1

Introduction

A compiler translates source code to assembler or object code for a target
machine. A retargetable compiler has multiple targets. Machine-specific
compiler parts are isolated in modules that are easily replaced to target
different machines.

This book describes 1cc, a retargetable compiler for ANSI C; it fo-
cuses on the implementation. Most compiler texts survey compiling al-
gorithms, which leaves room for only a toy compiler. This book leaves
the survey to others. It tours most of a practical compiler for full ANSI C,
including code generators for three target machines. It gives only enough
compiling theory to explain the methods that it uses.

1.1 Literate Programs

This book not only describes the implementation of Tcc, it is the imple-
mentation. The noweb system for “literate programming” generates both
the book and the code for Tcc from a single source. This source con-
sists of interleaved prose and labelled code fragments. The fragments
are written in the order that best suits describing the program, namely
the order you see in this book, not the order dictated by the C program-
ming language. The program noweave accepts the source and produces
the book’s typescript, which includes most of the code and all of the text.
The program notangle extracts all of the code, in the proper order for
compilation.

Fragments contain source code and references to other fragments.
Fragment definitions are preceded by their labels in angle brackets. For
example, the code

(a fragment label 1) = 2
sum = 0;
for (i = 0; i < 10; i++) (increment sum1)

(increment sum 1)= 1

sum += x[i];

sums the elements of x. Fragment uses are typeset as illustrated by the
use of (increment sum) in the example above. Several fragments may
have the same name; notangle concatenates their definitions to produce

CHAPTER 1 m INTRODUCTION

a single fragment. noweave identifies this concatenation by using + =
instead of = in continued definitions:
(a fragment label 1) += T
printf("%d\n", sum);

Fragment definitions are like macro definitions; notangle extracts a pro-
gram by expanding one fragment. If its definition refers to other frag-
ments, they are themselves expanded, and so on.

Fragment definitions include aids to help readers navigate among
them. Each fragment name ends with the number of the page on which
the fragment’s definition begins. If there’s no number, the fragment
isn’t defined in this book, but its code does appear on the companion
diskette. Each continued definition also shows the prewous definition,
and the next continued definition, if there is one. {4 is an example of a
previous definition that appears on page 14, and 31 says the definition
is continued on page 31. These annotations form a doubly linked list
of definitions; the up arrow points to the previous definition in the list
and down arrow points to the next one. The previous link on the first
definition in a list is omitted, and the next link on the last definition is
omitted. These lists are complete: If some of a fragment’s definitions
appear on the same page with each other, the links refer to the page on
which they appear.

Most fragments also show a list of pages on which the fragment is
used, as illustrated by the number 1 to the right of the definition for
(increment sum), above. These unadorned use lists are omitted for root
fragments, which define modules, and for some fragments that occur too
frequently, as detailed below.

notangle also implements one extension to C. A long string literal
can be split across several lines by ending the lines to be continued with
underscores. notangle removes leading white space from continuation
lines and concatenates them to form a single string. The first argument
to error on page 119 is an example of this extension.

1.2 How to Read This Book

Read this book front-to-back. A few variants are possible.

e Chapter 5 describes the interface between the front end and back
ends of the compiler. This chapter has been made as self-contained
as possible.

e Chapters 13-18 describe the back ends of the compiler. Once you
know the interface, you can read these chapters with few excur-
sions back into their predecessors. Indeed, people have replaced
the front end and the back ends without reading, much less under-
standing, the other half.

1.2 w HOW TO READ THIS BOOK

e Chapters 16-18 describe the modules that capture all information
about the three targets — the MIPS, SPARC, and Intel 386 and suc-
cessor architectures. Each of these chapters is independent, so you
may read any subset of them. If you read more than one, you may
notice some repetition, but it shouldn’t be too irritating because
most code common to all three targets has been factored out into
Chapters 13-15.

Some parts of the book describe 1cc from the bottom up. For example,
the chapters on managing storage, strings, and symbol tables describe
functions that are at or near the ends of call chains. Little context is
needed to understand them.

Other parts of the book give a top-down presentation. For example,
the chapters on parsing expressions, statements, and declarations begin
with the top-level constructs. Top-down material presents some func-
tions or fragments well after the code that uses them, but material near
the first use tells enough about the function or fragment to understand
what’s going on in the interim.

Some parts of the book alternate between top-down and bottom-up
presentations. A less variable explanation order would be nice, but it’s
unattainable. Like most compilers, 1cc includes mutually recursive func-
tions, so it’s impossible to describe all callees before all callers or all
callers before all callees.

Some fragments are easier to explain before you see the code. Others
are easier to explain afterward. If you need help with a fragment, don’t
struggle before scanning the text just before and after the fragment.

Most of the code for Tcc appears in the text, but a few fragments are
used but not shown. Some of these fragments hold code that is omitted
to save space. Others implement language extensions, optional debug-
ging aids, or repetitious constructs. For example, once you've seen the
code that handles C’s for statement, the code that handles the do-while
statement adds little. The only wholesale omission is the explanation of
how Tcc processes C’s initializers, which we skipped because it is long,
not very interesting, and not needed to understand anything else. Frag-
ments that are used but not defined are easy to identify: no page number
follows the fragment name.

