
SOFIWARE—PRACTICE AND EXPERIENCE, VOL. 22(1), 89–99(JANUARY 1992)

Simple Register Spilling in a Retargetable Compiler

CHRISTOPHER W. FRASER
AT&T Bell Laboratories, 600 Mountain Avenue 2C-464, Murray Hill, NJ 07974 U.S.A.

AND

DAVID R. HANSON
Department of Computer Science, Princeton University,

Princeton, NJ 08544 U.S.A.

SUMMARY

This paper describes the management of register spills in a retargetable C compiler. Spills
are rare, which means that testing is a bigger problem than performance. The trade-offs have
been arranged so that the common case (no spills) generates respectable code quickly and the
uncommon case (spills) is less efficient but as simple as possible. The technique has proven
practical and is in production use on VAX, Motorola 68020, SPARC and MIPS machines.

KEY WORDS ANSI C code generation compilers register allocation register spilling

INTRODUCTION

When register allocators run out of registers, they generate code to spill one or more busy
registers into temporaries and code to reload those values when they are needed again. The
trend in compiling research is increasing the sophistication — and the implementation and
execution costs — of the techniques that avoid spills. 1–6

This paper describes experience with a complementary approach. A spill manager has been
simplified as much as seems consistent with application in a production compiler. It spills
the register whose next use is the most distant. This well known choice is analogous to the
optimal demand paging strategy that replaces pages whose next use is most distant in the
execution stream. 7 The experience reported below corroborates the studies of small sample
programs that support the effectiveness of simple spill managers. 8

This approach is used in lcc, a new compiler for ANSI C 9
 lCC is a retargetable compiler,

and it has been ported to the VAX, Motorola 68020, SPARC, and MIPS R3000. 10 It is in
production use at Princeton University and AT&T Bell Laboratories.
lcc performs optimizations that increase the demand for registers: the front end assigns

promising variables to registers even without explicit register declarations, and the back ends

0038–0644/92/010085–15$07.50 Received 5 October 1990
© 1992 by John Wiley & Sons, Ltd. Revised 30 August 1991

86 C. W. FRASER AND D. R. HANSON

Table I. Spill Counts

Target
Benchmark 68020 VAX MIPS SPARC

001.gcc 102+9/55236 81+99/34564 96+124/68968 655+223/86039
008.espresso 21+0/13726 20+43/8019 22+48/18072 126+56/21777
022.li 0+0/2954 0+3/2139 2+3/4434 13+1/5858
023.eqntott 1+0/1378 1+21/872 1+24/2143 1+0/2647
lcc 52+1/15107 53+20/8886 56+22/17782 251+15/29944
Plum Hall 99+33/130465 13+203/72281 14+24/140653 647+3225/221214
port3 954+1/176788 791+176/86413 386+137/241650 230+1552/393322
awk 8+1/4606 9+313039 8+5/5885 141+27/9309
troff 4+0/5064 1+10/2910 2+18/7054 6+9/10061
tex 0+1/19729 0+10/13483 5+12/24582 14+17/33252

generally reserve about half of the available registers for this purpose. The front end also
eliminates common subexpressions within basic blocks. More aggressive optimization —for
example, global register allocation or function inlining — can increase the number of spills,
but many C compilers in use today are less aggressive than lcc.

Nevertheless, spills are rare in lCC. And when spills are rare, there are good reasons
to make the spill manager as simple as possible. First, it is wasteful to tune code that is
seldom used. Second, test cases are hard to find and hard to isolate, so it can be hard to
exercise a complex implementation thoroughly. Because spills are rare, lcc trades speed and
sophistication in handling spills for a simple, fast register allocator and simple, correct spill
generation. Its production register allocator is 269 1ines of C; its spill manager accounts for
109 of those lines.

One simplification that was not practical was the use of trees as the intermediate repre-
sentation. There are simple, elegant, fast algorithms to give optimal allocations for pure
trees 11 but the natural representation after common subexpression elimination is not trees but
dags: Worse, C includes several operators — multiple assignment, augmented assignment,
increment and decrement — that implicitly reuse certain values. The operators might be
represented by trees, but the register allocator would still need to recognize the values with
multiple uses and thus treat them as if they were dags.

