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SUMMARY

The Abstract Syntax Description Language (ASDL) is a language for specifying the tree data structures
often found in compiler intermediate representations. The ASDL generator reads an ASDL specification
and generates code to construct, read and write instances of the trees specified. Using ASDL permits a
compiler to be decomposed into semi-independent components that communicate by reading and writing
trees. Each component can be written in a different language, because the ASDL generator can emit code in
several languages, and the files written by ASDL-generated code are machine- and language-independent.
ASDL is part of the National Compiler Infrastructure project, which seeks to reduce dramatically the
overhead of computer systems research by making it much easier to build high-quality compilers. This
paper describes dividing lcc, a widely used retargetable C compiler, into two components that communicate
via trees defined in ASDL. As the first use of ASDL in a ‘real’ compiler, this experience reveals much about
the effort required to retrofit an existing compiler to use ASDL, the overheads involved, and the strengths
and weaknesses of ASDL itself and, secondarily, of lcc. Copyright 1999 John Wiley & Sons, Ltd.
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INTRODUCTION

High-quality compilers for a range of modern languages are essential for conducting
experimental research in computer architecture, programming languages, and programming
environments. For example, compilers are required to run benchmarks for evaluating
new ideas in architecture and code optimization. And compilers for new languages need
optimizers, code generators and runtime systems for existing platforms.

Building compilers is often a bottleneck in these kinds of research projects because
compiler construction is a labor-intensive activity. Often, nearly complete compilers must
be constructed even if the essential components are relatively small parts of the whole.
To evaluate a new architecture, for instance, requires a code generator for that architecture
and perhaps an architecture-dependent optimizer. Writing toy compilers for toy languages is
insufficient: The research community demands measurements using established benchmarks,
like the SPEC benchmarks [1], which are written in real programming languages.

The National Compiler Infrastructure (NCI) project seeks to reduce dramatically the effort
needed to perform realistic experiments by making it much easier to build high-quality
compilers. The goal is to make it possible to build complete compilation systems from pieces,
replacing or modifying only those components that are relevant to the client researchers. For
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Figure 1. Sample compiler organization using ASDL

example, researchers studying global optimization algorithms for C++ would replace or add
only their optimizers and would use existing C++ front ends and code generators.

The NCI can pay both economic and intellectual dividends. It should reduce significantly
the costs of doing computer systems research, in terms of time, barrier to entry, and direct
monetary outlay. It should also encourage more researchers to attack computer systems
problems and thus increase the rate at which new research results appear.

The NCI includes the Stanford University Intermediate Format [2] and the emerging
Zephyr program-generation tools, which includes the Abstract Syntax Description Language
(ASDL) [3]. ASDL describes the abstract syntax of compiler intermediate representations and
other tree-like data structures. The ASDL generator, asdlGen, converts ASDL specifications
into appropriate data-structure definitions, constructors, and functions to read and write these
data structures to files in a variety of programming languages.

This paper describes how ASDL is used with lcc [4], a well-documented, small, production-
quality compiler for ISO Standard C [5]. This experience is valuable for two reasons. First, lcc
is perhaps the simplest C compiler available and thus provides a ‘basis’ test case for ASDL
and other NCI tools. If ASDL can’t handle lcc’s intermediate representation, it’s unlikely to
work in more ambitious compilers or in compilers for higher-level languages. Secondly, lcc
wasn’t designed to be decomposed into reusable program components, so doing so suggests
how difficult it is to retrofit ASDL into existing compilers.

ASDL

ASDL is a small, domain-specific language for describing tree data structures [3]. ASDL
specifications are concise and independent of any particular programming language. The
ASDL generator, asdlGen, accepts an ASDL specification and emits code that defines a
concrete representation for the data structures described in the specification, along with code
that constructs, reads, and writes instances of those data structures. Currently, asdlGen can
emit data-structure implementations in C, C++, Java, ML, and Haskell. ASDL specifications
tend to be much smaller than the corresponding language-specific data-structure and function
definitions.

Compiler writers can use ASDL to partition a compiler into several independent programs,
as depicted in Figure1. A front end reads source code and builds an intermediate
representation (IR) using the data-structure constructors generated by asdlGen. It writes
these data structures to a file—a ‘pickle’—using the I/O functions generated by asdlGen.
Subsequent phases read and write pickles as necessary, perhaps modifying them in the
process. For example, optimizers would read a pickle, improve the code therein, and write
a new pickle.

The binary pickle format is independent of both language and host platform. Thus, as
suggested in Figure1, compiler phases can be written in whatever ASDL-supported language
best suits the task at hand. If ASDL becomes widely used, researchers can tap into a complete
compiler by adding new phases or replacing just the phases of interest.
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ASDL is not a universal intermediate representation [6], because it supports any IR that
can be described by trees. Likewise, ASDL is not a universal distribution format [7], because
it does not mandate specific formats, capabilities, or platforms. ASDL and asdlGen are to
compilers what interface definition languages (IDL) [8] and stub generators are to distributed
systems. Typical IDLs describe the interfaces between program components running in
different address spaces, and stub generators generate implementations of these functions
that use remote procedure calls to communicate between clients and servers. ASDL describes
the data-structure interfaces between compiler phases, and asdlGen generates functions to
communicate between these phases.

