
Appeared in Information Processing Letters 60, 3 (Nov. 11, 1996), 115-120.

Efficient Multiway Radix Search Trees

Úlfar Erlingsson a, Mukkai Krishnamoorthy a, T. V. Raman b

a Rensselaer Polytechnic Institute, Troy, NY 12180
b Advanced Technology Group, Adobe Systems, Mountain View, CA 94039

We present a new scheme for building static search trees, using
multiway radix search. We apply this method to the problem of
code generation for switch statements in imperative languages. For
sparse case sets, the method has an advantage over existing meth-
ods, empirically requiring fewer than three branches for the aver-
age search. We give timing results that show that in practice our
method runs faster than other methods on large sparse case sets.

Key words: Algorithms, Compilers, Switch statements, Code
generation, Code optimization.

1 Introduction

Switch statements in C, like case statements in Pascal and Ada, are useful
conditional control constructs. Switch statements represent multiway branch-
ing control structures, whereas if statements correspond to binary branching
control.

We present a new code generation method for switch statements that on the
average generates faster code than existing methods for sparse case sets, i.e.,
where the cases are widely separated in numeric magnitude. The method can
be thought of as generating a Multiway Radix Search Tree (MRST) on the case
labels. Although the MRST method is appropriate for most searches where a
static search tree can be generated, this paper discusses only its application
to switch statements.

There has been considerable work in the past ([2], [3], [5], [6] and [10]) on
the Pascal case statement and code generation. The generation of code for
switch statements is discussed in [4] and [11]. A scheme similar to MRST, but
restricted to binary radix search trees, appears in [9].

Preprint submitted to Elsevier Preprint 8 August 1997

Applications for fast sparse switch statements are many and varied. Two ex-
amples are:

– Let L be a Common-Lisp-like language with dynamic type dispatch on
function arguments. Let F be an n argument generic function in L, with
m methods defined on it. Further assume that there are T distinct types in
the type-pool of L, each with a unique K-bit identifier. The dispatch of the
generic function F is then a sparse switch statement that, for a given input
from the T n possible cases, checks whether one of the m methods applies.

– Consider the problem of searching for any of m substrings of length L in a
string S. Assume a hash value is calculated for each of the m substrings,
using a special hash function. Now the search can be accomplished in a
single scan of S by calculating hash values for each set of L adjacent letters
in S, as is done in the Karp-Rabin algorithm [7]. After each hash value is
calculated for L adjacent letters from S, it must be compared against the
m pre-computed hash values. This is effectively a sparse switch statement.

The remainder of this paper is structured as follows: Section 2 describes the
MRST method for code generation for switch statements. Section 3 compares
it to four other code generation methods with regard to worst-case and ex-
pected time complexity. Finally section 4 presents a comparative study of the
empirical running time of MRST, comparing it against the fastest pre-existing
method.

2 A New Code Generation Method for Switch Statements

We assume that all case labels, or cases, in the switch statement are numeric.
Our approach is to determine a critical bit sequence for the input set of cases
and hash on it. We do this recursively on non-trivial subsets of cases deter-
mined by the hashing. The resulting Multiway Radix Search Tree (MRST) is
traversed at run time with the input value to the switch statement.

Case Binary

0 0 00000 002

1 0 00000 012

129 1 00000 012

131 1 00000 112

0 1

00 1101 10

Default

bits 1 to 0

131?

129?1?

bit 70?

Fig. 1. A set of cases and the corresponding MRST.

Fig. 1 shows an example. The cases 0, 1, 129 and 131 are almost uniquely
determined by their last two bits. The one exception is the pair 1 and 129,
where bit 7 can determine the case. Therefore we can quickly narrow down
the candidate cases for a given run-time input by hashing first on the last two
bits and then, if necessary, on bit 7, the leftmost bit. Finally, we can compare

2

the input value with the unique remaining candidate case. Note that the code
jumps directly to the default handler for any run-time input ending in 102,
since no case ends in this bit pattern.

The code generation algorithm looks at the input set of cases and finds a
short sequence, or window, of consecutive bits that distinguishes the cases
into several subsets. The algorithm generates code that branches on the value
of the window in the run-time input, thus selecting a specific set of candidate
cases based on the input value. For empty sets, the branches lead to the default
handler; for sets containing one case, to a simple comparison of the case and
the input value; and for larger sets, to recursive invocations of the algorithm.

It is desirable to find long windows, in order to make the search tree wide
and shallow. However, we must limit the length of the windows, since the
branches require hash tables that grow exponentially in the window length.
We therefore use the simple greedy strategy of finding the longest critical
window that distinguishes the cases into more than a threshold number of
subsets relative to the window length.

