows [ r ]  & u p [ r - c + 8 ]  & d o w n [ r + c - 1 ] )  { 

r ows [ r ]  = u p [ r - c + 8 ]  = d o w n [ r + c - 1 ]  = 0 
x [c ]  = r#  record so lu t ion so far  
if (c ==  8) 

print() 
e lse 

queens(c  + 1) 

r ows [ r ]  = u p [ r - c + 8 ]  = d o w n [ r + c - 1 ]  = 1 
} 

end 
print() 

integer k 

for  (k = 1; k <=  8; k = k + 1) { 
putc(" ") 
putc( '0 '  + x[k])  

putc( 'Xn')  
end 

end 

6.3 Pocket Calculator 

The following program simulates a simple reverse Polish 
pocket calculator. It is similar to the program described in 
See. 4.4 of [ker78], but includes a facility for storing values 
and operates on real values. Input consists of numbers,  
single-letter variable names, and operators, This example 
also illustrates separate compilation and the use of modules 
for information hiding. In the stack module, only the pro- 
cedures clear, dump, pop, and push are exported. The 
representation of the stack is hidden within its module. 

# dc - reverse pol ish pocket  ca lcu la to r  
module dc 

def ine(EOF,(-1 )) 

import  getc. pr in t f  f rom "yl ib d" 
import  push, pop, clear, dump f rom "stack,  d" 

real var iab les [26 ]  # var iable s torage 
integer peek # pushed back charac ter  

main() 
in teger c, i, ngetc0, getvar() 
real t, g e t n u m 0  

clear() 
peek = 0 
for  (i = 1; i <= 26; i = i + 1) 

var iab les[ i ]  = 0 
wh i l e  ((c = ngetc0) ~ =  EOF) 

sw i tch  (c) { 
defaul t :  

pr in t f ( "%c ? \ n " ,  c) 
case " ", " \ t ' ,  " \n ' :  
case 'a ' . /z ' :  

push(var iab les[c  - "a' -~ 1]) 
case "A'.. 'Z': 

push(var iables[c - "A' ÷ 1 ]) 
case '0 ' . . '9 ' ,  ". ' :  

ungetc(c) 
push(getnum0)  

c a s e  """ 
if (i = getvarO) 

var iab les[ i ]  = pop() 
case "+': 

push(pop() + pop()) 
case "- ' :  

t = pop() 
push(pop() - t) 

c a s e  ",': 
push(pop() • pop()) 

c a s e  ' / ' :  
t = pop() 
i f  (t ~ =  0.0) 

posh(pop() / t) 
e lse 

pr in t f ( "d iv is ion by 0 \ n " )  
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case "=': 
p r i n t f ( " \ t%~  n", push(pop())) 

case '?': 
pr intf("stack =") 
dump() 
p r in t f f " \n " )  
for (i = 1; i < =  26; i = i + 1) 

if (variables[i]) 
printf("%c =%fXn" ,  i + 'a" - 1, variables[i]) 

case ";': 
clear() 

case '!': 
pop() 

case '$': 
break 

end 
# g e t n u m  - read and return number 
real getnum0 

integer c, ngetc0 
real r, t 

r = 0.0 
for (c = ngetc0; c >= "0' & c <= "9'; c = ngetc0) 

r = 10.0*r  + c -  '0" 
if (c == '.') { 

t =  1.0 
for (c = ngetc0; c >= '0' & c <= '9"; c = ngetc0) { 

r = l O.O*r ~- c - '0" 
t = 10.0*t  

, = r / t  

I 
ungetc(c) 
return (r) 

end 
# g e t v a r  - get next variable name 
integer getvar0 

integer c, ngetc0 

c = ngetc0 
whi le (c == " ' I c == ' \ t ' )  

c = ngetc0 
if (c >= 'a" & c <= 'z') 

return (c - "a" + 1) 
if (c >= 'A' & c <= 'Z') 

return (c - 'A'  + 1) 
else [ 

printf("%c ? variable name expectedNn", c) 
ungetc(c) 
return (0) 
} 

end 
# n g e t c  - get next input character 
integer ngetc0 

integer c 

if (peek) 
c = peek 

else 
c = getc0 

peek = 0 
return (c) 

end 
# ungetc - put a character back on it :put 
ungetc(c) 

integer c 

peek = c 
end 

end 

module stack 

def ine~MAXSTACK,20)# stack size 

import printf  f rom "yl ib.d" 
export  clear, dump, pop, push to "stack.d" 

integer sp # stack pointer 
real s tack[MAXSTACK] # stack 
# clear - c lear stack 
clear() 

sp = 0 
end 
# dump - pr int contents of stack 
dump0 

integer i 

for (i = sp; i > 0; i = i - 1) 
p r i n t f f " \ t% f \ n " ,  stack[i]) 

end 
# pop - pop top value from stack 
real pop() 

real x 

if (sp > 0) { 
x = stack[sp] 
sp = sp - 1 
} 

else { 
printf("? stack emp ty \n " )  
x = O  
} 

return (x) 
end 
# push - push x onto stack 
real push(x) 

real x 

if (sp >= MAXSTACK) 
printf("? stack fu l l \ n " )  

else { 
sp = sp + 1 
stack[sp] = x 
} 

return (x) 
end 

end 

6.4 Word  Frequencies 

The following program computes the frequency of 
occurrence of  the words in its input, treating upper- and 
lower-case letters as equivalent. It uses a binary tree to 
store the words and their associated counts. Note the use of 
recursion to locate and install  words in the tree (lookup) 
and to print the tree (tprint). 