Table I supports lcc ’S approach to spills. It lists the number of spills and registers
allocated for several benchmark programs. The first four lines are for the C programs in the
SPEC benchmark, l2 and the next two lines are for lcc itself and the Plum Hall Validation
Suite. port 3 is a large (over 200,000 lines) numeric library 13 generated by a Fortran-to-C
translator, 14 and awk, troff, and tex are well known tools.

The notation n + m/t denotes a total of n + n spills and t allocations. There were n

spills because the allocator simply ran out of registers, and m spills because a busy register
was overwritten by a call or another instruction that overwrites fixed registers. Values of t

SIMPLE REGISTER SPILLING 87

include both integer and floating-point register allocations. On the MIPS and Motorola 68020,
allocating a double register is counted as one allocation because each half is not allocated for
other purposes. On the VAX and SPARC, however, allocating a double register is counted as
two allocations because the halves can be allocated separately.

Underlining highlights the few entries in Table I for which n + m/t exceeds one percent.
Numeric code often includes complex statements with many common subexpressions, so
port3 might be expected to show high spill counts. But n + m/t topped one percent only on
the VAX, which has the smallest register set of the four targets.

The highlighted eqntott counts are caused by the idiom p -> x = f (p->x) , which loads
p before the call and spills it to a callee-saved register because it is also used after the call.
The resulting code is better than reloading p. On the 68020 and SPARC, conventions place p
in a register that is not overwritten by the call to f.

Table I shows more spills for the SPARC than for the other targets. Two factors account for
these spills. First, under most calling conventions, some registers are saved by the caller and
some by the callee; the SPARC convention has the caller save all busy floating-point registers.
These saves show up in n for the SPARC (e.g., port3 and Plum Hall). If callees saved some
floating-point registers, these figures would drop.

Second, some nested calls force register-to-register spills. The first six arguments are
passed in registers on the SPARC, and the result is returned in the first such register. Thus,
for f (x, g (y)), g returns its value in the register that x must occupy, so that register is
spilled, which accounts for most of the spills in awk, for example. The MIPS convention also
passes some arguments in registers, but its figures show no similar pattern because values are
returned in a different register.

Spills cost little in lcc. It is impractical to isolate spill costs in substantial benchmarks
or to compare lcc with other compilers, because different compilers vary in so many ways.
It is, however, possible to compile and execute substantial benchmarks with smaller register
sets; additional spills account for any increased execution time. One badly placed spill could
increase execution time a lot, and many fortuitously placed spills might affect execution time
little, but such timings are still suggestive.

Table II gives the execution times and program sizes for the C SPEC benchmarks on the
MIPS. The first column describes the production compiler, and the rest describe artificial
variants to suggest spill costs. Reference 10 gives a complete list of SPEC timings for the
production lcc and for other compilers on the four targets; it shows that lcc generates
competitive code.

The times are elapsed time in seconds and are the lowest times over several runs on a
lightly loaded machine. All runs achieved at least 99 percent utilization (i.e., the ratio of times
(user + system,) /elapsed ≥ 0.99). The sizes of the program segments are in bytes. The
second row for each entry gives n + m/t as in Table I.

Each column lists figures for a different register configuration i + f, I + F, where i and
f are the number of integer and floating-point temporaries, respectively, and I and F are
the corresponding number of register variables. The second column artificially reduces the
number of temporaries to a minimum, but the times remain nearly equal to those in the first

88 C. W. FRASER AND D. R. HANSON

Table II. MIPS Sizes and Execution Times

Register Configuration
Benchmark 10+16,9+12 3 + 6 , 9 + 1 2 10+16 ,0+0 3 + 6 , 0 + 0

001.gcc 105s 805264b 105s 806464b 119s 912496b 122s 915600b
96+ 124/68968 252+1 22/69023 96+212/893 17 385+210/89601

