
stringn 30

6
Lexical Analysis

The lexical analyzer reads source text and produces tokens, which are
the basic lexical units of the language. For example, the expression
*ptr = 56; contains 10 characters or five tokens: *, ptr, =, 56, and
;. For each token, the lexical analyzer returns its token code and zero
or more associated values. The token codes for single-character tokens,
such as operators and separators, are the characters themselves. Defined
constants (with values that do not collide with the numeric values of sig-
nificant characters) are used for the codes of the tokens that can consist
of one or more characters, such as identifiers and constants.

For example, the statement *ptr = 56; yields the token stream shown
on the left below; the associated values, if there are any, are shown on
the right.

'*'
ID "ptr" symbol-table entry for "ptr"
'='
ICON "56" symbol-table entry for 56

The token codes for the operators * and = are the operators themselves,
i.e., the numeric values of * and =, respectively, and they do not have
associated values. The token code for the identifier ptr is the value of
the defined constant ID, and the associated values are the saved copy
of the identifier string itself, i.e., the string returned by stringn, and a
symbol-table entry for the identifier, if there is one. Likewise, the integer
constant 56 returns ICON, and the associated values are the string "56"
and a symbol-table entry for the integer constant 56.

Keywords, such as “for,” are assigned their own token codes, which
distinguish them from identifiers.

The lexical analyzer also tracks the source coordinates for each token.
These coordinates, defined in Section 3.1, give the file name, line number,
and character index within the line of the first character of the token.
Coordinates are used to pinpoint the location of errors and to remember
where symbols are defined.

The lexical analyzer is the only part of the compiler that looks at each
character of the source text. It is not unusual for lexical analysis to ac-
count for half the execution time of a compiler. Hence, speed is impor-
tant. The lexical analyzer’s main activity is moving characters, so mini-
mizing the amount of character movement helps increase speed. This is
done by dividing the lexical analyzer into two tightly coupled modules.

102

6.1 INPUT 103

106 fillbuf
106 nextline

The input module, input.c, reads the input in large chunks into a buffer,
and the recognition module, lex.c, examines the characters to recognize
tokens.

6.1 Input

In most programming languages, input is organized in lines. Although
in principle, there is rarely a limit on line length, in practice, line length
is limited. In addition, tokens cannot span line boundaries in most lan-
guages, so making sure complete lines are in memory when they are
being examined simplifies lexical analysis at little expense in capability.
String literals are the one exception in C, but they can be handled as a
special case.

The input module reads the source in large chunks, usually much
larger than individual lines, and it helps arrange for complete tokens
to be present in the input buffer when they are being examined, except
identifiers and string literals. To minimize the overhead of accessing the
input, the input module exports pointers that permit direct access to the
input buffer:

〈input.c exported data〉+≡ �
97 104

�
extern unsigned char *cp;
extern unsigned char *limit;

cp points to the current input character, so *cp is that character. limit
points one character past the end of the characters in the input buffer,
and *limit is always a newline character and acts as a sentinel. These
pointers reference unsigned characters so that *cp, for example, won’t
sign-extend a character whose value is greater than 127.

The important consequence of this design is that most of the input
characters are accessed by *cp, and many characters are never moved.
Only identifiers (excluding keywords) and string literals that appear in ex-
ecutable code are copied out of the buffer into permanent storage. Func-
tion calls are required only at line boundaries, which occur infrequently
when compared to the number of characters in the input. Specifically,
the lexical analyzer can use *cp++ to read a character and increment cp.
If *cp++ is a newline character, however, it must call nextline, which
might reset cp and limit. After calling nextline, if cp is equal to limit,
the end of file has been reached.

Since *limit is always a newline, and nextline must be called af-
ter reading a newline, it is rarely necessary for the lexical analyzer to
check if cp is less than limit. nextline calls fillbuf when the newline
is the character pointed to by limit. The lexical analyzer can also call
fillbuf explicitly if, for example, it wishes to ensure that an entire to-
ken is present in the input buffer. Most tokens are short, less than 32

fillbuf 106
limit 103

nextline 106

104 CHAPTER 6 LEXICAL ANALYSIS

characters, so the lexical analyzer might call fillbuf whenever limit-cp
is less than 32.

This protocol is necessary in order for fillbuf to properly handle
lines that span input buffers. In general, each input buffer ends with a
partial line. To maintain the illusion of contiguous lines, and to reduce
unnecessary searching, fillbuf moves the limit-cp characters of the
partial line to the memory locations preceding the characters in the input
buffer so that they will be concatenated with the characters in the trailing
portion of the line when the input buffer is refilled. An example clarifies
this process: Suppose the state of the input buffer is

\n

cp limit

where shading depicts the characters that have yet to be consumed and
\n represents the newline. If fillbuf is called, it slides the unconsumed
tail of the input buffer down and refills the buffer. The resulting state is

\n

cp limit

where the darker shading differentiates the newly read characters from
those moved by fillbuf. When a call to fillbuf reaches the end of the
input, the buffer’s state becomes

cp limit

\n

Finally, when nextline is called for the last sentinel at *limit, fillbuf
sets cp equal to limit, which indicates end of file (after the first call to
nextline). This final state is

cp
limit

\n

The remaining global variables exported by input.c are:

〈input.c exported data〉+≡ �
103

extern int infd;
extern char *firstfile;
extern char *file;
extern char *line;
extern int lineno;

6.1 INPUT 105

104 file
106 fillbuf
104 firstfile
104 infd
103 limit
104 line
104 lineno
106 nextline

Input is read from the file descriptor given by infd; the default is zero,
which is the standard input. file is the name of the current input file;
line gives the location of the beginning of the current line, if it were
to fit in the buffer; and lineno is the line number of the current line.
The coordinates f ,x,y of the token that begins at cp, where f is the file
name, are thus given by file, cp-line, and lineno, where characters in
the line are numbered beginning with zero. line is used only to compute
the x coordinate, which counts tabs as single characters. firstfile
gives the name of the first source file encountered in the input; it’s used
in error messages.