Also omitted are assertions. 1cc includes hundreds of assertions.
Most assert something that the code assumes about the value of a param-
eter or data structure. One is assert(0), which guarantees a diagnostic
and thus identifies states that are not supposed to occur. For example, if
a switch is supposed to have a bona fide case for all values of the switch
expression, then the default case might include assert(0).

The companion diskette is complete. Even the assertions and frag-
ments that are omitted from the text appear on the diskette. Many of
them are easily understood once the documented code nearby is under-
stood.

CHAPTER 1 m INTRODUCTION

A “mini-index” appears in the middle of the outside margin of many
pages. It lists each program identifier that appears on the page and the
page number on which the identifier is defined in code or explained in
text. These indices not only help locate definitions, but highlight circu-
larities: Identifiers that are used before they are defined appear in the
mini-indices with page numbers that follow the page on which they are
used. Such circularities can be confusing, but they are inevitable in any
description of a large program. A few identifiers are listed with more
than one definition; these name important identifiers that are used for
more than one purpose or that are defined by both code and prose.

1.3 Overview

Tcc transforms a source program to an assembler language program.
Following a sample program through the intermediate steps in this trans-
formation illustrates 1cc’s major components and data structures. Each
step transforms the program into a different representation: prepro-
cessed source, tokens, trees, directed acyclic graphs, and lists of these
graphs are examples. The initial source code is:

int round(f) float f; {
return f + 0.5; /* truncates */

}

round has no prototype, so the argument is passed as a double and round
reduces it to a float upon entry. Then round adds 0.5, truncates the
result to an integer, and returns it.

The first phase is the C preprocessor, which expands macros, includes
header files, and selects conditionally compiled code. 1cc now runs un-
der DOS and UNIX systems, but it originated on UNIX systems. Like many
UNIX compilers, Tcc uses a separate preprocessor, which runs as a sepa-
rate process and is not part of this book. We often use the preprocessor
that comes with the GNU C compiler.

A typical preprocessor reads the sample code and emits:

1 "sample.c"
int round(f) float f; {
return f + 0.5;

}

The sample uses no preprocessor features, so the preprocessor has noth-
ing to do but strip the comment and insert a # directive to tell the com-
piler the file name and line number of the source code for use when
issuing diagnostics. These sample coordinates are straightforward, but
a program with numerous #include directives brackets each included

1.3 m OVERVIEW

INT inttype
ID "round"
e

ID e

!) ’

FLOAT floattype
ID e

o

RETURN

ID "

'y

FCON 0.5

2%

EOI

FIGURE 1.1 Token stream for the sample.

file with a pair of # directives, and every other one names a line other
than 1.

The compiler proper picks up where the preprocessor leaves off. It
starts with the lexical analyzer or scanner, which breaks the input into
the tokens shown in Figure 1.1. The left column is the token code, which
is a small integer, and the right column is the associated value, if there
is one. For example, the value associated with the keyword int is the
value of inttype, which represents the type integer. The token codes for
single-character tokens are the ASCII codes for the characters themselves,
and EOI marks the end of the input. The lexical analyzer posts the source
coordinate for each token, and it processes the # directive; the rest of the
compiler never sees such directives. Tcc’s lexical analyzer is described
in Chapter 6.

The next compiler phase parses the token stream according to the
syntax rules of the C language. It also analyzes the program for seman-
tic correctness. For example, it checks that the types of the operands
in operations, such as addition, are legal, and it checks for implicit con-
versions. For example, in the sample’s addition, f is a float and 0.5 is
a double, which is a legal combination, and the sum is converted from
double to int implicitly because round’s return type is int.

The outcome of this phase for the sample are the two decorated ab-
stract syntax trees shown in Figure 1.2. Each node represents one basic
operation. The first tree reduces the incoming double to a float. It as-
signs a float (ASGN+F) to the cell with the address &f (the left ADDRF+P).
It computes the value to assign by converting to float (CVD+F) the double
fetched (INDIR+D) from address &f (the right ADDRF+P).

CHAPTER 1 m INTRODUCTION

ASGN+F RET+I
ADDRF+P CVD+F CVD+T
! INDIR+D K//éDD+D
: ADDRF+P CVF+D CNST+D
: . 0.5
‘ INDIR+F

‘caller "f"— double

» -l

o ADDRF+P
callee "f"—s float

FIGURE 1.2 Abstract syntax trees for the sample.

The second tree implements the sample’s lone explicit statement,
and returns an int (RET+I). The value is computed by fetching the float
(INDIR+F) from the cell with the address &f (ADDRF+P), converting it to
double, adding (ADD+D) the double constant 0.5 (CNST+D), and truncating
the result to int (CVD+I).