008.espresso 149s 213232b 149s 214160b 210s 249952b 211s 251936b
22+48/18072 136+48/18117 22+105/26307 227+102/26511

022.li 352s 83712b 351s 83712b 414s 89808b 416s 89808b
2+3/4434 3+3/4434 2+5/5747 3+5/5748

023.eqntott 109s 46160b 110s 46 160b 154s 51024b 154s 51024b
1+24/2143 1+24/2143 1+27/3192 2+27/3192

column. eqntott appears to run slightly slower with no more spills, but these variants are
identical, so this difference must be due toclockdrift. Likewise, clockdrift mustexplain why
li appears to run slightly faster with more spills.

The third and fourth columns describe analogous but artificial configurations without register
variables, so all spills go to memory. Even for the most drastic configuration (3 + 6), only
one benchmark (gcc) ran more than 0.5 percent slower. For all comparable configurations,
program size never increased more than one percent.
lcc ’S approach makes it possible to tour a working spill manager for a real machine. It is

drawn from a sample code generator that emits naive VAX code, i.e., it uses only the ‘RISC
subset’ of the instruction set, 15 but a similar spiller is used in the production versions of
lcc. Though naive, the sample code generator is complete: when used with a conforming
preprocessor and library, the compiler with this code generator passes the conformance section
of Version 2.00 of the Plum Hall Validation Suite for ANSI C.

CODE GENERATION INTERFACE

The interface between lcc ’S target-independent front end and its target-dependent back ends
consists of a few shared data structures, 18 functions, and a 36-operator dag language, which
encodes the executable code from a source program. 15 Most of the functions are simple, e.g.,
they emit function prologues, define globals, lay out data, etc.

The front and back ends share symbol table entries and dag nodes:

typedef struct symbol *Symbol;

struct symbol { /* symbol table entries: */

char *name; /* name */

unsigned char class; /* storage class */

Type type; /* data type */

};

typedef struct

struct node {

Opcode op;

SIMPLE REGISTER SPILLING

node *Node;

/* dag nodes: */
/*

short count; /*

Symbol syms[MAXSYMS]; /*

Node kids[MAXKIDS]; /*

Xnode x; /*

};

operator */
reference count */

symbols */

operands */

back-end’s type extension */

89

A symbol’s name, class, and type fields give its name, its storage class, and its type,
respectively. Fields and types irrelevant to register allocation have been omitted.

In a dag node, the kids point to the operand nodes, and the syms point to symbol table
entries for those operators that take symbols as operands. count holds the number of
references to this node from kids in other nodes.

The x field is the back end’s ‘extension’ to nodes, and it holds the per-node, target-dependent
data that the back end needs to generate code. The sample Xnode is

typedef struct {

int reg; /* register number */

unsigned rmask; /* unshifted register mask */

Node next; /* next node in linearized forest */

} Xnode;

reg holds the number of the register allocated to this node. rmask is 1 if the node needs an
ordinary register and 3 if it needs a register pair. next points to the next node in the linearized
forest, which is described below.

The op field holds an operator. The last character of each is a type suffix from Table III.
For example, the generic operator ADD has the variants ADDI, ADDU, ADDP, ADDF, and ADDD.

Table III. Type Suffixes

type suffix type

C character
S short
I int
U unsigned
P any pointer type
F float
D double
V void

Table IV lists the generic operators used in this paper, their valid type suffixes, and the
number of kids and syms each uses. The type suffix denotes the type of operation to perform
for most operators and the type of the result, if there is one.

90 C. W. FRASER AND D. R. HANSON

Table IV. Node Operators

syms kids operator type suffixes operation

1 0 ADDRG P address of a global
1 0 ADDRL P address of a local
1 0 CNST CSIUPFD constant

1 CVD I U F convert from double
1 INDIR CSIPFD fetch
2 ADD IUPFD addition
2 LSH IU left shift
2 MUL IUFD multiplication
2 SUB IUPFD subtraction

2 ASGN CSIPFD assignment

The leaf operators yield the address of a variable or the value of a constant, which is
identified by syms[O].
CVD accepts a double and yields a number. IND IR accepts an address and yields the value

at that address. The binary operators accept two numbers and yield one. ASGN stores the
value of kids [1] in the cell addressed by kids [O]. The operators used for their side-effects
(like ASGN) always appear as roots in the forest of dags, and they appear in the order in which
they must be executed.