The input buffer itself is hidden inside the input module:

〈input.c exported macros〉≡
#define MAXLINE 512
#define BUFSIZE 4096

〈input.c data〉≡
static int bsize;
static unsigned char buffer[MAXLINE+1 + BUFSIZE+1];

BUFSIZE is the size of the input buffer into which characters are read,
and MAXLINE is the maximum number of characters allowed in an uncon-
sumed tail of the input buffer. fillbuf must not be called if limit-cp
is greater than MAXLINE. The standard specifies that compilers need not
handle lines that exceed 509 characters; lcc handles lines of arbitrary
length, but, except for identifiers and string literals, insists that tokens
not exceed 512 characters.

The value of bsize encodes three different input states: If bsize is less
than zero, no input has been read or a read error has occurred; if bsize
is zero, the end of input has been reached; and bsize is greater than
zero when bsize characters have just been read. This rather complicated
encoding ensures that lcc is initialized properly and that it never tries
to read past the end of the input.

inputInit initializes the input variables and fills the buffer:

〈input.c functions〉≡ 106
�

void inputInit() {
limit = cp = &buffer[MAXLINE+1];
bsize = -1;
lineno = 0;
file = NULL;
〈refill buffer 106〉
nextline();

}

nextline is called whenever *cp++ reads a newline. If cp is greater than
or equal to limit, the input buffer is empty.

bsize 105
buffer 105

BUFSIZE 105
infd 104

inputInit 105
limit 103
line 104

lineno 104
MAXLINE 105
resynch 125

106 CHAPTER 6 LEXICAL ANALYSIS

〈input.c functions〉+≡ �
105 106

�
void nextline() {

do {
if (cp >= limit) {

〈refill buffer 106〉
if (cp == limit)

return;
} else

lineno++;
for (line = (char *)cp; *cp==' ' || *cp=='\t'; cp++)

;
} while (*cp == '\n' && cp == limit);
if (*cp == '#') {

resynch();
nextline();

}
}

If cp is still equal to limit after filling the buffer, the end of the file has
been reached. The do-while loop advances cp to the first nonwhite-space
character in the line, treating sentinel newlines as white space. The last
four lines of nextline check for resynchronization directives emitted by
the preprocessor; see Exercise 6.2. inputInit and nextline call fillbuf
to refill the input buffer:

〈refill buffer 106〉≡ 105 106

fillbuf();
if (cp >= limit)

cp = limit;

If the input is exhausted, cp will still be greater than or equal to limit
when fillbuf returns, which leaves these variables set as shown in the
last diagram on page 104. fillbuf does all of the buffer management
and the actual input:

〈input.c functions〉+≡ �
106

void fillbuf() {
if (bsize == 0)

return;
if (cp >= limit)

cp = &buffer[MAXLINE+1];
else

〈move the tail portion 107〉
bsize = read(infd, &buffer[MAXLINE+1], BUFSIZE);
if (bsize < 0) {

error("read error\n");
exit(1);

6.2 RECOGNIZING TOKENS 107

105 bsize
105 buffer
105 BUFSIZE
106 fillbuf
103 limit
104 line
105 MAXLINE

}
limit = &buffer[MAXLINE+1+bsize];
*limit = '\n';

}

fillbuf reads the BUFSIZE (or fewer) characters into the buffer begin-
ning at position MAXLINE+1, resets limit, and stores the sentinel newline.
If the input buffer is empty when fillbuf is called, cp is reset to point
to the first new character. Otherwise, the tail limit-cp characters are
moved so that the last character is in buffer[MAXLINE], and is thus ad-
jacent to the newly read characters.

〈move the tail portion 107〉≡ 106

{
int n = limit - cp;
unsigned char *s = &buffer[MAXLINE+1] - n;
line = (char *)s - ((char *)cp - line);
while (cp < limit)

*s++ = *cp++;
cp = &buffer[MAXLINE+1] - n;

}

Notice the computation of line: It accounts for the portion of the current
line that has already been consumed, so that cp-line gives the correct
index of the character *cp.

6.2 Recognizing Tokens

There are two principal techniques for recognizing tokens: building a
finite automaton or writing an ad hoc recognizer by hand. The lexical
structure of most programming languages can be described by regular
expressions, and such expressions can be used to construct a determin-
istic finite automaton that recognizes and returns tokens. The advantage
of this approach is that it can be automated. For example, LEX is a pro-
gram that takes a lexical specification, given as regular expressions, and
generates an automaton and an appropriate interpreting program.

The lexical structure of most languages is simple enough that lexical
analyzers can be constructed easily by hand. In addition, automatically
generated analyzers, such as those produced by LEX, tend to be large
and slower than analyzers built by hand. Tools like LEX are very use-
ful, however, for one-shot programs and for applications with complex
lexical structures.

For C, tokens fall into the six classes defined by the following EBNF
grammar:

Coordinate 38
gettok 111

108 CHAPTER 6 LEXICAL ANALYSIS

token:
keyword
identifier
constant
string-literal
operator
punctuator

punctuator:
one of [] () { } * , : = ; ...

White space — blanks, tabs, newlines, and comments — separates some
tokens, such as adjacent identifiers, but is otherwise ignored except in
string literals.