ASDL is such a simple language that examples suffice to explain nearly all of its features.
The following ASDL specification describes an IR for a language of arithmetic expressions,
assignment statements, and print statements.

module IR {
stm = SEQ(stm, stm)

| ASGN(identifier, exp)
| PRINT(exp*)

exp = OP(binop, exp, exp)
| ID(identifier)
| ICON(int)
| RCON(real)

real = (int, int)

binop = ADD | SUB | MUL | DIV
}

This specification defines four types:stm , exp , real and binop . The first three
productions define the sum typestm , which has threeconstructors. A stm is a SEQtree
with two stm children, anASGNtree with two children of typesidentifier andexp , or
aPRINT tree with one child of type list ofexp . identifier is a built-in type, and the ‘* ’
following a type specifies a list of that type.

Similarly, exp is a sum type with four constructors that describe trees for binary operators,
identifiers, and integer and real constants.int is another built-in type, but there is no built-in
type for reals. So, thereal type is a product type whose instances represent real numbers
as two integers. Finally,binop is a simple sum type that defines constructors for each of the
possible binary operators.

All four types are wrapped in a module namedIR ; this name is used to provide a
disambiguating prefix for the names in the generated implementations.

It is easy to confuse ASDL specifications with grammars for programming languages.
This ASDL specification describes theabstract syntaxof the intermediate representation for
programs written in some unspecified concrete syntax.

Given an ASDL specification, asdlGen emits an interface and an implementation in
the programming language specified. The interface defines the concrete, language-specific
representation for the types and declares functions for constructing instances of those types
and for reading and writing them. The functions themselves appear in the implementation.
For languages that do not separate interfaces and implementations, like Java, asdlGen emits a
single implementation.
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...
typedef struct IR_stm_s* IR_stm_ty;
struct IR_stm_s {

enum {IR_SEQ_enum, IR_ASGN_enum, IR_PRINT_enum} kind;
union {

struct IR_SEQ_s { IR_stm_ty stm1; IR_stm_ty stm2;} IR_SEQ;
struct IR_ASGN_s {

identifier_ty identifier1;
IR_exp_ty exp1;

} IR_ASGN;
struct IR_PRINT_s { list_ty exp_list1;} IR_PRINT;

} v;
};
...
IR_stm_ty IR_SEQ(IR_stm_ty stm1, IR_stm_ty stm2);
IR_stm_ty IR_ASGN(identifier_ty identifier1, IR_exp_ty exp1);
IR_stm_ty IR_PRINT(list_ty exp_list1);
...
extern IR_stm_ty IR_read_stm(instream_ty s_);
extern void IR_write_stm(IR_stm_ty x_, outstream_ty s_);

Figure 2. Generated C interface for the example ASDL specification

In C, for example, given the ASDL specification above in the fileIR.asdl , asdlGen writes
the interface toIR.h and the implementation toIR.c . Figure2 shows the snippets from
IR.h that define the representation forstm and the associated constructors, readers and
writers. ASDL uses compact and efficient representations whenever possible. A sum type is
represented by a union. There is one field for each constructor and a corresponding function
for building instances of that constructor, as shown forstm in Figure2. ASDL represents
simple sum types with integers or their language-specific equivalent. In C, for example,
binop is represented by just an enumeration type. The implementation,IR.c , contains the
definitions for the functions declared inIR.h . For example, the constructorIR_SEQ is

IR_stm_ty IR_SEQ(IR_stm_ty stm1, IR_stm_ty stm2) {
IR_stm_ty ret = malloc(sizeof *ret);
if (ret == NULL) die();
ret->kind = IR_SEQ_enum;
ret->v.IR_SEQ.stm1 = stm1; ret->v.IR_SEQ.stm2 = stm2;
return ret;

}

asdlGen generates constructors, but not deallocation functions; in languages without
automatic storage management, clients must do explicit deallocations, when necessary.

ASDL comes with libraries of basic types and functions for each programming language it
supports. These libraries provide support for polymorphic lists and for the built-in types, such
asidentifier , in languages that do not support them directly. In C, lists are represented by
an implementation of variable-length sequences [9] (Ch. 11), and identifiers are represented
by a C implementation of atoms [9] (Ch. 3).
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As Figure2 reveals, asdlGen generates field names and parameter names as necessary
to complete the data structure and function definitions. Except for the constructors, readers
and writers, asdlGen does not provide additional functions to manipulate the data structures
defined in a grammar; client code must manipulate them explicitly by referencing the
appropriate fields. So, grammar writers can specify the field names in the ASDL specification.
For example, ifstm is defined as

stm = SEQ(stm first, stm rest)
| ASGN(identifier id, exp e)
| PRINT(exp* elist)

first , rest , id , e andelist will be used for the corresponding field and parameter
names in Figure2.

Sum types can also haveattributes, which are fields that are common to all constructors.
For example,

stm = SEQ(stm first, stm rest)
| ASGN(identifier id, exp e)
| PRINT(exp* elist)

attributes(int lineno)

attaches a line number attribute to each constructor. Attributes are usually factored into a
common prefix for the type, e.g. the C type forstm from Figure2 becomes

struct IR_stm_s {
int_ty lineno;
enum {IR_SEQ_enum, IR_ASGN_enum, IR_PRINT_enum} kind;
union {

struct IR_SEQ_s { IR_stm_ty first; IR_stm_ty rest;} IR_SEQ;
struct IR_ASGN_s { identifier_ty id; IR_exp_ty e;} IR_ASGN;
struct IR_PRINT_s { list_ty elist;} IR_PRINT;

} v;
};

THE lcc CODE-GENERATION INTERFACE

lcc is a retargetable compiler for ISO Standard C. It is distributed with back ends for the
SPARC, MIPS, X86 and ALPHA for several platforms. Others have written back ends for
additional platforms, and lcc is used by other compiler researchers; for example, a modified,
older release of lcc is used as the C compiler in the SUIF project.