2.1 Definitions

Let Z be the set of all K-bit values, where K is a positive integer. Let C ⊂ Z
be a set of cases, M a set of labels or markers, and md an additional default
label. Assume as input a set P = { (ci, mi) } of ordered pairs, such that every
ci ∈ C is associated with a single label mi ∈ M . Thus P defines a total
function from C to M .

We want to generate code that performs a mapping F : Z → M ∪{md } such
that an input value z ∈ Z is mapped onto md if z 6∈ C, otherwise, if z = ci for
some ci ∈ C, onto the label mi ∈ M as defined by P . Thus F performs the
function we expect from a switch statement.

Denote the bits of K-bit values by bK−1, . . . , b0 and define a window W to be
a sequence of consecutive bits bl, . . . , br, where K > l ≥ r ≥ 0. Let val(s, W)
be the value of the bits of s visible in the window W . Thus, if W = b5, . . . , b3,
val(41, W) = val(1010012, W) = 1012 = 5.

A window W = bl, . . . , br is critical on a subset S of Z if the cardinality of the
set VW = { val(s, W) | s ∈ S } is greater than 2l−r. Thus, W is critical if its
hash table, of size 2l−r+1, is more than half full. A window W is most critical
if |VW | ≥ |VW ′| for all equally long windows W ′.

3

2.2 The MRST Code Generation Algorithm

The initial input to the algorithm is the set P = { (ci, mi) } defined above,
along with the default label md. The output is code that maps a run-time
input value z ∈ Z onto a label m ∈ M ∪ { md } according to mapping F .

algorithm MRST(md, P)
1. if P contains only one pair (c, m) then

Generate a jump to m if z = c, but a jump to md otherwise.
return.

2. Let C be the set { ci | (ci, mi) ∈ P }.
Find Wmax, the longest and most critical window bl, . . . , br on C.
Let n be l − r + 1, the length of Wmax.

3. Generate an assignment of val(z, Wmax) to a register r1.
Generate a jump to the label indexed by r1 in the table of step 4.

4. for j := 0 to 2n − 1 do
Create a new entry label tj.
Create a set Pj of all pairs (ci, mi) ∈ P such that val(ci, Wmax) = j.
if Pj is not empty then Generate tj as a table entry.
else Generate md as a table entry.

5. for each Pj that is not empty do
Generate the entry label tj.
call MRST(md, Pj).

return.

Finding the longest and most critical window in step two of the algorithm can
be achieved with the following simple function. The function makes use of the
fact that a prefix of a critical window is also critical to accomplish its task in
a single scan. Since any two distinct numbers will differ in at least one bit, the
function will always find a window Wmax of length at least one.

function CriticalWindow(C)
Let W and Wmax be windows, initially empty.
for b := bit bK−1 to bit b0, one at a time do

Add b to W , extending W one bit to the right.
if W is critical on C then Assign W to Wmax.
else (if W is not critical on C)

Modify W by removing its leftmost bit.
if |{ val(ci, W) | ci ∈ C }| > |{ val(ci, Wmax) | ci ∈ C }| then

Assign W to Wmax.
return Wmax.

The invariants of the above loop are that the lengths of W and Wmax are
equal, and that Wmax is the longest and most critical window in bK−1, . . . , b.

4

At every iteration of the loop, window W is extended one bit to the right. If
this makes W critical it is stored in Wmax. Otherwise, the leftmost bit of W
is removed, and if the new W has higher cardinality than Wmax it is stored in
Wmax. Thus Wmax remains the longest critical window and the most critical
window of its length.

2.3 Sample Code Generation

Fig. 2 contains the search tree for the following Pascal-like example. Assembly
code generated for the switch statement by the MRST algorithm is shown in
Fig. 3. The input value is assumed to be found in a register z, and a register
r1 indexes into the hash tables.

Case z Of
8, 16, 33, 37, 41, 60: Function1;
144, 264, 291: Function2;
1032: Function3;
2048, 2082: Function4;
Otherwise Default;

End;

0 1

0 1

000 001 010 100011 101 110 111

bits 5 to 3

00 1101

bit 7

bit 8

bit 10

0 1

0 1

2048?

1032?

264?8?

Default Default

144?16?

41? 60?

33?

bits 2 to 1

bit 11

291? 2082?

37? Default

10

Fig. 2. An MRST for the example switch statement.

3 Analysis of Methods

There are several established methods of generating code for switch state-
ments, apart from MRST. We now compare their worst case and expected
time complexity, assuming that we are running a switch statement with m
random cases, and that the statement is called n times with inputs from the
set of cases. We use the number of branches as the metric for our time com-
plexity measures.