The lexical analyzer exports two functions and four variables:

〈lex.c exported functions〉≡
extern int getchr ARGS((void));
extern int gettok ARGS((void));

〈lex.c exported data〉≡
extern int t;
extern char *token;
extern Symbol tsym;
extern Coordinate src;

gettok returns the next token. getchr returns, but does not consume,
the next nonwhite-space character. The values returned by gettok are
the characters themselves (for single-character tokens), enumeration con-
stants (such as IF) for the keywords, and the following defined constants
for the others:

ID identifiers
FCON floating constants
ICON integer constants
SCON string constants
INCR ++
DECR --
DEREF ->
ANDAND &&
OROR ||
LEQ <=
EQL ==
NEQ !=
GEQ >=
RSHIFT >>
LSHIFT <<
ELLIPSIS ...
EOI end of input

6.2 RECOGNIZING TOKENS 109

192 addtree
149 AND
193 cmptree
149 OR

These constants are defined by

〈lex.c exported types〉≡
enum {
#define xx(a,b,c,d,e,f,g) a=b,
#define yy(a,b,c,d,e,f,g)
#include "token.h"

LAST
};

where token.h is a file with 256 lines like

〈token.h 109〉≡ 109
�

yy(0, 0, 0, 0, 0, 0, 0)
xx(FLOAT, 1, 0, 0, 0, CHAR, "float")
xx(DOUBLE, 2, 0, 0, 0, CHAR, "double")
xx(CHAR, 3, 0, 0, 0, CHAR, "char")
xx(SHORT, 4, 0, 0, 0, CHAR, "short")
xx(INT, 5, 0, 0, 0, CHAR, "int")
xx(UNSIGNED, 6, 0, 0, 0, CHAR, "unsigned")
xx(POINTER, 7, 0, 0, 0, 0, 0)
xx(VOID, 8, 0, 0, 0, CHAR, "void")
xx(STRUCT, 9, 0, 0, 0, CHAR, "struct")
xx(UNION, 10, 0, 0, 0, CHAR, "union")
xx(FUNCTION, 11, 0, 0, 0, 0, 0)
xx(ARRAY, 12, 0, 0, 0, 0, 0)
xx(ENUM, 13, 0, 0, 0, CHAR, "enum")
xx(LONG, 14, 0, 0, 0, CHAR, "long")
xx(CONST, 15, 0, 0, 0, CHAR, "const")
xx(VOLATILE, 16, 0, 0, 0, CHAR, "volatile")

〈token.h 109〉+≡ �
109

yy(0, 42, 13, MUL, multree,ID, "*")
yy(0, 43, 12, ADD, addtree,ID, "+")
yy(0, 44, 1, 0, 0, ',', ",")
yy(0, 45, 12, SUB, subtree,ID, "-")
yy(0, 46, 0, 0, 0, '.', ".")
yy(0, 47, 13, DIV, multree,'/', "/")
xx(DECR, 48, 0, SUB, subtree,ID, "--")
xx(DEREF, 49, 0, 0, 0, DEREF, "->")
xx(ANDAND, 50, 5, AND, andtree,ANDAND, "&&")
xx(OROR, 51, 4, OR, andtree,OROR, "||")
xx(LEQ, 52, 10, LE, cmptree,LEQ, "<=")

token.h uses macros to collect everything about each token or symbolic
constant into one place. Each line in token.h gives seven values of inter-
est for the token as arguments to either xx or yy. The token codes are

DECR 109
gettok 111

src 108
Symbol 37

token.h 109
token 108
tsym 108

110 CHAPTER 6 LEXICAL ANALYSIS

given by the values in the second column. token.h is read to define sym-
bols, build arrays indexed by token, and so forth, and using it guarantees
that such definitions are synchronized with one another. This technique
is common in assembler language programming.

Single-character tokens have yy lines and multicharacter tokens and
other definitions have xx lines. The first column in xx is the enumeration
identifier. The other columns give the identifier or character value, the
precedence if the token is an operator (Section 8.3), the generic opera-
tor (Section 5.5), the tree-building function (Section 9.4), the token’s set
(Section 7.6), and the string representation.

These columns are extracted for different purposes by defining the xx
and yy macros and including token.h again. The enumeration definition
above illustrates this technique; it defines xx so that each expansion de-
fines one member of the enumeration. For example, the xx line for DECR
expands to

DECR=48,

and thus defines DECR to an enumeration constant with the value 48. yy
is defined to have no replacement, which effectively ignores the yy lines.

The global variable t is often used to hold the current token, so most
calls to gettok use the idiom

t = gettok();

token, tsym, and src hold the values associated with the current token,
if there are any. token is the source text for the token itself, and tsym is
a Symbol for some tokens, such as identifiers and constants. src is the
source coordinate for the current token.

gettok could return a structure containing the token code and the
associated values, or a pointer to such a structure. Since most calls to
gettok examine only the token code, this kind of encapsulation does
not add significant capability. Also, gettok is the most frequently called
function in the compiler; a simple interface makes the code easier to
read.

gettok recognizes a token by switching on its first character, which
classifies the token, and consuming subsequent characters that make up
the token. For some tokens, these characters are given by one or more
of the sets defined by map. map[c] is a mask that classifies character c
as a member of one or more of six sets:

〈lex.c types〉≡
enum { BLANK=01, NEWLINE=02, LETTER=04,

DIGIT=010, HEX=020, OTHER=040 };

〈lex.c data〉≡ 117
�

static unsigned char map[256] = { 〈map initializer〉 };