# w f  - pr int word  frequencies 
module w f  

import  getc, putc, printf, exit f rom "yl ib.d" 

# layout of tree nodes 
define(COUNT,O) # number of t imes word  appears 
define(LLINK,1) # pointer to left subtree 
define(RUNK,2) # pointer to r ight subtree 
define(WORD,3) # pointer to word  
define(NODESIZE,4) 

def ine(MAXWORD, 15) 
define(TBU FSIZE,2000) 
define(CBUFSIZE,2000) 

# max imum word  length 
# size of node storage 
# size of char storage 
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define( EOF,(-1 )) 

integer tbuf[TBUFSlZE] # holds trees 
char cbuf~C~UFSIZE] # holds chars 
integer next tbuf  # index of next f ree word  in tbuf  
integer nextcbuf  # index of next f ree char in cbuf  
integer total  # total number  of  words 

main() 
integer p, lookup(), getword0 
char wo rd [MAXWORD]  

tbu f [1 ]  = O# root of  the tree 
next tbuf  = 2 
nextcbuf  = 1 
total = O 
wh i le  (getword(word))  { 

p = lookup(word, 1) 
tbuf [p+COUNT]  = tbuf [p+COUNT] + 1 

tpr int ( tbuf~l ] )  
end 
# ge tword  - get next input word into bur, return length 
integer getword(buf )  

char  buf [ ]  
in teger i, c. is let ter0 

wh i le  ((c = getcO) ~ =  EOF) 
if ( isletter(c)) 

break 
for (i = 1; c = isletter(c); c = getc0) 

if (i < MAXWORD) { 
bur[ i ]  = c 
i = i + l  
} 

buf[ i ]  = 0 
re turn  (i - 1) 

end 
# is le t te r  - re turn  fo lded c i f  it is a letter. 0 otherwise 
integer isletter~c) 

integer c 

i f  (c >= 'A'  & c <=  'Z') 
c = c + "a" - "A' 

i f  (c >= "a" & c < =  'z')  
re tu rn  (c) 

else 
re tu rn  (0) 

end 
# lookup - lookup wo rd  in tree; install if necessary 
integer lookup(word,  tree) 

char word [ ]  
integer tree, cond, p, strcmp(), strlen() 

i f  (p = tbuf~tree]) { 
cond = strcmp(word, 1, cbuf, tbuf[p+WORD]) 
if (cond < O) 

re tu rn  ( lookup(word, p + LLINK)) 
else if (cond > O) 

re turn  ( lookup(word, p + RLINK)) 
else 

re turn  (p) 
I 

else { # new entry  
p = next tbuf  
next tbuf  = next tbuf  + NODESIZE 
if (nex t tbu f  > TBUFSIZE) I 

prinff("OUt of  node s to rage \n" )  
exit() 
I 

tbuf [p+COUNT] = 0 
tbuf [p~LLINK] = tbuf[p+RLINK] = 0 

tbu~p+WORD]  = nextcbuf  
nextcbuf  = nextcbuf  + str len(word) + 1 
if  (nextcbuf  > CBUFSIZE) { 

p r i n ~ " o u t  of  wo rd  s to rage \n " )  
exit() 
} 

strcpy(word, 1, cbuf, tbuf [p+WORD]) 
total = total + 1 
tbuf [ t ree]  = p 
re turn (p) 
} 

end 
# tp r in t  - print t ree 
tprint(tree) 

integer tree, count, i 

if (tree) { 
tpr int( tbuf[ t ree+LLINK]) 
count  = tbuf [ t ree+COUNT] 
p r in t f ( "%d\ t%~t " ,  count, lO0.O*count/total) 
for  (i = tbuf [ t ree+WORD];  cbu'tTi]; i = i + 1) 

putc(cbuf[i]) 
putc( ' \n ' )  
tprint(tbuf~tree+RLINK]) 

end 
# strcmp - compare s l [ i ]  and s2[j], return <O, O, or >O 
integer strcmp(sl ,  i, s2, j) 

char s lD ,  s2D 
integer i, j 

wh i le  (s l [ i ]  = s2[j]) { 
if (s t [ i ]  == O) 

return (O) 
i = i + l  
j = j + l  
I 

if ( s l [ i ]  == O) 
re turn ( -1 )  

else if  (s2[j] == O) 
re turn (1) 

else 
return (s l [ i ]  - s2[j]) 

end 
# strcpy - copy str ing at s l [ i ]  to s2[ j ]  
strcpy(sl ,  i, s2, j) 

char s lD ,  s2~ 
integer i, j 

whi le  (s2[j ]  = s l [ i ] )  { 
i = i + l  
j = i + l  

I 
end 
# s t r len  - return length o f  s 
integer strlen(s) 

char S[] 
integer i 

for (i = 1; s[i]; i = i + 1) 

return (i - 1) 
end 

end 
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