Skewed Binary Tree [1], [10]. This method is essentially a linear search.
Therefore it takes O(mn) time.

Balanced Binary Tree [10], [11]. The run-time input is compared with one
case at a time in such a way that the search tree is balanced. Hence the

5

start:
mov r1, z
shr r1, 3
and r1, 0007h
jmp [table1+r1]

table1: data case 000
data case 001
data case 010
data Default
data case 100
data case 101
data Default
data case 111

case 000:
cmp z, 2048
jeq Function4
jmp Default

case 001:
mov r1, z
shr r1, 10
and r1, 0001h
jmp [table2+r1]

table2: data case 001 0
data case 001 1

case 001 0:

mov r1, z
shr r1, 8
and r1, 0001h
jmp [table3+r1]

table3: data case 001 0 0
data case 001 1 1

case 001 0 0:
cmp z, 8
jeq Function1
jmp Default

case 001 0 1:
cmp z, 264
jeq Function2
jmp Default

case 001 1:
cmp z, 1032
jeq Function3
jmp Default

case 010:
mov r1, z
shr r1, 7
and r1, 0001h
jmp [table4+r1]

table4: data case 010 0
data case 010 1

case 010 0:
cmp z, 16
jeq Function1
jmp Default

case 010 1:
cmp z, 144
jeq Function2
jmp Default

case 100:
mov r1, z
shr r1, 1
and r1, 0003h
jmp [table5+r1]

table5: data case 100 00
data case 100 01
data case 100 10
data Default

case 100 00:
cmp z, 33
jeq Function1
jmp Default

case 100 01:
mov r1, z
shr r1, 11
and r1, 0001h

jmp [table6+r1]
table6: data case 100 01 0

data case 100 01 1
case 100 01 0:

cmp z, 291
jeq Function2
jmp Default

case 100 01 1:
cmp z, 2082
jeq Function4
jmp Default

case 100 10:
cmp z, 37
jeq Function1
jmp Default

case 101:
cmp z, 41
jeq Function1
jmp Default

case 111:
cmp z, 60
jeq Function1
jmp Default

Fig. 3. Assembly code generated by the MRST algorithm for the example.

running time is O(n log m).
Balanced Binary Tree to Hash Tables [3], [4], [5], [6]. This is a balanced

binary search to ranges where the case set is dense and then a direct indexing
on those ranges. Let the number of leaf nodes with hash tables be r. The
worst-case running time occurs when r = m and is O(n log m), since log m
is the search time for the tree. The expected case running time is O(n log r).

Jump Table Method [1], [10]. This is a direct hash table lookup and has
a running time of O(n) in all cases. It requires space linear in the range of
input cases and is therefore impractical for sparse sets of input cases. Even
so, this is usually the optimal method for dense case sets.

The analysis of the MRST method is somewhat different from that of the
methods above, since the tree is no longer balanced or binary. The worst case
for MRST occurs when the set of cases is the distinct powers of two. Then the
MRST is skewed with a maximum depth of K/2, where K is the architecture
word size. Hence the worst-case running time is O(nK). This is still linear in
n, albeit with a large constant.

We can find the expected-case behaviour of MRST under the assumption that
the m input cases are random equi-distributed K-bit numbers. Given a window
W of length L, the probability that there are r distinct values val(ci, W), where
ci is in the set of m input cases and 0 < r < 2L, is given by the following (see
[8], page 62):

P (r, m, L) =
2L!

(2L − r)! 2mL

{
m
r

}
.

6

Thus, if we sample m elements with replacement from a random source of
values in the range [0; 2L), P (r, m, L) is the probability that the sample will
contain r distinct different values. Given this we can define the probability
that W is critical as

Pcritical(m, L) =
2L∑

r=2L−1+1

P (r, m, L).

When m becomes large (e.g., > 10) Pcritical(m, L) approaches unity for L =
blg mc. We therefore expect the top-level multiway branch of a MRST to have
a fan out of order m, with m/2 of the branches leading to non-trivial case
sets, and each of these sets containing roughly two cases. Thus the average
number of branches in an MRST with a uniformly random set of cases is less
than three: the top-level branch, plus an average of one and one-half branches
for the resulting case subsets. Our experimental results in the next section
confirm this expectation.

4 Empirical Timing Results

We integrated MRST into the lcc C compiler [4]. The lcc compiler has a built-
in implementation of the balanced binary tree to hash table (BBTH) method
for switch statements.

We performed timing experiments on two representative platforms: the CISC
architecture Intel 486 and the recent RISC architecture UltraSPARC. The
relative performance of the two methods was similar on both platforms, so we
only show the UltraSPARC results.