6.2 RECOGNIZING TOKENS 111

110 BLANK
110 DIGIT
104 file
106 fillbuf
110 HEX
110 LETTER
103 limit
104 line
104 lineno
110 map
110 NEWLINE
106 nextline
110 OTHER

map[c]&BLANK is nonzero if c is a white-space character other than a
newline. Newlines are excluded because hitting one requires gettok to
call nextline. The other values identify other subsets of characters:
NEWLINE is the set consisting of just the newline character, LETTER is the
set of upper- and lowercase letters, DIGIT is the set of digits 0–9, HEX is
the set of digits 0–9, a–f, and A–F, and OTHER is the set that holds the
rest of the ASCII characters that are in the source and execution character
sets specified by the standard. If map[c] is zero, c is not guaranteed to
be acceptable to all ANSI C compilers, which, somewhat surprisingly, is
the case for $, @, and '.

gettok is a large function, but the switch statement that dispatches
on the token’s first character divides it into manageable pieces:

〈lex.c macros〉≡
#define MAXTOKEN 32

〈lex.c functions〉≡ 117
�

int gettok() {
for (;;) {

register unsigned char *rcp = cp;
〈skip white space 112〉
if (limit - rcp < MAXTOKEN) {

cp = rcp;
fillbuf();
rcp = cp;

}
src.file = file;
src.x = (char *)rcp - line;
src.y = lineno;
cp = rcp + 1;
switch (*rcp++) {
〈gettok cases 112〉
default:

if ((map[cp[-1]]&BLANK) == 0)
〈illegal character〉

}
}

}

gettok begins by skipping over white space and then checking that there
is at least one token in the input buffer. If there isn’t, calling fillbuf
ensures that there is. MAXTOKEN applies to all tokens except identifiers,
string literals, and numeric constants; occurrences of these tokens that
are longer than MAXTOKEN characters are handled explicitly in the code
for those tokens. The standard permits compilers to limit string literals
to 509 characters and identifiers to 31 characters. lcc increases these

BLANK 110
BUFSIZE 105
fillbuf 106
gettok 111
limit 103

map 110
MAXLINE 105

nextline 106
rcp 111

tsym 108

112 CHAPTER 6 LEXICAL ANALYSIS

limits to 4,096 (BUFSIZE) and 512 (MAXLINE) to accommodate programs
that emit C programs, because these emitted programs may contain long
identifiers.

Instead of using cp as suggested in Section 6.1, gettok copies cp to
the register variable rcp upon entry, and uses rcp in token recogni-
tion. gettok copies rcp back to cp before it returns, and before calls
to nextline and fillbuf. Using rcp improves performance and makes
scanning loops compact and fast. For example, white space is elided by

〈skip white space 112〉≡ 111

while (map[*rcp]&BLANK)
rcp++;

Using a register variable to index map generates efficient code where it
counts. These kinds of scans examine every character in the input, and
they examine characters by accessing the input buffer directly. Some
optimizing compilers can make similar improvements locally, but not
across potentially aliased assignments and calls to other, irrelevant func-
tions.

Each of the sections below describes one of the cases in 〈gettok
cases〉. The cases omitted from this book are

〈gettok cases 112〉≡ 112
�

111

case '/': 〈comment or /〉
case 'L': 〈wide-character constants〉
〈cases for two-character operators〉
〈cases for one-character operators and punctuation〉

gettok calls nextline when it trips over a newline or one of its syn-
onyms:

〈gettok cases 112〉+≡ �
112 113

�
111

case '\n': case '\v': case '\r': case '\f':
nextline();
if (〈end of input 112〉) {

tsym = NULL;
return EOI;

}
continue;

〈end of input 112〉≡ 112 124

cp == limit

When control reaches this case, cp points to the character that follows
the newline; when nextline returns, cp still points to that character, and
cp is less than limit. End of file is the exception: here, cp equals limit.
Testing for this condition is rarely needed, because *cp will always be a
newline, which terminates the scans for most tokens.

6.3 RECOGNIZING KEYWORDS 113

110 DIGIT
109 INT
110 LETTER
110 map
111 rcp
108 tsym

The sections below describe the remaining cases. Recognizing the to-
kens themselves is relatively straightforward; computing the associated
values for some token is what complicates each case.

6.3 Recognizing Keywords

There are 28 keywords:

keyword: one of
auto double int struct
break else long switch
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Keywords could be recognized through a look-up in a table in which each
keyword entry carries its token code and each built-in type entry carries
its type. Instead, keywords are recognized by a hard-coded decision tree,
which is faster than searching a table and nearly as simple. The cases
for the lowercase letters that begin keywords make explicit tests for the
keywords, which are possible because the entire token must appear in
the input buffer. For example, the case for i is

〈gettok cases 112〉+≡ �
112 114

�
111

case 'i':
if (rcp[0] == 'f'
&& !(map[rcp[1]]&(DIGIT|LETTER))) {

cp = rcp + 1;
return IF;

}
if (rcp[0] == 'n'
&& rcp[1] == 't'
&& !(map[rcp[2]]&(DIGIT|LETTER))) {

cp = rcp + 2;
tsym = inttype->u.sym;
return INT;

}
goto id;

id labels the code in the next section that scans identifiers. If the token
is if or int, cp is updated and the appropriate token code is returned;
otherwise, the token is an identifier. For int, tsym holds the symbol-
table entry for the type int. The cases for the characters abcdefglrsuvw
are similar, and were generated automatically by a short program.

DIGIT 110
LETTER 110

map 110
MAXLINE 105

MAXTOKEN 111
rcp 111

stringn 30
token 108

114 CHAPTER 6 LEXICAL ANALYSIS

The code generated for these fragments is short and fast. For example,
on most machines, int is recognized by less than a dozen instructions,
many fewer than are executed when a table is searched for keywords,
even if perfect hashing is used.