REGISTER ALLOCATION

The front end passes a forest of dags to the back end. The production back ends traverse each
dag to select suitable instructions, but the sample back end emits naive code so it does little
during this first pass. Details appear in Reference 15.

After code selection, all back ends linearize the forest and make two passes over the
resulting list, which is linked through the x.next fields in each node. The first pass allo-
cates registers and the second emits the final code. For example, the linearized forest for
int i, *P; i = *p++ is shown in the right-hand columns below; the left column shows
the code emitted by the naive code generator.

VAX instruction # op count kids syms

moval _p, r1 1. ADDRGP 2 P
movl (r1) , r2 2. INDIRP 2 1

movl $4, r3 3. CNSTI 1 4

add13 r3, r2, r3 4. ADDP 1 2 3

movl r3, (r1) 5. ASGNP 0 1 4

moval i,r1 6. ADDRGP 1 i—

SIMPLE REGISTER SPILLING 91

movl (r2) ,r2 7. INDIRI 1 2

movl r2, (r1) 8. ASGNI O 6 7

The INDIRP node, which fetches the value of p, comes before node 5, which changes p, so
the original value of p is available for subsequent use by node 7, which fetches the integer
pointed to by that value.
lcc ’s register allocation strategy is simple: it traverses the linearized forest and allocates

registers to each node. The count field tells when all of the references to a node have been
processed. For each node, the registers used by its children are released by putreg:

static void putreg (Node p) {

if (p && --p-> count <= 0)

rmask &= ˜sets (p) ;

}

putreg decrements count and frees the register only when the last reference is removed,
by clearing the appropriate bits in the global variable rmask, where rmask& (l<<r) is 1 if
register r is busy.

Next, a register or register pair is allocated to a node by getreg:

static void getreg (Node p) {

int r, m = optype (p–>op) == D ? 3 : 1;

for (r = 0; r < nregs; r++)

if ((rmask& (m<<r)) == 0) {

p->x. rmask = m;

p->x. reg = r;

rmask | = sets (p) ;
return;

}
r = spillee (p, m) ;

spill (r, m, p) ;

getreg (p) ;

}

optype (op) returns the type suffix of operator op. m is 12 if the result of p->op needs an
ordinary register and 112 if it needs a register pair. getreg loops over the registers. If it finds
one that’s free, it sets the node’s x.reg field to the register allocated and the x.rmask field
to m. If no registers are free, getreg spills a register and calls itself to try again. sets (p)
returns p->x.rmask<<p->x. reg. No optimization is attempted; a register is spilled even
if its value is already available elsewhere in memory and even if it would be cheaper to
recompute than to spill and reload.

92 C. W. FRASER AND D. R. HANSON

SPILLS

The dag constructed by the front end minimizes the reevaluation of common subexpressions.
Some spills are, in a sense, a result of the front end’s eagerness to avoid reevaluation, and
handling spills amounts to ‘breaking the dags’ generated by the front end. A node representing
a common subexpression is changed so that it stores the value in a temporary, and subsequent
references to that node are edited to load the value from the temporary.

Spilling involves three major steps: Identifying the registers to spill, generating the code
for the spills at the correct location the output stream, and generating the code for the reloads,
again at the correct locations. These steps are performed by the calls to spillee and spil1
at the end of getreg, shown above. spillee identifies the register (m is 1) or register pair
(m is 3) to be spilled on behalf of p, and spill generates the spill and reload code. Once r
has been spilled, it is available, and the final call to getreg is guaranteed to succeed.