We examined the empirical performance of the two methods on several rep-
resentative input case sets. We considered switch statements with m distinct
cases and with r dense ranges, where a range could contain anywhere from 1 to
20 cases. We performed our experiments on randomly-generated sets of input
cases, taken from the full range of 32-bit numbers. In Figs. 4 and 5 we show
the average number of branches, along with storage space and running time
resulting from our experiments. The values shown are averages taken from 100
runs. In general our results have very little deviation from these averages. As
can be seen, MRST has far fewer branches, and runs faster than BBTH.

When performing our empirical timing experiments, we resolved the following
two issues to MRST’s disadvantage:

– The run-time input iterated through the members of the case set. If the
input had not been restricted to the set of cases, MRST would have had an

7

Branches Space Time

m BBTH MRST BBTH MRST BBTH MRST

10 3.58 2.05 10.00 25.92 19.01 19.69

100 6.67 2.29 100.00 228.64 32.06 20.39

1000 9.97 2.44 1000.00 2043.84 55.56 25.57 10 20 100 200 1000 2000
0

80

60

40

20

MRST
BBTH

Fig. 4. Empirical results for m random cases (time graphed).

Branches Space Time

r BBTH MRST BBTH MRST BBTH MRST

10 3.58 2.43 105.64 222.20 25.53 20.95

100 6.67 2.49 1049.59 2103.67 38.16 25.81

1000 9.97 2.59 10519.50 19343.70 54.50 34.86 10 20 100 200 1000 2000
0

80

60

40

20

MRST
BBTH

Fig. 5. Empirical results for r random dense ranges of cases (time graphed).

advantage, since early branchings to the default handler would then have
provided speedup.

– The generated code for the switch statements was placed inside a tight inner
loop and therefore could make full use of the instruction cache. If the code
had not been in the cache, MRST again would have had an advantage, since
the shallowness of the generated tree means that very few cache lines have
to be brought in from memory.

We also ran a set of tests in which the cache was flushed clean after every
iteration and where the run-time input was not restricted to the case set. The
results from those experiments were as expected, viz., MRST was even faster
relative to BBTH.

We also timed and compared the two methods using a set of 1000 switch
statements found in the source code of the lcc compiler, the GNU gcc compiler
and the GNU GhostScript PostScript interpreter. The two methods were on
the average almost equally fast on these case sets. The total running time for
one million iterations of the 1000 switch statements differed by less than 5%
for the two methods, with MRST being slightly faster.

This small difference in running time is due to the fact that our example
set included only “hand-coded” switch statements. The statements therefore
tended to be very small on average and the constants had usually been chosen
to form dense ranges. Under these circumstances we do not expect MRST to
perform any better than BBTH.

Even so, the above timing results show that MRST can be significantly faster
than other methods and is rarely, if ever, slower for any but the smallest case
sets. MRST is especially appropriate for large and sparse sets of cases, such as
may be automatically generated in modern compilers and operating systems.

8

Acknowledgments MRST originated in the first author’s undergraduate
studies at the University of Iceland. Snorri Agnarsson and Andrew Shapira
contributed significantly to the development of the method. The authors would
like to thank Ed Green, David Gries, Snorri Gylfason, Andrew Shapira, David
L. Spooner, Kendra Willson and the anonymous reviewer for their help in
revising this paper.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1988.

[2] L. Atkinson. Optimizing two-state case statements in Pascal. Software—
Practice and Experience, 12:571–581, 1982.

[3] R. Bernstein. Producing good code for the case statement. Software—Practice
and Experience, 15:1021–1024, 1985.

[4] C. Fraser and D. Hanson. A Retargetable C Compiler: Design and
Implementation. Benjamin/Cummings, 1994.

[5] J. Hennessy and N. Mendelsohn. Compilation of the Pascal case statement.
Software—Practice and Experience, 12:879–882, 1982.

[6] S. Kannan and T. Proebsting. Correction to Producing good code for the case
statement. Software—Practice and Experience, 24:233, 1994.

[7] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching
algorithms. Technical report 31-81, Aiken Compu. Lab., Harvard University,
Cambridge, MA, 1981.

[8] D. E. Knuth. The Art of Computer Programming, Vol. 2, Seminumerical
Algorithms. Addison-Wesley, 2 edition, 1981.

[9] D. R. Morrison. PATRICIA—Practical algorithm to retrieve information coded
in alphanumeric. Journal of the ACM, 15:514–534, 1968.

[10] A. Sale. The implementation of case statements in Pascal. Software—Practice
and Experience, 11, 1981.

[11] R. M. Stallman. Using and porting GNU CC. Technical report, Free Software
Foundation, 1992.

9