These trees make explicit many facts that are implicit in the source
code. For example, the conversions above are all implicit in the source
code, but explicit in the ANSI standard and thus in the trees. Also, the
trees type all operators explicitly; for example, the addition in the source
code has no explicit type, but its counterpart in the tree does. This
semantic analysis is done as lcc’s parser recognizes the input, and is
covered in Chapters 7-11.

From the trees shown in Figure 1.2, 1cc produces the directed acyclic
graphs — dags — shown in Figure 1.3. The dags labelled 1 and 2 come
from the trees shown in Figure 1.2. The operators are written without
the plus signs to identify the structures as dags instead of trees. The
transition from trees to dags makes explicit additional implicit facts. For
example, the constant 0.5, which appeared in a CNST+D node in the tree,
appears as the value of a static variable named 2 in the dag, and the
CNST+D operator has been replaced by operators that develop the address
of the variable (ADDRGP) and fetch its value (INDIRD).

The third dag, shown in Figure 1.3, defines the label named 1 that
appears at the end of round. Return statements are compiled into jumps
to this label, and trivial ones are elided.

As detailed in Chapter 12, the transition from trees to dags also elim-
inates repeated instances of the same expression, which are called com-
mon subexpressions. Optionally, each multiply referenced dag node can

1.3 m OVERVIEW

(DASGNF (@ RETI (3)LABELV
4
ADDRFP CVDF CVDI L
' INDIRD ADDD

ADDRFP CVFD INDIRD
% N !

Caue‘i —float .- INDIRF ADDRGP
\ e :
\ caller "f"—double *

ADDRFP "M ,0.5

FIGURE 1.3 Dags for the sample.

be eliminated by assigning its value to a temporary and using the tempo-
rary in several places. The code generators in this book use this option.
These dags appear in the order that they must execute on the code
list shown in Figure 1.4. Each entry in this list following the Start entry
represents one component of the code for round. The Defpoint entries
identify source locations, and the Blockbeg and Blockend entries identify
the boundaries of round’s one compound statement. The Gen entries
carry the dags labelled 1 and 2 in Figure 1.3, and the Label entry carries
the dag labelled 3. The code list is described in Chapters 10 and 12.

Start

<i; Defpoint 22,1,"sample.c"

4 Gen(D
<i; Blockbeg 5
4 Defpoint 8,2,"sample.c"
é» Gen(2)
<i; Blockend

é» Label1(3)

C;»Defpoint 0,3,"sample.c"

FIGURE 1.4 Code list for the sample.

217
217
217
217
217
217

Blockbeg
Blockend
Defpoint
Gen
Label
Start

CHAPTER 1 m INTRODUCTION

At this point, the structures that represent the program pass from
Tcc’s machine-independent front end into its back end, which translates
these structures into assembler code for the target machine. One can
hand-code a back end to emit code for a specific machine; such code
generators are often largely machine-specific and must be replaced en-
tirely for a new target.

The code generators in this book are driven by tables and a tree gram-
mar that maps dags to instructions as described in Chapters 13-18. This
organization makes the back ends partly independent of the target ma-
chine; that is, only part of the back end must be replaced for a new
target. The other part could be moved into the front end — which serves
all code generators for all target machines — but this step would com-
plicate using 1cc with a different kind of code generator, so it has not
been taken.

The code generator operates by annotating the dags. It first identifies
an assembler-code template — an instruction or operand — that imple-
ments each node. Figure 1.5 shows the sample’s dags annotated with
assembler code for the 386 or compatibles, henceforth termed X86. %n
denotes the assembler code for child n where the leftmost child is num-
bered 0, and %letter denotes one of the symbol-table entries at which
the node points. In this figure, the solid lines link instructions, and the
dashed lines link parts of instructions, such as addressing modes, to the
instructions in which they are used. For example, in the first dag, the
ASGNF and INDIRD nodes hold instructions, and the two ADDRGP nodes
hold their operands. Also, the CVDF node that was in the right operand
of the ASGNF in Figure 1.3 is gone — it’s been swallowed by the instruction
selection because the instruction associated with the ASGNF does both the
conversion and the assignment. Chapter 14 describes the mechanics of
instruction selection and 1burg, a program that generates selection code
from compact specifications.

For those who don’t know X86 assembler code, f1d loads a floating-
point value onto a stack; fstp pops one off and stores it; fistp does
likewise but truncates the value and stores the resulting integer instead;
fadd pops two values off and pushes their sum; and pop pops an integral
value off the stack into a register. Chapter 18 elaborates.

The assembler code is easier to read after the compiler takes its next
step, which chains together the nodes that correspond to instructions
in the order in which they’re to be emitted, and allocates a register for
each node that needs one. Figure 1.6 shows the linearized instructions
and registers allocated for our sample program. The figure is a bit of
a fiction — the operands aren’t actually substituted into the instruction
templates until later — but the white lie helps here.