6.4 Recognizing Identifiers

The syntax for identifiers is

identifier:
nondigit { nondigit | digit }

digit:
one of 0 1 2 3 4 5 6 7 8 9

nondigit:
one of _
a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

The code echoes this syntax, but must also cope with the possibility of
identifiers that are longer than MAXTOKEN characters and thus might be
split across input buffers.

〈gettok cases 112〉+≡ �
113 116

�
111

case 'h': case 'j': case 'k': case 'm': case 'n': case 'o':
case 'p': case 'q': case 'x': case 'y': case 'z':
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
case 'G': case 'H': case 'I': case 'J': case 'K':
case 'M': case 'N': case 'O': case 'P': case 'Q': case 'R':
case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
case 'Y': case 'Z': case '_':
id:

〈ensure there are at least MAXLINE characters 115〉
token = (char *)rcp - 1;
while (map[*rcp]&(DIGIT|LETTER))

rcp++;
token = stringn(token, (char *)rcp - token);
〈tsym ← type named by token 115〉
cp = rcp;
return ID;

All identifiers are saved in the string table. At the entry to this and all
cases, both cp and rcp have been incremented past the first character
of the token. If the input buffer holds less than MAXLINE characters,

6.5 RECOGNIZING NUMBERS 115

109 CHAR
106 fillbuf
111 gettok

41 identifiers
143 kind
103 limit

45 lookup
105 MAXLINE
111 rcp
108 token
108 tsym

cp is backed up one character to point to the identifier’s first charac-
ter, fillbuf is called to replenish the input buffer, and cp and rcp are
adjusted to point to the identifier’s second character as before:

〈ensure there are at least MAXLINE characters 115〉≡ 114 116 120

if (limit - rcp < MAXLINE) {
cp = rcp - 1;
fillbuf();
rcp = ++cp;

}

A typedef makes an identifier a synonym for a type, and these names
are installed in the identifiers table. gettok thus sets tsym to the
symbol-table entry for token, if there is one:

〈tsym ← type named by token 115〉≡ 114

tsym = lookup(token, identifiers);

If token names a type, tsym is set to the symbol-table entry for that type,
and tsym->sclass will be equal to TYPEDEF. Otherwise, tsym is null or
the identifier isn’t a type name. The macro

〈lex.c exported macros〉≡
#define istypename(t,tsym) (kind[t] == CHAR \

|| t == ID && tsym && tsym->sclass == TYPEDEF)

encapsulates testing if the current token is a type name: A type name is
either one of the keywords that names a type, such as int, or an identifier
that is a typedef for a type. The global variables t and tsym are the only
valid arguments to istypename.

6.5 Recognizing Numbers

There are four kinds of numeric constants in ANSI C:

constant:
floating-constant
integer-constant
enumeration-constant
character-constant

enumeration-constant:
identifier

The code for identifiers shown in the previous section handles enumera-
tion constants, and the code in Section 6.6 handles character constants.
The lexical analyzer returns the token code ID and sets tsym to the
symbol-table entry for the enumeration constant. The caller checks for

MAXLINE 105
rcp 111

token 108

116 CHAPTER 6 LEXICAL ANALYSIS

an enumeration constant and uses the appropriate integer in its place;
the code in Section 8.8 is an instance of this convention.

There are three kinds of integer constants:

integer-constant:
decimal-constant [integer-suffix]
octal-constant [integer-suffix]
hexadecimal-constant [integer-suffix]

integer-suffix:
unsigned-suffix [long-suffix]
long-suffix [unsigned-suffix]

unsigned-suffix: u | U
long-suffix: l | L

The first few characters of the integer constant help identify its kind.

〈gettok cases 112〉+≡ �
114 119

�
111

case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9': {

unsigned int n = 0;
〈ensure there are at least MAXLINE characters 115〉
token = (char *)rcp - 1;
if (*token == '0' && (*rcp == 'x' || *rcp == 'X')) {

〈hexadecimal constant〉
} else if (*token == '0') {

〈octal constant〉
} else {

〈decimal constant 117〉
}
return ICON;

}

As for identifiers, this case begins by insuring that the input buffer holds
at least MAXLINE characters, which permits the code to look ahead, as the
test for hexadecimal constants illustrates.

The fragments for the three kinds of integer constant set n to the value
of the constant. They must not only recognize the constant, but also
ensure that the constant is within the range of representable integers.

Recognizing decimal constants illustrates this processing. The syntax
for decimal constants is:

decimal-constant:
nonzero-digit { digit }

nonzero-digit:
one of 1 2 3 4 5 6 7 8 9

The code accumulates the decimal value in n by repeated multiplications:

6.5 RECOGNIZING NUMBERS 117

110 DIGIT
120 fcon
111 gettok
110 map
111 rcp

37 symbol
108 token
108 tsym

57 unsignedlong

〈decimal constant 117〉≡ 116

int overflow = 0;
for (n = *token - '0'; map[*rcp]&DIGIT;) {

int d = *rcp++ - '0';
if (n > ((unsigned)UINT_MAX - d)/10)

overflow = 1;
else

n = 10*n + d;
}
〈check for floating constant 117〉
cp = rcp;
tsym = icon(n, overflow, 10);

At each step, overflow will occur if 10∗n+d > UINT MAX, where UINT_MAX
is the value of the largest representable unsigned number. Rearranging
this equation gives the test shown above, which looks before it leaps into
computing the new value of n. overflow is set to one if the constant
overflows. icon handles the optional suffixes.