Communication between lcc’s target-independent front end and its target-dependent back
ends is specified by a small code-generation interface. This interface consists of a few shared
data structures, a 33-operator tree IR that represents executable code, and 18 procedures that
manipulate and modify trees and the shared data structures.

The shared data structures include tree nodes, symbol-table entries, and types. The 33 tree
IR operators are listed in Figure3. Each of these generic operators can be specialized by
appending an operand type suffix and a size in bytes. The six type suffixes are:

F float
I integer
U unsigned
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CNST ARG ASGN INDIR CVF CVI CVP CVU
NEG CALL RET ADDRG ADDRF ADDRL ADD SUB
LSH MOD RSH BAND BCOM BOR BXOR DIV
MUL EQ GE GT LE LT NE JUMP LABEL

Figure 3. lcc tree IR generic operators.

P pointer
B ‘block’ (aggregate)
V void

There can be up to 9 sizes. For example,ADDF4denotes a 4-byte floating addition, and
CVII2 denotes a conversion from an integer to a 2-byte integer. While it looks like there are
33× 6 × 9 = 1782 specific operators, not all combinations are meaningful, and the number
of sizes on most targets is limited. On 32-bit targets, there are 130 type- and size-specific
operators. Conversions on 32-bit targets, for instance, convert only between 4 and 4- or 8-
byte floats, or widen or narrow between three sizes of integers. Some operators have only one
or a few valid suffixes; for instance, the address operatorsADDRL, ADDRF, andADDRGcan
have only the ‘P’ type suffix and whatever size is the size of a pointer on the target. Back end
authors need accommodate only those type- and size-specific operators that are meaningful
on their targets.

Incidentally, the lcc 3.x interface [4] supported only three sizes of integers, two sizes of
floats, and insisted that pointers fit in unsigned integers. These assumptions simplified the
compiler and were suitable for 32-bit architectures, but not for 64-bit architectures. The main
difference between the 3.x interface and the 4.x interface described here are the operator size
suffixes.

Figure4 summarizes the purpose of the 18 code-generation procedures. On most targets,
implementations of many of these routines are very short, perhaps only a few calls to
printf , because they simply emit assembly language. Most of the work goes intogen ,
emit andfunction , which collaborate to generate and emit code for a function. While not
required by the interface, all of lcc’s distributed back ends use a variant of the IBURG code-
generator generator [10] to specify instruction selection. The resulting code generators emit
locally optimal code. Instruction selection specifications and target-dependent functions run
about 700 lines per target. There are about another 900 lines of code that are shared between
all targets and include functions for register allocation, etc.

lcc’s packaging is somewhat novel: Pointers to the code-generation procedures and some
target-specific parameters are packaged in the following ‘interface record:’

struct interface {
Metrics charmetric, shortmetric, intmetric, longmetric, . . . ;
unsigned little_endian:1, mulops_calls:1, wants_callb:1, . . . ;

void (*address)(Symbol, Symbol, long);
void (*blockbeg)(Env *);
void (*blockend)(Env *);

. . .
};
The Metrics values give the sizes and alignments of the basic data types, and the 1-bit
flags identify other target-dependent features, like endianness. There is one interface record
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void progbeg(int, char *[]) initialize the back end
void progend(void) finalize the back end
void defsymbol(Symbol) initialize a symbol-table entry
void export(Symbol) export a symbol
void import(Symbol) import a symbol
void global(Symbol) define a global
void local(Symbol) define a local
void address(Symbol, Symbol, long) define an address relative to a symbol
void blockbeg(Env *) open a block-level scope
void blockend(Env *) close a block-level scope
void function(Symbol, Symbol [], Symbol [], int)

define a function body
void gen(Node) generate code
void emit(Node) emit code
void defconst(int, int, Value) initialize an arithmetic constant
void defaddress(Symbol) initialize an address constant
void defstring(int, char *) initialize a string constant
void space(int) define an uninitialized block
void segment(int) switch logical segments

Figure 4. lcc code-generation procedures

IR

symbolic
alpha/osf
mips/irix

sparc/solaris
x86/win32
x86/linux

...
null

Figure 5. Specifying a target, e.g.mips/irix , pointsIR at an interface record

for each distinct target, but different records can share functions. lcc is a small compiler, so
all of the back ends are combined into a single executable program, which makes lcc a cross
compiler. As depicted in Figure5, a command-line option selects the desired target, e.g.

lcc -Wf-target=mips/irix -S wf1.c

causes lcc to compilewf1.c and leave the generated MIPS assembly code inwf1.s . The
-Wf-target option pointsIR to the appropriate interface record, and the front end makes
indirect calls to the code-generation procedures, e.g.

(*IR->defsymbol)(p);

The default target is the host, so this option is required only for cross compilation.
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Figure 6. lcc’s monolithic design: One front end, numerous back ends

DIVIDING lcc

lcc is—by design—a monolithic compiler: The front end and the back ends are combined
into a single address space, so the front and back ends communicate by procedure calls that
exchange pointers to shared data structures read and written by both parties, as Figure6
illustrates. Also, back ends can make upcalls to functions provided by the front end, and the
front end reads data structures written by the back ends. There are about a half dozen such
functions, e.g. data-structure constructors, a memory allocator, type predicates, and so on.

lcc is small, at least in comparison with other compilers, because it omits some components,
most notably a global optimizer. One way to add more functionality is to split lcc into a
separate front end and one or more separate back ends so that an optimizer can be run between
these programs. This design would also make it easier to use lcc in research projects.