Like many compilers that originated on UNIX systems, 1cc emits as-
sembler code and is used with a separate assembler and linker. This
book’s back ends work with the vendors’ assemblers on MIPS and SPARC

1.3 m OVERVIEW

@ ASGNF @ RETI @ LABELV
"fstp dword ptr %0\n" "# ret\n" "%a:\n"
s
ADDRFP INDIRD CVDI
"%a[ebp]" "f1d gword ptr %0\n" "sub esp,4\n
} fistp dword ptr O[esp]\n
v pop %c\n"
ADDRFP
"%a[ebp]"
ADDD
"fadd%1\n"
‘a
CVFD INDIRD
"# nop\n" " qword ptr %0"
\4
INDIRF ADDRGP
"f1d dword ptr %0\n" "%a"
v
ADDRFP
"%a[ebp]"

FIGURE 1.5 After selecting instructions.

systems, and with Microsoft’s MASM 6.11 and Borland’s Turbo Assembler
4.0 under DOS. Tcc generates the assembler language shown in Figure 1.7
for our sample program. The lines in this code delimit its major parts.
The first part is the boilerplate of assembler directives emitted for every
program. The second part is the entry sequence for round. The four push
instructions save the values of some registers, and the mov instruction
establishes the frame pointer for this invocation of round.

The third part is the code emitted from the annotated dags shown in
Figure 1.5 with the symbol-table data filled in. The fourth part is round’s

Register Assembler Template

f1d qword ptr %al[ebp]\n
fstp dword ptr %al[ebp]\n
f1d dword ptr %al[ebp]\n
nop\n
fadd qword ptr %a\n
eax sub esp,4\nfistp dword ptr O0[esp]\npop %c\n
ret\n
%a:\n

FIGURE 1.6 After allocating registers.

10

CHAPTER 1 m INTRODUCTION

.486

.model small boilerplate
extrn __turboFloat:near

extrn __setargv:near

public _round
_TEXT segment

_round:

push ebx entry
push esi sequence
push edi

push ebp

mov ebp,esp

f1d gword ptr 20[ebp]

fstp dword ptr 20[ebp]

f1d dword ptr 20[ebp] body of
fadd gword ptr L2 round
sub esp,4

fistp dword ptr O[esp]

pop eax

L1:

mov esp,ebp

pop ebp exit
pop edi sequence
pop esi

pop ebx

ret

_TEXT ends

_DATA segment

align 4

L2 Tabel byte initialized data
dd OOH,03fe00000H & boilerplate
_DATA ends

end

FIGURE 1.7 Generated assembler language for the sample.

exit sequence, which restores the registers saved in the entry sequence
and returns to the caller. L1 labels the exit sequence. The last part holds
initialized data and concluding boilerplate. For round, these data consist
only of the constant 0.5; L2 is the address of a variable initialized to
000000003fe00000,¢, which is the IEEE floating-point representation for
the 64-bit, double-precision constant 0.5.

1.4 m DESIGN

11

1.4 Design

There was no separate design phase for Tcc. It began as a compiler for
a subset of C, so its initial design goals were modest and focussed on
its use in teaching about compiler implementation in general and about
code generation in particular. Even as 1lcc evolved into a compiler for
ANSI C that suits production use, the design goals changed little.

Computing costs less and less, but programmers cost more and more.
When obliged to choose between two designs, we usually chose the one
that appeared to save our time and yours, as long as the quality of the
generated code remained satisfactory. This priority made Tcc simple,
fast, and less ambitious at optimizing than some competing compil-
ers. 1cc was to have multiple targets, and it was overall simplicity that
counted. That is, we wrote extra code in 1cc’s one machine-independent
part to save code in its multiple target-specific parts. Most of the design
and implementation effort devoted to 1cc has been directed at making
it easy to port 1cc to new targets.

Tcc had to be simple because it was being written by only two pro-
grammers with many other demands on their time. Simplicity saved im-
plementation time and saves more when it comes time to change the
compiler. Also, we wanted to write this book, and you’ll see that it was
hard to make even a simple compiler fit.

Tcc is smaller and faster than most other ANSI C compilers. Compila-
tion speed is sometimes neglected in compiler design, but it is widely ap-
preciated; users often cite compilation speed as one of the reasons they
use lcc. Fast compilation was not a design goal per se; it’s a consequence
of striving for simplicity and of paying attention to those relatively few
compiler components where speed really matters. 1cc’s lexical analysis
(Chapter 6) and instruction selection (Chapter 14) are particularly fast,
and contribute most to its speed.

Tcc generates reasonably efficient object code. It’s designed specifi-
cally to generate good local code; global optimizations, like those done
by optimizing compilers, were not part of Tcc’s design. Most modern
compilers, particularly those written by a CPU vendor to support its ma-
chines, must implement ambitious optimizers so that benchmarks put
their machines in the best light. Such compilers are complex and typ-
ically supported by groups of tens of programmers. Highly optimizing
C compilers generate more efficient code than 1cc does when their op-
timization options are enabled, but the hundreds of programmers who
use Tcc daily as their primary C compiler find that its generated code
is fast enough for most applications, and they save another scarce re-
source — their own time — because 1cc runs faster. And Tcc is easier
to understand when systems programmers find they must change it.