A decimal constant is the prefix of a floating constant if the next char-
acter is a period or an exponent indicator:

〈check for floating constant 117〉≡ 117

if (*rcp == '.' || *rcp == 'e' || *rcp == 'E') {
cp = rcp;
tsym = fcon();
return FCON;

}

fcon is similar to icon; it recognizes the suffix of a floating constant.
overflow will be one when a floating constant has a whole part that
exceeds UINT_MAX, but neither n nor overflow is passed to fcon, which
reexamines token to check for floating overflow.

icon recognizes the optional U and L suffixes (in either case), warns
about values that overflow, initializes a symbol to the appropriate type
and value, and returns a pointer to the symbol

〈lex.c data〉+≡ �
110

static struct symbol tval;

tval serves only to provide the type and value of a constant to gettok’s
caller. The caller must lift the relevant data before the next call to gettok.

〈lex.c functions〉+≡ �
111 119

�
static Symbol icon(n, overflow, base)
unsigned n; int overflow, base; {

if ((*cp=='u'||*cp=='U') && (cp[1]=='l'||cp[1]=='L')
|| (*cp=='l'||*cp=='L') && (cp[1]=='u'||cp[1]=='U')) {

tval.type = unsignedlong;

isunsigned 60
longtype 57
ppnumber 119

%S 99
token 108
tval 117

unsignedlong 57
unsignedtype 58

118 CHAPTER 6 LEXICAL ANALYSIS

cp += 2;
} else if (*cp == 'u' || *cp == 'U') {

tval.type = unsignedtype;
cp += 1;

} else if (*cp == 'l' || *cp == 'L') {
if (n > (unsigned)LONG_MAX)

tval.type = unsignedlong;
else

tval.type = longtype;
cp += 1;

} else if (base == 10 && n > (unsigned)LONG_MAX)
tval.type = unsignedlong;

else if (n > (unsigned)INT_MAX)
tval.type = unsignedtype;

else
tval.type = inttype;

if (overflow) {
warning("overflow in constant '%S'\n", token,

(char*)cp - token);
n = LONG_MAX;

}
〈set tval’s value 118〉
ppnumber("integer");
return &tval;

}

If both U and L appear, n is an unsigned long, and if only U appears,
n is an unsigned. If only L appears, n is a long unless it’s too big, in
which case it’s an unsigned long. n is also an unsigned long if it’s an
unsuffixed decimal constant and it’s too big to be a long. Unsuffixed
octal and hexadecimal constants are ints unless they’re too big, in which
case they’re unsigneds. The format code %S prints a string like printf’s
%s, but consumes an additional argument that specifies the length of the
string. It can thus print strings that aren’t terminated by a null character.

The types int, long, and unsigned are different types, but lcc insists
that they all have the same size. This constraint simplifies the tests
shown above and the code that sets tval’s value:

〈set tval’s value 118〉≡ 118

if (isunsigned(tval.type))
tval.u.c.v.u = n;

else
tval.u.c.v.i = n;

Relaxing this constraint would complicate this code and the tests above.
For example, the standard specifies that the type of an unsuffixed dec-
imal constant is int, long, or unsigned long, depending on its value. In

6.5 RECOGNIZING NUMBERS 119

47 constant
110 DIGIT
111 gettok
110 LETTER
110 map
111 rcp
108 token

lcc, ints and longs can accommodate the same range of integers, so an
unsuffixed decimal constant is either int or unsigned.

A numeric constant is formed from a preprocessing number, which is
the numeric constant recognized by the C preprocessor. Unfortunately,
the standard specifies preprocessing numbers that are a superset of the
integer and floating constants; that is, a valid preprocessing number may
not be a valid numeric constant. 123.4.5 is an example. The prepro-
cessor deals with such numbers too, but it may pass them on to the
compiler, which must treat them as single tokens and thus must catch
preprocessing numbers that aren’t valid constants.

The syntax of a preprocessing number is

pp-number:
[.] digit { digit | . | nondigit | E sign | e sign }

sign: - | +
Valid numeric constants are prefixes of preprocessing numbers, so the
processing in icon and fcon might conclude successfully without con-
suming the complete preprocessing number, which is an error. ppnumber
is called from icon, and fcon and checks for this case.

〈lex.c functions〉+≡ �
117 120

�
static void ppnumber(which) char *which; {

unsigned char *rcp = cp--;

for (; (map[*cp]&(DIGIT|LETTER)) || *cp == '.'; cp++)
if ((cp[0] == 'E' || cp[0] == 'e')
&& (cp[1] == '-' || cp[1] == '+'))

cp++;
if (cp > rcp)

error("'%S' is a preprocessing number but an _
invalid %s constant\n", token,
(char*)cp-token, which);

}

ppnumber backs up one character and skips over the characters that may
comprise a preprocessing number; if it scans past the end of the numeric
token, there’s an error.

fcon recognizes the suffix of floating constants and is called in two
places. One of the calls is shown above in 〈check for floating constant〉.
The other call is from the gettok case for ‘.’:

〈gettok cases 112〉+≡ �
116 122

�
111

case '.':
if (rcp[0] == '.' && rcp[1] == '.') {

cp += 2;
return ELLIPSIS;

DIGIT 110
map 110

ppnumber 119
rcp 111

token 108
tsym 108
tval 117

120 CHAPTER 6 LEXICAL ANALYSIS

}
if ((map[*rcp]&DIGIT) == 0)

return '.';
〈ensure there are at least MAXLINE characters 115〉
cp = rcp - 1;
token = (char *)cp;
tsym = fcon();
return FCON;

The syntax for floating constants is

floating-constant:
fractional-constant [exponent-part] [floating-suffix]
digit-sequence exponent-part [floating-suffix]

fractional-constant:
[digit-sequence] . digit-sequence
digit-sequence .

exponent-part:
e [sign] digit-sequence
E [sign] digit-sequence

digit-sequence:
digit { digit }

floating-suffix:
one of f l F L

fcon recognizes a floating-constant, converts the token to a double value,
and determines tval’s type and value:

〈lex.c functions〉+≡ �
119

static Symbol fcon() {
〈scan past a floating constant 121〉
errno = 0;
tval.u.c.v.d = strtod(token, NULL);
if (errno == ERANGE)

〈warn about overflow 120〉
〈set tval’s type and value 121〉
ppnumber("floating");
return &tval;

}

〈warn about overflow 120〉≡ 120 121

warning("overflow in floating constant '%S'\n", token,
(char*)cp - token);

strtod is a C library function that interprets its first string argument as
a floating constant and returns the corresponding double value. If the

6.6 RECOGNIZING CHARACTER CONSTANTS AND STRINGS 121

110 DIGIT
57 doubletype
57 floattype
57 longdouble

110 map
108 token
117 tval

constant is out of range, strtod sets the global variable errno to ERANGE
as stipulated by the ANSI C specification for the C library.

A floating constant follows the syntax shown above, and is recognized
by:

〈scan past a floating constant 121〉≡ 120

if (*cp == '.')
〈scan past a run of digits 121〉

if (*cp == 'e' || *cp == 'E') {
if (*++cp == '-' || *cp == '+')

cp++;
if (map[*cp]&DIGIT)

〈scan past a run of digits 121〉
else

error("invalid floating constant '%S'\n", token,
(char*)cp - token);

}

〈scan past a run of digits 121〉≡ 121

do
cp++;

while (map[*cp]&DIGIT);

As dictated by the syntax, an exponent indicator must be followed by at
least one digit.

A floating constant may have an F or L suffix (but not both); these
specify the types float and long double, respectively.

〈set tval’s type and value 121〉≡ 120

if (*cp == 'f' || *cp == 'F') {
++cp;
if (tval.u.c.v.d > FLT_MAX)

〈warn about overflow 120〉
tval.type = floattype;
tval.u.c.v.f = tval.u.c.v.d;

} else if (*cp == 'l' || *cp == 'L') {
cp++;
tval.type = longdouble;

} else
tval.type = doubletype;

6.6 Recognizing Character Constants and Strings

Recognizing character constants and string literals is complicated by es-
cape sequences like \n, \034, \xFF, and \", and by wide-character con-
stants. lcc implements so-called wide characters as normal ASCII char-

BUFSIZE 105
limit 103

MAXLINE 105
nextline 106

122 CHAPTER 6 LEXICAL ANALYSIS

acters, and thus uses unsigned char for the type wchar_t. The syntax
is

character-constant:
[L] 'c-char { c-char }'

c-char:
any character except ', \, or newline
escape-sequence

escape-sequence:
one of \' \" \? \\ \a \b \f \n \r \t \v
\ octal-digit [octal-digit [octal-digit]]
\x hexadecimal-digit { hexadecimal-digit }

string-literal:
[L] "{ s-char }"

s-char:
any character except ", \, or newline
escape-sequence

String literals can span more than one line if a backslash immediately
precedes the newline. Adjacent string literals are automatically concate-
nated together to form a single literal. In a proper ANSI C implemen-
tation, this line splicing and string literal concatenation is done by the
preprocessor, and the compiler sees only single, uninterrupted string lit-
erals. lcc implements line splicing and concatenation for string literals
anyway, so that it can be used with pre-ANSI preprocessors.

Implementing these features means that string literals can be longer
than MAXLINE characters, so 〈ensure there are at least MAXLINE characters〉
cannot be used to ensure that a sequence of adjacent entire string literals
appears in the input buffer. Instead, the code must detect the newline
at limit and call nextline explicitly, and it must copy the literal into a
private buffer.

〈gettok cases 112〉+≡ �
119 111

scon:
case '\'': case '"': {

static char cbuf[BUFSIZE+1];
char *s = cbuf;
int nbad = 0;
*s++ = *--cp;
do {

cp++;
〈scan one string literal 123〉
if (*cp == cbuf[0])

cp++;
else

6.6 RECOGNIZING CHARACTER CONSTANTS AND STRINGS 123

61 array
57 chartype

111 gettok
103 limit
110 map
110 NEWLINE
167 primary

29 string
30 stringn

108 token
108 tsym
117 tval

error("missing %c\n", cbuf[0]);
} while (cbuf[0] == '"' && getchr() == '"');
*s++ = 0;
if (s >= &cbuf[sizeof cbuf])

error("%s literal too long\n",
cbuf[0] == '"' ? "string" : "character");

〈warn about non-ANSI literals〉
〈set tval and return ICON or SCON 123〉

}

The outer do-while loop gathers up adjacent string literals, which are
identified by their leading double quote character, into cbuf, and reports
those that are too long. The leading character also determines the type
of the associated value and gettok’s return value:

〈set tval and return ICON or SCON 123〉≡ 123

token = cbuf;
tsym = &tval;
if (cbuf[0] == '"') {

tval.type = array(chartype, s - cbuf - 1, 0);
tval.u.c.v.p = cbuf + 1;
return SCON;

} else {
if (s - cbuf > 3)

warning("excess characters in multibyte character _
literal '%S' ignored\n", token, (char*)cp-token);

else if (s - cbuf <= 2)
error("missing '\n");

tval.type = inttype;
tval.u.c.v.i = cbuf[1];
return ICON;

}

String literals can contain null characters as the result of the escape se-
quence \0, so the length of the literal is given by its type: An n-character
literal has the type (ARRAY n (CHAR)) (n does not include the double
quotes). gettok’s callers, such as primary, call stringn when they want
to save the string literal referenced by tval.

The code below, which scans a string literal or character constant,
copes with four situations: newlines at limit, escape sequences, non-
ANSI characters, and literals that exceed the size of cbuf.