Splitting lcc into two separate programs requires either massive revisions or some way to
read and write the data and actions represented by the existing code-generation interface.
ASDL facilitates the second alternative: It helps divide lcc into separate programs withno
change to the code-generation interface. So, the existing back ends can be used unmodified.

Figure7 depicts this revised design. The front end, rcc, emits a pickle that encodes all the
data structures and the function calls made when compiling a C source file. Essentially, rcc
converts the lcc IR to an IR defined by the ASDL grammar. The new program, dubbed ‘pass2’,
reads a pickle, recreates the internal data structures, and makes the function calls encoded in
the pickle. That is, pass2 converts the ASDL-defined IR back to the lcc IR. The generated
assembly language is often byte-for-byte identical to the code emitted by the monolithic
compiler. Differences occur only when the back end calls the label generator, which causes
the revised design to number labels differently.

asdlGen reads the lcc-specific ASDL grammar described in the next section and emits
C code for the data-structure constructors, readers, and writers, which is included in both
rcc and pass2. Otherwise, the revised front end, rcc, is nearly identical to the original front
end. The ASDL emission is accomplished by an ASDL back end, which ‘spoofs’ the back
end by overwriting the target-specific code-generation function pointers with pointers to
its own functions. The back ends are actually linked into both rcc and pass2, because the
interface records carry important machine parameterizations required by both programs. This
packaging is not essential; rcc could link in the interface records without the functions.

The revised compiler is used much like the original, except that ASDL output must be
specified to rcc, and pass2 must be run to emit the generated code, e.g.

lcc -Wf-target=mips/irix -Wf-asdl -S wf1.c
mv wf1.s wf1.pickle
. . .
pass2 wf1.pickle >wf1.s
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Figure 7. lcc’s revised design: Separate front end and back ends

module rcc {

program = (int nuids,int nlabels,item* items,interface* interfaces,
int argc,string *argv)

item = Symbol(symbol symbol)
| Type(type type)

attributes(int uid)

symbol = (identifier id,int type,int scope,int sclass,
int ref,int flags)

See Figure9 . . .

See Figure12 . . .

See Figure10 . . .

}

Figure 8. The ASDL grammar for lcc’s code-generation interface

The first command runs rcc and leaves the pickle inwf1.s , which the second command
renames. The third command generates the MIPS assembly code inwf1.s , perhaps after it
has been optimized or otherwise processed by an intervening step.

The ASDL grammar

The ASDL grammar for lcc is small—only about 70 lines. It specifies data structures that
are target-dependent, which means, for example, that it is impossible to specify, say, the
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mips/irix target to rcc and thex86/win32 target to pass2. Indeed, pass2 does not accept
a target option, because the target specification is embedded in the pickle.

Figures8, 9, 10 and12 show the complete lcc ASDL grammar. The grammar specifies
more than just what is in the code-generation interface, because pass2 must recreate the
compilation environment built by rcc, the front end. There are two important ramifications
of this requirement. First, the pickles include complete C language type information, for
example, everything about structures and unions, etc. The code-generation interface includes
only the six basic types. This information is defined by thetype sum type. Secondly, lcc’s
code-generation data structures and related internal structures are graphs, not trees. Thus,
items with multiple references are identified by integers, and the references to them replaced
by these integers, even when these items are referenced only once. Fields nameduid in the
grammar identify these integers. Dealing with graphs is ASDL’s major shortcoming.

The product typeprogram is the first ASDL type in Figure8, and an instance of this type
represents a C compilation unit. That is, rcc ‘compiles’ a C source file into aprogram and
writes it to a pickle, which pass2 reads and traverses to generate code. Aprogram carries
counts of the number of unique integers—uids for short—and the number of generated labels,
a sequence ofitem types, a sequence ofinterface types, the command-line argument
count, and the arguments themselves.string is a built-in ASDL type. The sum typeitem
carries a uid (as an attribute) and either the associated symbol or C type. Theitem sequence
in aprogram associates uids withsymbol s andtype s, as described below.

Symbol-table entries are an example of a multiply referenced data structure. Symbol-
table entries are represented by the ASDL product typesymbol (see Figure8), which is
a straightforward rendition of lcc’s internal symbol-table entry. It carries the symbol’s name,
C type, scope, storage class, how often it’s referenced, and some flags. For example, the C
declaration

struct elem { int count; struct elem *left, *right; char *word; } *root;

declaresroot to be a pointer to a ‘struct elem’. The correspondingsymbol is

(id = root, type = 10, scope = LOCAL, sclass = AUTO,
ref = 120000, flags = addressed)

where, for clarity, symbolic values appear for thescope , sclass , andflags fields. The
id field is an instance of the built-in ASDL typeidentifier , which are atoms. Thetype
field—‘10 ’ in this example—is a uid that identifies atype value defined somewhere else
in the item sequence. Here and below, uids are shown in a slanted typewriter font, and the
displays themselves are given in anad hocdescriptive format derived from a program that
prints lcc ASDL pickles. The ASDL browser [3] also displays pickles in a generic format.