Compilers don’t live in a vacuum. They must cooperate with pre-
processors, linkers, loaders, debuggers, assemblers, and operating sys-

12

CHAPTER 1 m INTRODUCTION

tems, all of which may depend on the target. Handling all of the target-
dependent variants of each of these components is impractical. lcc’s
design minimizes the adverse impact of these components as much as
possible. For example, its target-dependent code generators emit assem-
bler language and rely on the target’s assembler to produce object code.
It also relies on the availability of a separate preprocessor. These design
decisions are not without some risk; for example, in vendor-supplied as-
semblers, we have tripped across several bugs over which we have no
control and thus must live with.

A more important example is generating code with calling sequences
that are compatible with the target’s conventions. It must be possible
for Tcc to do this so it can use existing libraries. A standard ANSI C
library is a significant undertaking on its own, but even if 1cc came with
its own library, it would still need to be able to call routines in target-
specific libraries, such as those that supply system calls. The same con-
straint applies to proprietary third-party libraries, which are increasingly
important and are usually available only in object-code form.

Generating compatible code has significant design consequences on
both 1cc’s target-independent front end and its target-dependent back
ends. A good part of the apparent complexity in the interface between
the front and back ends, detailed in Chapter 5, is due directly to the
tension between this design constraint and those that strive for simplic-
ity and retargetability. The mechanisms in the interface that deal with
passing and returning structures are an example.

Tcc’s front end is roughly 9,000 lines of code. Its target-dependent
code generators are each about 700 lines, and there are about 1,000
lines of target-independent back-end code that are shared between the
code generators.

With a few exceptions, Tcc’s front end uses well established compiler
techniques. As surveyed in the previous section, the front end per-
forms lexical, syntactic, and semantic analysis. It also eliminates local
common subexpressions (Chapter 12), folds constant expressions, and
makes many simple, machine-independent transformations that improve
the quality of local code (Chapter 9); many of these improvements are
simple tree transformations that lead to better addressing code. It also
lays down efficient code for loops and switch statements (Chapter 10).

Tcc’s lexical analyzer and its recursive-descent parser are both written
by hand. Using compiler-construction tools, such as parser generators, is
perhaps the more modern approach for implementing these components,
but using them would make 1cc dependent on specific tools. Such de-
pendencies are less a problem now than when 1cc was first available, but
there’s little incentive to change working code. Theoretically, using these
kinds of tools simplifies both future changes and fixing errors, but ac-
commodating change is less important for a standardized language like
ANSI C, and there have been few lexical or syntactic errors. Indeed, prob-

1.4 m DESIGN

13

ably less than 15 percent of 1cc’s code concerns parsing, and the error
rate in that code is negligible. Despite its theoretical prominence, pars-
ing is a relatively minor component in 1cc and other compilers; semantic
analysis and code generation are the major components and account for
most of the code — and have most of the bugs.

One of the reasons that 1cc’s back ends are its most interesting com-
ponents is because they show the results of the design choices we made
to enhance retargetability. For retargeting, future changes — each new
target — are important, and the retargeting process must make it rea-
sonably easy to cope with code-generation errors, which are certain to
occur. There are many small design decisions made throughout 1cc that
affect retargetability, but two dominate.

First, the back ends use a code-generator generator, 1burg, that pro-
duces code generators from compact specifications. These specifications
describe how dags are mapped into instructions or parts thereof (Chap-
ter 14). This approach simplifies writing a code generator, generates
optimal local code, and helps avoid errors because Tburg does most of
the tedious work. One of the Tburg specifications in this book can often
be used as a starting point for a new target, so retargeters don’t have to
start from scratch. To avoid depending on foreign tools, the companion
diskette includes 1burg, which is written in ANSI C.

Second, whenever practical, the front end implements as much of an
apparently target-dependent function as possible. For example, the front
end implements switch statements completely, and it implements access
to bit fields by synthesizing appropriate combinations of shifting and
masking. Doing so precludes the use of instructions designed specifi-
cally for bit-field access and switch statements on those increasingly few
targets that have them; simplifying retargeting was deemed more impor-
tant. The front end can also completely implement passing or returning
structures, and it does so using techniques that are often used in target-
dependent calling conventions. These capabilities are under the control
of interface options, so, on some targets, the back end can ignore these
aspects of code generation by setting the appropriate option.

While Tcc’s overall design goals changed little as the compiler evolved,
the ways in which these goals were realized changed often. Most of these
changes swept more functionality into the front end. The switch state-
ment is an example. In earlier versions of Tcc, the code-generation inter-
face included functions that the back end provided specifically to emit
the selection code for a switch statement. As new targets were added,
it became apparent that the new versions of these functions were nearly
identical to the corresponding functions in existing targets. This experi-
ence revealed the relatively simple design changes that permitted all of
this code to be moved into the front end. Doing so required changing
all of the existing back ends, but these changes removed code, and the
design changes simplify the back ends on future targets.

