
Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 1

A lean retargetable
C compiler

Chris Fraser, Bell Labs

Dave Hanson, Princeton

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 2

Optimize our time

◆ Minimize source code

◆ Compile fast

◆ Emit satisfactory code

◆ One literate program emits two
outputs:
– A Retargetable C Compiler: Design and

Implementation. Addison Wesley.

– http://www.cs.princeton.edu/software/lcc/

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 3

One source

The string table is an array of 1,024 hash buckets:The string table is an array of 1,024 hash buckets:

<<data>>=

static struct string {

 char *str;

 int len;
 struct string *link;

} *buckets[1024];

@ Each bucket heads a list of strings that share

 a hash value.

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 4

Sizes

◆ 12K lines target-independent

◆ Plus1K lburg

◆ Plus ~700 lines per target:
– tree grammar

– code for proc entry/exit, data ...

◆ 400KB code segment includes 3
real targets + 2 for debugging.

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 5

Compile/execution times

◆ Compiles itself in half the time
of gcc

◆ Emitted code generally within
20% of gcc’s

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 6

Code generation
interface: Dags

◆ Shared data structures

◆ 36 base opcodes:
– ADD INDIR JUMP …

◆ 9 base types:
– I D C …

◆ but only 108 combos:
– ADDI INDIRC ...

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 7

Interface functions

◆ begin/end module, function,
block

◆ select/emit code

◆ define symbol

◆ emit initialized data

◆ change segment

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 8

Interface record

typedef struct interface {
unsigned little_endian:1;
void *(defsymbol)(Symbol);
…

}

lcc -Wf-target=x86-linux foo.c

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 9

Code generation specs

◆ Tree grammars match IR and
emit asm code

◆ Sample rules:
reg: ADDI(reg,con)

“addu $%c,$%0,%1\n” 1
addr: ADDI(reg,con) “%1($%0)” 0

◆ Specs: ~200 rules

◆ Hard-coded, bottom-up, optimal
tree matchers, ~2000 lines

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 10

Twists

◆ Link-time CG: Fernandez

◆ Run-time CG: Poletto, Engler,
Kaashoek

◆ Emit Java, even C: Fraser,
Huelsbergen

◆ Debuggers: Hanson, Ramsey,
Raghavachari

◆ Optimize battery life: Tiwari

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 11

More twists

◆ Compress code: Fraser,
Proebsting

◆ Program directors: Sosic

◆ Browse code: Fraser, Pike

◆ Audit trees: Proebsting

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 12

Code compression
Proebsting and Fraser

◆ Accept a C program

◆ Emit:
– a custom interpreter

– postfix bytecodes

◆ Suits ROM, Java, optimizing
linkers?

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 13

Organization
program to compress

" i+1"

trees as ASCII
"ADDI(. . . , CNSTI[1])"

tree patterns
"ADDI(*,CNSTI[*])"

code generator

instruction-set generator

interpreter and
 interpretive code

trees as C initializer

driver

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 14

Assigning opcodes

◆ Enumerate all trees:
– ADDI(INDIRI(ADDRGP[i]),CNSTI[1])

◆ Patternize, up to some limit:
– ADDI(*,CNSTI[*])
– ADDI(*,CNSTI[1]) ...

◆ Generate a huge code generator

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 15

… continues

◆ Assign codes to all IR ops used
by the program at hand

◆ With leftover codes, pick
pattern that saves the most, then
loop

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 16

Results

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 17

Run-time CG
Poletto, Engler, Kaashoek

◆ Construct code to sum n int args:
void cspec ConstructSum(int n) {

int k, cspec c = `0;
for (k = 0; k < n; k++) {

int vspec v = (int vspec)
param(k, TC_I);

c = `(@c + @v);
}
return `{return @c};

}

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 18

Translate C to Java
Huelsbergen, Fraser

class FromLCC {

public static int _main() {
int pc = 0;
M.sp -= 16;
while(true) switch (pc) {

...
i=0 case 3: M.putint((M.sp+4), 0);

case 6: M.putint(((M.getint(

rows[i]=1 (M.sp+4))<<2)+_rows), 1);
case 7: M.putint((M.sp+4),

i++ (M.getint((M.sp+4))+1));

if (M.getint((M.sp+4)) < 8) {
if(i<8)goto case 6 pc=6; continue; }; ...

}

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 19

Program directors
Sosic

◆ Mix interpretive, compiled code

◆ Interpreter sends a (filtered)
stream of events from the
executor to the director
– time, pc, result, ...

◆ Director watches and ...
– animates calls,

– watches for corrupt state, ...

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 20

Audit trees
Proebsting

◆ Some trees make no sense:
– INDIRC(ADDF(*,*))

◆ One “back end” emits only Yes
or No but matches with a
grammar that specifies the valid
trees. We run it.

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 21

Big mistakes

◆ Need ASTs

◆ Need flow graphs

◆ “Economized” on long and
void* metrics for too long

◆ Need interface pickle (now
plural)

◆ Need better modularization:
– Half the patches create a new

error. See Dave’s coming book.

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 22

Smaller mistakes

◆ A graph-coloring register
allocator

◆ Instruction scheduling

◆ Peephole optimization

Copyright 1995 by C. W. Fraser and D. R. Hanson 4/5/96 23

What we like

◆ Simple and thus good
infrastructure

◆ Fast

◆ Portable

◆ Complete

◆ Validated and kept that way

◆ We’d miss flexibility and fast
compiles more than global opts