Types

C language types are represented by instances of the sum typetype defined in Figure9,
and are essentially abstract syntax trees of the C type constructors. For example,INT is a
basic type;POINTERrepresents a pointer type and its integer field is the uid of the referent
type; andSTRUCTrepresents a structure type with a tag and an ordered set of fields. The
fields are represented by a sequence offield product types, one for each field, giving the
field name, its type, offset, and location information for bit fields. Other types are similarly
represented. Every type has attributes that give its size and alignment constraint in bytes.
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field = (identifier id,int type,int offset,int bitsize,int lsb)

enum = (identifier id,int value)

type = INT
| UNSIGNED
| FLOAT
| VOID
| POINTER(int type)
| ENUM(identifier tag,enum* ids)
| STRUCT(identifier tag,field* fields)
| UNION(identifier tag,field* fields)
| ARRAY(int type)
| FUNCTION(int type,int* formals)
| CONST(int type)
| VOLATILE(int type)

attributes(int size,int align)

Figure 9. ASDL grammar for C types

A snippet of theitem sequence for thetype representing the C type ‘struct elem’ defined
previously helps clarify the definition of uids and their use:

11: STRUCT( size = 16, align = 4, fields = [
id type offset bitsize lsb

(count, 12, 0, 0, 0),
(left, 10, 4, 0, 0),
(right, 10, 8, 0, 0),
(word, 13, 12, 0, 0)] )

12: INT( size = 4, align = 4)
10: POINTER(size = 4, align = 4, type = 11)
13: POINTER(size = 4, align = 4, type = 8)

8: INT( size = 1, align = 1)

Again, the italicized numbers are uids. The uids on the left are theuid attributes in theitem
type, and each of these define a uid and its associatedtype . The occurrences of uids in a
type field are references to types. Type 11 is thetype value for ‘struct elem’; its fields
give the size of instances of this struct (16 bytes), their alignment (on 4-byte boundaries), and
their fields. Each of thefield values in the sequence include a uid for thetype of that
field. Type 10 is the C type ‘struct elem *’. Notice the two kinds ofINT s: Type 12 is a 4-byte
integer, which is the C type ‘int’, and type 8 is a 1-byte integer, which is type C type ‘signed
char’. Thus, type 13 is the C type ‘char *’.

IR trees

IR trees are represented by a nearly isomorphic set of trees defined by the ASDL sum
typenode , defined in Figure10. Some generic operators are represented by corresponding
constructors, e.g.CNSTandADDRL. Others are represented by constructors for a class of
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node = CNST(int value)
| CNSTF(real value)
| ARG(node left,int len,int align)
| ASGN(node left,node right,int len,int align)
| CVT(int op,node left,int fromsize)
| CALL(node left,int type)
| CALLB(node left,node right,int type)
| RET
| ADDRG(int uid)
| ADDRL(int uid)
| ADDRF(int uid)
| Unary(int op,node left)
| Binary(int op,node left,node right)
| Compare(int op,node left,node right,int label)
| LABEL(int label)
| BRANCH(int label)
| CSE(int uid,node node)

attributes(int suffix,int size)

Figure 10. ASDL grammar for IR trees

generic operators in which the specific operator is provided as a parameter:CVT nodes
represent the conversion operators (CVF, CVI , CVPandCVU), Unary andBinary nodes
represent the unary (INDIR , RET, JUMP, NEG, BCOM) and binary operators (ADD, SUB, DIV ,
MUL, MOD, BOR, BAND, BXOR, RSH, LSH), andCompare nodes represent the comparisons
(EQ, NE, GT, GE, LE, LT). The op field in these kinds of nodes holds the appropriate lcc
operator.

ADDRL, ADDRPand ADDRGnodes address locals, parameters, and globals; the uid
values identify the appropriate symbol-table entries.LABEL nodes are label definitions, and
BRANCHnodes are unconditional jumps.Compare , LABEL, andBRANCHnodes use label
numbers instead of symbol-table entries for labels; pass2 recreates the symbol-table entries as
it reconstructs the IR.CSEnodes identify common subexpressions and associate a symbol-
table entry for a temporary (uid ) with a node that computes the subexpression (node );
subsequent uses of the subexpression are given by fetching the value of the temporary (with
INDIR andADDRLnodes). Every node includes suffix and size attributes, which correspond
to the type and size suffixes in the type- and size-specific IR operators.

It is important to realize thatnode s are not lcc IR trees—they represent IR trees. In pass2,
nodes provide the data necessary to recreate the lcc IR trees, which are passed to the back
ends. This ‘duplication of effort’ is an onerous side effect of retrofitting an existing compiler
with ASDL and is discussed in more detail below.

lcc compiles the C code

char *s; int c; *s++ = c;

into the equivalent of

t1 = s; s = t1 + 1; *t1 = c;

wheret1 is a compiler-generated temporary. Figure11 shows the ASDLnode s for these
three statements on a 32-bit target. The notationASGN P 4gives the constructor, the suffix
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ASGN P 4

ADDRL P 4
uid= 42 t1

Unary
INDIR P 4

ADDRL P 4
uid= 37 s

ASGN P 4

ADDRL P 4
uid= 37 s

Unary
INDIR P 4

ADDRL P 4
uid= 42 t1

Binary
ADD P 4

CNST I 4
1

ASGN I 1

Unary
INDIR I 4

ADDRL P 4
uid= 36 c

CVT
CVI I 1 4

Unary
INDIR P 4

ADDRL P 4
uid= 42 t1

Figure 11. ASDL representation fort1 = s; s = t1 + 1; *t1 = c

attribute as one of the types listed above, and the size attribute. Notice the constructor for the
indirection in the leftmost tree; it’s aUnary node with three values: operatorINDIR , suffix
P, and size4. The node forBinary is similar. Leaves, likeADDRL, include the uid of the
appropriate symbol. For clarity, Figure11 shows the names, too, e.g.t1 , but the names are
not in the node.