14

CHAPTER 1 m INTRODUCTION

The most significant and most recent design change involves the way
Tcc is packaged. Previously, 1cc was configured with one back end; that
is, the back end for target X was combined with the front end to form
an instance of 1cc that ran on X and generated code for X. Most of
Tcc’s back ends generate code for more than one operating system. Its
MIPS back end, for example, generates code for MIPS computers that
run DEC’s Ultrix or SGI's IRIX, so two instances of 1cc were configured.
N targets and M operating systems required N X M instances of lcc
in order to test them completely, and each one was configured from a
slightly different set of source modules depending on the target and the
operating system. For even small values of N and M, building N x M
compilers quickly becomes tedious and prone to error.

In developing the current version of 1cc for this book, we changed the
code-generation interface, described in Chapter 5, so that it’s possible to
combine all of the back ends into a single program. Any instance of 1cc
is a cross-compiler. That is, it can generate code for any of its targets
regardless of the operating system on which it runs. A command-line
option selects the desired target. This design packages all target-specific
data in a structure, and the option selects the appropriate structure,
which the front end then uses to communicate with the back end. This
change again required modifying all of the existing back ends, but the
changes added little new code. The benefits were worth the effort: Only
M instances of 1cc are now needed, and they’re all built from one set of
source modules. Bugs tend to be easier to decrypt because they can usu-
ally be reproduced in all instances of 1cc by specifying the appropriate
target, and it’s possible to include targets whose sole purpose is to help
diagnose bugs. It’s still possible to build a one-target instance of 1cc,
when it’s important to save space.

Tcc’s source code documents the results of the hundreds of subordi-
nate design choices that must be made when implementing software of
any significance. The source code for 1cc and for this book is in noweb
files that alternate text and code just as this book does. The code is ex-
tracted to form 1cc’s modules, which appear on the companion diskette.
Table 1.1 shows the correspondence between chapters and modules, and
groups the modules according to their primary functions. Some corre-
spondences are one-to-one, some chapters generate several small mod-
ules, and one large module is split across three chapters.

The modules without chapter numbers are omitted from this book,
but they appear on the companion diskette. T1ist.c implements the
list-manipulation functions described in Exercise 2.15, output.c holds
the output functions, and init.c parses and processes C initializers.
event.c implements the event hooks described in Section 8.5, trace.c
emits code to trace calls and returns, and prof.c and profio.c emit
profiling code.

1.4 m DESIGN

15

Function Chapter Header Modules
common definitions 1 c.h

2 alloc.c string.c
infrastructure and 3 sym.c
data structures 4 types.c

Tist.c

code-generation 5 ops.h bind.c
interface null.c symbolic.c
I/0 and 6 token.h input.c Tlex.c
lexical analysis output.c

7 error.c

8 expr.c tree.c
parsing and 9 enode.c expr.c simp.c
semantic analysis 10 stmt.c

11 decl.c main.c

init.c

intermediate-code 12 dag.c
generation
debugging and event.c trace.c
profiling prof.c profio.c
target-independent 13 config.h
instruction selection 13, 14, 15 gen.c
and register management

16 mips.md
code generators 17 sparc.md

18 x86.md

TABLE 1.1 Chapters and modules.

By convention, each chapter specifies the implementation of its mod-
ule by a fragment of the form

(M15)=
#include "c.h"
(M macros)
(M types)
(M prototypes)
(M data)
(M functions)

where M is the module name, like alloc.c. (M macros), (M types), and
(M prototypes) define macros and types and declare function prototypes
that are used only within the module. (M data) and (M functions) in-
clude definitions (not declarations) for both external and static data and

16

CHAPTER 1 m INTRODUCTION

functions. Empty fragments are elided. A module is extracted by giving
notangle a module name, such as alloc.c, and it extracts the fragment
shown above and all the fragments it uses, which yields the code for
the module.

Page numbers are not included in the fragments above, and they do
not appear in the index; they're used in too many places, and the long
lists of page numbers would be useless. Pointers to previous and subse-
quent definitions are given, however.

1.5 Common Declarations

Each module also specifies what identifiers it exports for use in other
modules. Declarations for exported identifiers are given in fragments
named (M typedefs), (M exported macros), {M exported types), (M ex-
ported data), and (M exported functions), where M names a module.
The header file c.h collects these fragments from all modules by defin-
ing fragments without the M's whose definitions list the similarly named
fragments from each module. All modules include c.h. These fragments
are neither page-numbered nor indexed, just like those in the last section,
and for the same reason.

(c.h16)=
(exported macros)
(typedefs)
#include "config.h"
(interface 78)
(exported types)
(exported data)
(exported functions)

The include file config.h defines back-end-specific types that are refer-
enced in (interface), as detailed in Chapter 5. c.h defines 1cc’s global
structures and some of its global manifest constants.

Tcc can be compiled with pre-ANSI compilers. There are just enough
of these left that it seems prudent to maintain compatibility with them.
ANSI added prototypes, which are so helpful in detecting errors that
we want to use them whenever we can. The following fragments from
output.c show how 1cc does so.