〈scan one string literal 123〉≡ 122

while (*cp != cbuf[0]) {
int c;
if (map[*cp]&NEWLINE) {

if (cp < limit)

backslash 126
fillbuf 106

limit 103
map 110

MAXTOKEN 111
NEWLINE 110

nextline 106

124 CHAPTER 6 LEXICAL ANALYSIS

break;
cp++;
nextline();
if (〈end of input 112〉)

break;
continue;

}
c = *cp++;
if (c == '\\') {

if (map[*cp]&NEWLINE) {
if (cp < limit)

break;
cp++;
nextline();

}
if (limit - cp < MAXTOKEN)

fillbuf();
c = backslash(cbuf[0]);

} else if (map[c] == 0)
nbad++;

if (s < &cbuf[sizeof cbuf] - 2)
*s++ = c;

}

If *limit is a newline, it serves only to terminate the buffer, and is thus
ignored unless there’s no more input. Other newlines (those for which
cp is less than limit) and the one at the end of file terminate the while
loop without advancing cp. backslash interprets the escape sequences
described above; see Exercise 6.10. nbad counts the number of non-ANSI
characters that appear in the literal; lcc’s -A -A option causes warn-
ings about literals that contain such characters or that are longer than
ANSI’s 509-character guarantee.

Further Reading

The input module is based on the design described by Waite (1986). The
difference is that Waite’s algorithm moves one partial line instead of
potentially several partial lines or tokens, and does so after scanning
the first newline in the buffer. But this operation overwrites storage
before the buffer when a partial line is longer than a fixed maximum.
The algorithm above avoids this problem, but at the per-token cost of
comparing limit-cp with MAXTOKEN.

Lexical analyzers can be generated from a regular-expression specifi-
cation of the lexical structure of the language. LEX (Lesk 1975), which
is available on UNIX, is perhaps the best known example. Schreiner and

EXERCISES 125

105 BUFSIZE
104 file
111 gettok
104 lineno
106 nextline

Friedman (1985) use LEX in their sample compilers, and Holub (1990) de-
tails an implementation of a similar tool. More recent generators, such
as flex, re2c (Bumbulis and Cowan 1993), and ELI’s scanner genera-
tor (Gray et al. 1992; Heuring 1986), produce lexical analyzers that are
much faster and smaller than those produced by LEX. On some comput-
ers, ELI and re2c produce lexical analyzers that are faster than lcc’s. ELI
originated some of the techniques used in lcc’s gettok.

A “perfect” hash function is one that maps each word from a known
set into a different hash number (Cichelli 1980; Jaeschke and Osterburg
1980; Sager 1985). Some compilers use perfect hashing for keywords,
but the hashing itself usually takes more instructions than lcc uses to
recognize keywords.

lcc relies on the library function strtod to convert the string repre-
sentation of a floating constant to its corresponding double value. Doing
this conversion as accurately as possible is complicated; Clinger (1990)
shows that it may require arithmetic of arbitrary precision in some cases.
Many implementations of strtod are based on Clinger’s algorithm. The
opposite problem — converting a double to its string representation —
is just as laborious. Steele and White (1990) give the gory details.

Exercises

6.1 What happens if a line longer than BUFSIZE characters appears in
the input? Are zero-length lines handled properly?

6.2 The C preprocessor emits lines of the form

n "file"
#line n "file"
#line n

These lines are used to reset the current line number and file name
to n and file, respectively, so that error messages refer to the correct
file. In the third form, the current file name remains unchanged.
resynch, called by nextline, recognizes these lines and resets file
and lineno accordingly. Implement resynch.

6.3 In many implementations of C, the preprocessor runs as a separate
program with its output passed along as the input to the compiler.
Implement the preprocessor as an integral part of input.c, and
measure the resulting improvement. Be warned: Writing a prepro-
cessor is a big job with many pitfalls. The only definitive specifica-
tion for the preprocessor is the ANSI standard.

6.4 Implement the fragments omitted from gettok.

getchr 108
icon 117

MAXLINE 105

126 CHAPTER 6 LEXICAL ANALYSIS

6.5 What happens when lcc reads an identifier longer than MAXLINE
characters?

6.6 Implement int getchr(void).

6.7 Try perfect hashing for the keywords. Does it beat the current im-
plementation?

6.8 The syntax for octal constants is

octal-constant:
0 { octal-digit }

octal-digit:
one of 0 1 2 3 4 5 6 7

Write 〈octal constant〉. Be careful; an octal constant is a valid prefix
of a floating constant, and octal constants can overflow.

6.9 The syntax for hexadecimal constants is

hexadecimal-constant:
(0x | 0X) hexadecimal-digit { hexadecimal-digit }

hexadecimal-digit:
one of 0 1 2 3 4 5 6 7 a b c d e f A B C D E F

Write 〈hexadecimal constant〉. Don’t forget to handle overflow.

6.10 Implement

〈lex.c prototypes〉≡
static int backslash ARGS((int q));

which interprets a single escape sequence beginning at cp. q is
either a single or double quote, and thus distinguishes between
character constants and string literals.

6.11 Implement the code for 〈wide-character constants〉. Remember that
wchar_t is unsigned char, so the value of the constant L'\377'
is 255, not −1.

6.12 Reimplement the lexical analyzer using LEX or an equivalent pro-
gram generator, and compare the two implementations. Which is
faster? Smaller? Which is easier to understand? Modify?

6.13 How many instructions is 〈skip white space〉 on your machine? How
many would it be if it used cp instead of rcp?

6.14 Write a program to generate the 〈gettok cases〉 for the C keywords.

6.15 lcc assumes that int and long (signed and unsigned) have the same
size. Revise icon to remove this regrettable assumption.