Nodes (and all ASDL-defined data structures) are written to pickles in a compact, prefix,
binary representation in which integers can take as little as one byte. For example, the leftmost
tree in Figure11 takes 15 bytes:

ASGN P 4 ADDRL P 4 42 Unary INDIR P 4 ADDRL P 4 37

Interface calls

The ASDL types described above encode the data structures in lcc’s code-generation
interface. The ASDL sum typeinterface , defined in Figure12, encodes the calls made
from the front end to the back end. Compare this type definition with the interface calls listed
in Figure4. The only significant change is that symbol-table pointers have been replaced by
the corresponding uids or sequences of uids.progbeg andprogend have been omitted,
because pass2 can simply make these calls; pass2 also supplies the actual arguments for
blockbeg andblockend , so these arguments are not included ininterface . Calls to
defconst with real values are represented by a separate constructor,Defconstf , which
confines the use of real values. ASDL has no built-in support for reals, so they are represented
with integers for their most significant and least significant bits.

Address andLocal constructors associate uids with ‘relative’ symbols and with locals
and parameters. A relative symbol is one that is defined by a constant offset from another
symbol, e.g.a[i+10] would elicit a definition of a symbol to represent the address of
a[10] , which is known at compile time. Instances ofForest carry thenode s that represent
the executable code in each function. These appear in theinterface list in thecodelist
field of function s. There is onefunction for each C function in the input.

Here’s an example: The small function

err(s) char *s; {
printf("? %s\n", s);
exit(1);

}
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real = (int msb,int lsb)

interface = Export(int p)
| Import(int p)
| Global(int p,int seg)
| Local(int uid,symbol p)
| Address(int uid,symbol q,int p,int n)
| Segment(int seg)
| Defaddress(int p)
| Deflabel(int label)
| Defconst(int suffix,int size,int value)
| Defconstf(int size,real value)
| Defstring(string s)
| Space(int n)
| Function(int f,int* caller,int* callee,

int ncalls,interface* codelist)
| Blockbeg
| Blockend
| Forest(node* nodes)

Figure 12. ASDL grammar for code-generation interface calls

yields the following sequence ofinterface s:

Local(uid = 27, symbol = (id = s, . . . ))
Local(uid = 28, symbol = (id = s, . . . ))
Function(f = 22 err, caller = [ 27 ], callee = [ 28 ],

ncalls = 2, codelist = [
Blockbeg,
Forest(nodes = . . . ),
Forest(nodes = . . . ),
Blockend,
Forest(nodes = . . . )])

. . .
Global(p = 24, seg = LIT)
Defstring("? %s\n")

The Local s above define two views of the formal parameters , one as seen by callers of
err and one as seen by the callee itself. These have the same name—s—but are different
symbols, as indicated by their different uids. Often, these symbols are identical, but there
are important cases when they are different, as detailed below. The first two occurrences of
Forest carry thenode s for the two function calls. The thirdForest holds a singleLABEL
node that marks the location of the function epilogue.Global andDefstring collaborate
to initialize a compiler-generated static variable for the format string shown.

MEASUREMENTS

While retrofitting lcc to use ASDL changed lcc’s structure dramatically, this process did not
add much code. The ASDL grammar described in the previous section is about 70 lines, the
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ASDL back end is 409 lines of C, and pass2 is 681 lines of C. Most of the three months this
project consumed was devoted to revising the grammar and adapting the ASDL back end and
pass2 to these revisions. This code is available in lcc 4.1.

The 70-line ASDL grammar generates about 2183 lines of C declarations and function
definitions. This code is approximately what would be required if the ASDL-generated
constructors, readers, writers were written by hand. The savings would increase if the ASDL
grammar were used to generate code in other languages. For example, if an optimizer were
written in Java, it would use the 3332 lines of Java generated from the same ASDL grammar.

On Windows NT, the size of the monolithic compiler executable is 380 KB (produced by
the Microsoft Visual C/C++ 5.0 compiler with –O1 optimization). The revised rcc with the
ASDL back end, and the generated constructors, readers and writers is 437 KB, and pass2
is 395 KB. Rcc includes the back ends for all of lcc’s targets, because that packaging is the
simplest one. The code for these back ends and the symbol-table emission code could be
omitted saving about 199 KB.

Table I summarizes the compilation times and the file sizes for the monolithic and
divided variants of lcc when compiling its own non-trivial modules. The times are given
in centiseconds and are for the compilation phase only; that is, the timings do not include
preprocessor and assembler times. All timings were taken on a lightly loaded 200 MHz
Gateway PC with 128 MB of RAM and SCSI disks running Windows NT 4.0. The compiler
variants were compiled by the Microsoft Visual C/C++ 5.0 compiler with –O1 optimization.

The first column gives the time in centiseconds for compiling the module named in the
rightmost column with the monolithic version of lcc. The second and third columns give
the compilation times for rcc and pass2. Thus, for example, the fourth row shows that the
monolithic compiler compileddag.c to assembly language in 33 csecs., and rcc and pass2
accomplished the same task in 61+ 31 = 92 csecs.