(output.c exported functions)= 18
extern void outs ARGS((char *));

(output.c functions)= 18
void outs(s) char *s; {
char *p;

1.5 m COMMON DECLARATIONS

17

for (p = bp; (*p = *s++) != 0; p++)
bp = p;
if (bp > io[fd]->Timit)
outflush(Q);
}

Function definitions omit prototypes, so old compilers compile them di-
rectly. Function declarations precede the definitions and give the entire
list of ANSI parameter types as one argument to the macro ARGS. ANSI
compilers must predefine __STDC__, so ARGS vields the types if __STDC__
is defined and discards them otherwise.

(c.h exported macros)= 17
#ifdef _STDC__
#define ARGS(1list) Tist
#else
#define ARGS(1list) O
#endif

A pre-ANSI compiler sees the declaration for outs as
extern void outs (;

but Tcc and other ANSI C compilers see
extern void outs (char *);

Since the declaration for outs appears before its definition, ANSI com-
pilers must treat the definition as if it included the prototype, too, and
thus will check the legality of the parameters in all calls to outs.

ANSI also changed variadic functions. The macro va_start now ex-
pects the last declared parameter as an argument, and varargs.h became
stdarg.h:

-~

(c.h exported macros)+= 17 18
#ifdef _STDC__
#include <stdarg.h>
#define va_init(a,b) va_start(a,b)
#else
#include <varargs.h>
#define va_init(a,b) va_start(a)
#endif

Definitions of variadic functions also differ. The ANSI C definition
void print(char *fmt, ...) { ... }

replaces the pre-ANSI C definition

103 Timit
321 Tist
98 outflush
16 outs

18

CHAPTER 1 m INTRODUCTION

ARGS 17
va_init 17

void print(fmt, va_alist) char *fmt; va_dcl; { ... }

so Tcc’s macro VARARGS uses the ANSI parameter list or the pre-ANSI
parameter list and separate declarations depending on the setting of
_ STDC__:

'S
(c.h exported macros)+= 17 18

#ifdef __STDC__ M
#define VARARGS(newlist,oldlist,olddcls) newlist

#else

#define VARARGS(newlist,oldlist,olddcls) oldlist olddcls
#endif

The definition of print from output.c shows the use of ARGS, va_init,
and VARARGS.

-~

(output.c exported functions)+= 16 97
extern void print ARGS((char *, ...));

(output.c functions)+= {6
void print VARARGS((char *fmt, ...),

(fmt, va_alist),char *fmt; va_dcl) {
va_list ap;

va_init(ap, fmt);
vprint(fmt, ap);
va_end(ap);

}

This definition is verbose because it gives the same information in two
slightly different formats, but 1cc uses VARARGS so seldom that it’s not
worth fixing.

c.h also includes a few general-purpose macros that fit nowhere else.

(c.h exported macros)+= {3 19
#define NULL ((void*)0)

NULL is a machine-independent expression for a null pointer; in environ-
ments where integers and pointers aren’t the same size, f(NULL) passes
a correct pointer where £(0) can pass more bytes or fewer in the absence
of a prototype for f. lcc’s generated code assumes that pointers fit in
unsigned integers. 1cc can, however, be compiled by other compilers for
which this assumption is false, that is, for which pointers are larger than
integers. Using NULL in calls avoids these kinds of errors in environments
where pointers are wider than unsigned integers, and thus permits Tcc
to be compiled and used as a cross-compiler in such environments.

1.6 m SYNTAX SPECIFICATIONS

19

-~

(c.h exported macros)+= 18y
#define NELEMS(a) ((int)(sizeof (a)/sizeof ((a)[01)))
#define roundup(x,n) (COA+((N)-1))&(~((n)-1)))

NELEMS (a) gives the number of elements in array a, and roundup(x,n)
returns x rounded up to the next multiple of n, which must be a power
of two.

1.6 Syntax Specifications

Grammars are used throughout this book to specify syntax. Examples
include C’s lexical structure and its syntax and the specifications read by
Tburg, Tcc’s code-generator generator.

A grammar defines a language, which is a set of sentences composed
of symbols from an alphabet. These symbols are called terminal sym-
bols or tokens. Grammar rules, or productions, define the structure, or
syntax, of the sentences in the language. Productions specify the ways in
which sentences can be produced from nonterminal symbols by repeat-
edly replacing a nonterminal by one of its rules.

A production specifies a sequence of grammar symbols that can re-
place a nonterminal, and a production is defined by listing the nontermi-
nal, a colon, and nonterminal’s replacement. A list of replacements for a
nonterminal is given by displaying the alternatives on separate lines or
by separating them by vertical bars (]). Optional phrases are enclosed in
brackets ([...]), braces ({...}) enclose phrases that can be repeated zero
or more times, and parentheses are used for grouping. Nonterminals ap-
pear in slanted type and terminals appear in a fixed-width typewriter
type. The notation “one of ...” is also used to specify a list of alternatives,
all of which are terminals. When vertical bars, parentheses, brackets, or
braces appear as terminals, they’re enclosed in single quotes to avoid
confusing their use as terminals with their use in defining productions.