The fourth column gives the size of each module’s pickle in kilobytes. By way of
comparison, the fifth column gives the size of the corresponding unoptimized object file
produced by the Microsoft Visual C/C++ compiler. Pickles contain complete symbol-table
information, so perhaps a more meaningful comparison is with the sizes of object files with
embedded symbol tables, which the sixth column shows.

Input/output time dominates the compilation times. The revised rcc is about 1.5–2 times
slower than the monolithic compiler; building the ASDL data structures and emitting them
accounts for most of this time. As detailed in the next section, rcc essentially duplicates its
data structures as it builds the ASDL representation, which costs both time and space.

pass2 is faster than both the monolithic compiler and rcc because it doesn’t have to read and
analyze the C source code; it simply inhales the pickle, rebuilds the compiler’s data structures,
and calls the back end functions. While rcc plus pass2 adds a factor of 2–3 to the compilation
time, lcc is fast enough that this overhead is acceptable, especially in an experimental setting;
for example, the monolithic compiler compiles itself in 15 secs., and rcc plus pass2 takes
35 secs.

Pickle sizes run about 3 times the sizes of object files and about twice the sizes of object
files with embedded symbol tables. Compression could reduce pickle sizes to that of object
files; for example, compressing all of the pickles listed in TableI yields a 867 KB zip file.
Each pickle includes the symbol-table entries from the common header files included by each
module. Pickle sizes could also be reduced by emitting these symbol-table data into a separate
pickle and omitting them from the per-module pickles.
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Table I. Compilation times and output file sizes.

lcc -S lcc -S -asdl pass2 Pickle Object file Object file
100ths sec. 100ths sec. 100ths sec. size in KB size in KB w/symbols in KB File

8 20 6 22.2 1.7 3.4 alloc.c
115 211 98 242.1 91.5 124.4 alpha.c
15 33 13 37.7 11.8 24.1 bytecode.c
33 61 31 81.7 26.0 45.4 dag.c
45 67 35 90.5 33.9 48.5 dagcheck.c
42 77 44 100.8 36.9 61.4 decl.c
35 65 34 82.6 20.6 36.7 enode.c
26 25 8 27.4 5.3 12.2 error.c
48 65 34 81.2 25.3 44.2 expr.c
44 67 33 77.0 23.7 47.0 gen.c
24 40 20 40.5 8.4 20.0 init.c
16 26 8 26.5 4.9 11.2 input.c
28 43 21 58.9 20.2 30.9 lex.c
22 32 12 35.7 8.8 19.8 main.c

119 161 87 206.2 75.6 106.4 mips.c
35 32 10 33.1 7.5 14.7 output.c
18 28 11 34.7 7.1 18.5 prof.c
19 33 13 34.4 5.3 11.6 profio.c
55 69 30 82.6 26.8 69.1 rcc.c
45 65 34 92.2 22.4 37.3 simp.c

147 221 157 264.9 94.1 129.9 sparc.c
44 35 13 40.1 11.0 22.9 stab.c
40 52 25 63.5 20.1 39.6 stmt.c
16 28 8 25.5 2.7 4.8 string.c
25 31 11 35.6 11.8 26.2 sym.c
45 51 18 55.1 22.7 43.0 symbolic.c
17 32 12 32.4 8.0 18.5 trace.c
44 32 12 35.2 7.6 15.1 tree.c
40 59 31 79.7 28.9 49.5 types.c

185 249 177 298.0 97.3 133.9 x86.c
182 342 227 365.5 117.1 157.9 x86linux.c

1577 2352 1150 2783.5 885.0 1428.1 Total

EVALUATION

Retrofitting lcc to use ASDL highlighted some strengths and weaknesses in both ASDL and
lcc. One of the somewhat unexpected strengths of ASDL is that it helps find bugs. Writing
the ASDL back end revealed two related long-standing bugs in lcc. The first is illustrated by
the following code.

f(void) { extern int x; . . . }
int x;

The two declarations forx refer to the same identifier. The error is that lcc created two
symbol-table entries forx : One was created at the extern declaration forx and used when
compiling the body off , and the other one was created at the top-level declaration forx and
used thereafter, including announcing the definition ofx via the code-generation function
global (see Figure4). It was intended that there be only one symbol-table entry forx .
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These symbol-table entries had identicalcontents, and all of the existing back ends examined
only the contents. The ASDL back end, however, used the pointer to the symbol-table entry
as a handle to the corresponding ASDLsymbol type (see Figure8), and thus erroneously
created twosymbol s. References tox from within f referred to the wrongsymbol and
thus the generated code was incorrect—it was if the code had been written as

f(void) { static int x; . . . }
int x;

The second bug adds another twist to the first bug and is illustrated by the following code.

static int x;
f(void) { extern int x; . . . }
Again, lcc erroneously created two symbol-table entries when one was expected. It also
changed the storage class of thex declared withinf to be static when it was announced
to the back end, then changed it back toextern . As a result, thex appeared to be static
when declared and extern when used. On targets that handle statics differently than externs,
pass2 emitted incorrect code.

ASDL exposed some awkward binding times in the lcc code-generation interface, which
required revising the implementation. lcc compiles the function

f(x, y) char x; int y; { . . . }
as

f(? int x ′, ? int y′) { ? char x = x ′; ? int y = y′; . . . }
lcc generates two symbol-table entries for each parameter: one for the parameter as passed by
the caller—x ′ and y′ in the code above—and one for the parameter as seen by the callee—
x andy above. It generates assignments of the caller parameter to the corresponding callee
parameter if their types differ or if their storage classes differ. In the example above, in which
the occurrences of? denote storage classes, the char parameterx is promoted and passed as
an int, so the types ofx andx ′ differ. Back ends can change the storage class of caller and
callee parameters to reflect target-dependent calling conventions. On the MIPS, for example,
y′ is passed in a register, so an assignment toy is generated ify lands in memory.