For example, the productions

expr:
term{ (+|-) term}

term:
factor { (*| /) factor}

factor:
ID
v (l eXpI‘ l) v

define a language of simple expressions. The nonterminals are expr,
term, and factor, and the terminals are ID + - * / (). The first pro-
duction says that an expris a term followed by zero or more occurrences
of + term or - term, and the second production is a similar specification

20

CHAPTER 1 m INTRODUCTION

for the multiplicative operators. The last two productions specify that
a factor is an ID or a parenthesized expr. These last two productions
could also be written more compactly as

factor: ID | ' (" expr')"

Giving some alternatives on separate lines often makes grammars easier
to read.

Simple function calls could be added to this grammar by adding the
production

factor: ID '(' expr{ , expr} ')'

which says that a factor can also be an ID followed by a parenthesized
list of one or more exprs separated by commas. All three productions
for factor could be written as

factor: ID['"(" expr{ , expr} "D']| "'(' expr"')’'

which says that a factor is an ID optionally followed by a parenthesized
list of comma-separated exprs, or just a parenthesized expr.

This notation for syntax specifications is known as extended Backus-
Naur form, or EBNF. Section 7.1 gives the formalities of using EBNF gram-
mars to derive the sentences in a language.

1.7 Errors

Tcc is a large, complex program. We find and repair errors routinely. It’s
likely that errors were present when we started writing this book and
that the act of writing added more. If you think that you've found an
error, here’s what to do.

1. If you found the error by inspecting code in this book, you might
not have a source file that displays the error, so start by creat-
ing one. Most errors, however, are exposed when programmers try
to compile a program they think is valid, so you probably have a
demonstration program already.

2. Preprocess the source file and capture the preprocessor output.
Discard the original code.

3. Prune your source code until it can be pruned no more without
sending the error into hiding. We prune most error demonstrations
to fewer than five lines. We need you to do this pruning because
there are a lot of you and only two of us.

4. Confirm that the source file displays the error with the distributed
version of 1cc. If you've changed 1cc and the error appears only in
your version, then you'll have to chase the error yourself, even if it
turns out to be our fault, because we can’t work on your code.

FURTHER READING

21

5. Annotate your code with comments that explain why you think that
Tcc is wrong. If 1cc dies with an assertion failure, please tell us
where it died. If Tcc crashes, please report the last part of the call
chain if you can. If Tcc is rejecting a program you think is valid,
please tell us why you think it’s valid, and include supporting page
numbers in the ANSI Standard, Appendix A in The C Programming
Language (Kernighan and Ritchie 1988), or the appropriate section
in C: A Reference Manual (Harbison and Steele 1991). If 1cc silently
generates incorrect code for some construct, please include the cor-
rupt assembler code in the comments and flag the bad instructions
if you can.

6. Confirm that your error hasn’t been fixed already. The latest ver-
sion of Tcc is always available for anonymous ftp in pub/1cc from
ftp.cs.princeton.edu. A LOG file there reports what errors were
fixed and when they were fixed. If you report an error that’s been
fixed, you might get a canned reply.

7. Send your program in an electronic mail message addressed to
Tcc-bugs@cs.princeton.edu. Please send only valid C programs;
put all remarks in C comments so that we can process reports semi-
automatically.

Further Reading

Most compiler texts survey the breadth of compiling algorithms and do
not describe a production compiler, i.e., one that’s used daily to compile
production programs. This book makes the other trade-off, sacrificing
the broad survey and showing a production compiler in-depth. These
“breadth” and “depth” books complement one another. For example,
when you read about 1cc’s lexical analyzer, consider scanning the ma-
terial in Aho, Sethi, and Ullman (1986); Fischer and LeBlanc (1991); or
Waite and Goos (1984) to learn more about alternatives or the underly-
ing theory. Other depth books include Holub (1990) and Waite and Carter
(1993).

Fraser and Hanson (1991b) describe a previous version of 1cc, and
include measurements of its compilation speed and the speed of its gen-
erated code. This paper also describes some of Tcc’s design alternatives
and its tracing and profiling facilities.

This chapter tells you everything you need to know about noweb to use
this book, but if you want to know more about the design rationale or
implementation see Ramsey (1994). noweb is a descendant of WEB (Knuth
1984). Knuth (1992) collects several of his papers about literate program-
ming.

22

CHAPTER 1 m INTRODUCTION

The ANSI Standard (American National Standards Institute, Inc. 1990)
is the definitive specification for the syntax and semantics of the C pro-
gramming language. Unlike some other C compilers, 1cc compiles only
ANSI C; it does not support older features that were dropped by the
ANSI committee. After the standard, Kernighan and Ritchie (1988) is the
quintessential reference for C. It appeared just before the standard was
finalized, and thus is slightly out of date. Harbison and Steele (1991)
was published after the standard and gives the syntax for C exactly as it
appears in the standard. Wirth (1977) describes EBNF.