The binding time problem is that rcc doesn’t have the information necessary to determine
whether or not to generate these assignments. Storage class information is known only to
the back end and thus isn’t known until pass2 runs. The solution was to move the code that
generates these assignments into pass2.

A similar problem arises in common subexpression elimination (CSE), but requires extra
work by both rcc and pass2. lcc does CSE on extended basic blocks, but it needs to know
something about register assignments before it hoists an rvalue into a temporary. For example,
in the expression

a = b*c + b*d

the rvalue ofb is a common subexpression. lcc copiesb to a temporary, but only if the
temporary is in a register andb isn’t. Again, rcc does not have the data necessary to make
that decision, because the back end has the final say on storage classes. So, rcc makes a
conservative assumption and generates temporaries for all multiply referenced rvalues, and
pass2 eliminates those that don’t pay.
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These binding-time problems would have been exposed during any attempt to partition
lcc. Earlier attempts to divide lcc, however, could get away with simple, problem-specific
mechanisms to avoid changing the front-end implementation [11].

One of the flaws in ASDL is that it can lead to a duplication of data structures, which
perhaps should be expected when modifying an existing compiler to use ASDL. lcc builds
numerous data structures to represent the C source program, e.g. symbol-table entries, tree
nodes, strings, etc. Most of the code in the ASDL back end is devoted to building copies of
these data structures—that is, building a different, but logically equivalent representation for
nearly everything. All this duplication could be avoided if ASDL were used at the outset to
define all the important data structures, but this approach would have required a much more
drastic revision of lcc.

Perhaps the biggest nuisance in using ASDL is dealing with non-tree data structures, e.g.
by using uids for symbols and types. These are common and there should be a better way to
handle them, or at least some more built-in support for defining and referencing them.

The lcc ASDL grammar is ‘ambiguous’; that is, it permits construction of type instances
that do not represent valid lcc code-generation interface structures. For example, the grammar
in Figure12 permits aFunction whosecodelist field includes anotherFunction .
This sequence of calls never occurs in lcc. Similar comments apply to theCVT, Binary ,
Unary , and Compare constructors: any lcc operator could be given as theop field.
Ambiguity shortens grammars, much the same way as an ambiguous YACC grammar is
smaller than a non-ambiguous one. While few bugs could be attributed directly to using an
ambiguous grammar, the savings probably isn’t worth it. A non-ambiguous ASDL grammar,
which might be no more than 50 per cent longer, would catch more errors at compile-time
and it would document the semantics more accurately.

CONCLUSIONS

Revising lcc to use ASDL was, overall, straightforward, and the resulting components—rcc
and pass2—provide an improved platform for compiler-related research using lcc. It is now
possible to insert additional passes into the compilation pipeline without modifying or even
understanding the front and back ends. The obvious first candidate is a global optimization
pass. Adding an optimizer will surely identify weaknesses in the current ASDL grammar. For
example, it is likely that additional data structures, such as a flow graphs, will be needed.
The optimizer could build a flow graph itself, but it may prove useful to add these kinds of
generally useful structures to the pickles.

Fortunately, ASDL can accommodate additions gracefully. A pickle consists of oneor more
instances of ASDL types. Currently, lcc pickles hold just an instance ofprogram defined
in Figure8. Other passes can append instances of additional types to pickles and use these
instances without affecting pass2, because pass2 reads only the instance ofprogram .

The experience with lcc suggests that ASDL would be useful in similar projects. It might
be even more useful in new compilers and related projects, because using ASDL would
provide concise documentation of the important data structures and would generate the code
for constructing, reading, and writing them. Using ASDL from the start would avoid the
duplication of data structures and of effort described in the previous section. Early use of
ASDL might encourage the creation of a multi-language library of general-purpose functions
for manipulating ASDL-defined structures.

ASDL is equivalent to Document Type Declarations (DTDs) in XML [12], so it is natural to
wonder if the increasing investment in XML tools can be leveraged to provide better compiler
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infrastructure tools. As a first step, the ASDL pickle readers and writers have been modified
to emit pickles in XML instead of in the original binary format. These pickles are necessarily
huge, because they are written in readable ASCII, but they compress to approximately the
sizes suggested in TableI; for example, the XML pickles for all of the modules listed in
TableI compress into a 1394 KB zip file. They can, however, be examined and processed by
generic XML browsers and editors, which obviates the need for ASDL-specific tools.

Work is also underway on the minimal support for non-tree data structures. XML supports
ID and IDREF ‘attributes;’ these provide a way to name an instance of a type and to refer
to it from instances of other types, which is essentially identical to the use of uids in the lcc
ASDL grammar. Similar features may be added to ASDL.

Finally, ASDL is an ideal way to specify abstract data types and application programming
interfaces (API), independent of whether or not they are going to be pickled. ASDL grammars
are compact, language-independent, and hide implementation details. Debugging an ASDL
grammar is usually much easier than debugging the corresponding handwritten code. With
sufficient care, ASDL grammars might help simplify both the implementations of APIs and
their tedious language-specific descriptions.
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