The register allocator frees registers as soon as possible. If the available registers are
exhausted, it is often because there are multiple references to the nodes holding the regis-
ters, which arise from common subexpressions and from multiple assignment, augmented
assignment, and the operators ++ and -- Consider the following program.

double a[10], b[10];

int i;

f(){ i = (a[i]+b [i]) *(a[i]-b[i]); }

The initial linearized forest is shown to the left of the vertical line in the display below.

#
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

op

ADDRGP

INDIRI

CNSTI

LSHI

ADDRGP

ADDP

INDIRD

ADDRGP

ADDP

INDIRD

ADDD

SUBD

MULD

CVD I

ASGNI

kids

1

2 3

4 5

6

4 8

9

7 10

7 10

11 12

13

1 14

syms count count

i 2

1

3 1

2

a 1

1

2

b 1

1

2

1

1

1

1

0

1

0

0

0

0

0

2

0

0

2

1

1

1

1

0

uses sets

r1

r1 r2

r3

r2 r3 r2

r3

r2 r3 r3

r3 r3 r4

r5

r2 r5 r2

r2

r3 r4

r3 r4

r1

Nodes with count fields greater than 1 represent four common subexpressions: the lvalue
of i (node 1), the addressing expression i<<3 (node 4), and the rvalues of a [i] (node 7)
and b [i] (node 10). If only registers 1–5 are available, ralloc runs out of registers at node
10. The linearized forest at that point is shown to the right of the vertical line in the display

SIMPLE REGISTER SPILLING 93

above. As indicated by the non-zero counts and the sets column, node 1 is using r1 and
node 7 is using r3 and r4. Node 10 needs a register pair, but only registers r2 and r5 are
available. Note that the count of node 4, which is i<<3, has dropped to 0 because ralloc
has processed both uses (nodes 6 and 9).
getreg calls spillee to identify a register pair to be spilled for use by node 10. spillee

chooses the register whose next use is the most distant in the linearized forest.
For each register, spillee simply searches down the linearized forest for register uses and

records the most distant.

static int spillee (Node dot, unsigned m) {

int bestdist = -1, bestreg = 0, dist, r;

Node q;

for (r = 1; r < nregs - (m>>1) ; r++) {

dist = 0;

for (q = dot-> x.next; q && ! (uses (q) & (m<<r)) ; q = q->x. next)
dist++;

if (dist > bestdist) {

bestdist = dist;

bestreg = r;

}

}
return bestreg;

}

spillee is called with dot equal to the node at which the spill is required, which is node 10
in the example above. uses(p) returns a bit mask giving the registers used by node p, i.e.,
the registers set by p ’s kids.

In this example, spillee finds r1 used in node 15, which is at ‘distance’ 4, and r3 and
r4 used in node 11 at distance 0. Consequently, spillee returns r1, which denotes both r1
and r2 because m is 3.

Actually spilling the register chosen by spillee and inserting the reloads is done by spill
and its associates, genspill and genre loads. In the example, these functions collaborate
to ‘break the dag’ at node 1, which sets register rl (r2 is already free). genspill generates a
temporary and the nodes necessary to store the value computed by node 1 into the temporary.
These new nodes are stitched into the linearized forest immediately after node 1. genre loads
changes future uses of the value computed by node 1 to reload the value from the temporary
instead of referencing node 1 directly. The effect is to remove the common subexpression by
assigning it to a temporary.
spill identifies the locations at which to insert the spills by searching the linearized forest

beyond dot for nodes that use the registers that are to be spilled, e.g., r1 in the example.

static void spill (int r, unsigned m, Node dot) {

int i;

94 C. W. FRASER AND D. R. HANSON

Node p = dot;

while (p = p–>x next)

for (i = O; i < MAXKIDS; i++)

if (p->kids [i] && sets (p->kids [i]) &(m<<r)) {

Symbol temp = genspill (p->kids[i]);

rmask &= ˜sets (p->kids[i]);

genreloads(dot, p->kids[il, temp);

}

}

genspill allocates the temporary, generates the spill code, and inserts it into the linearized
forest right after the node that set the spillee. It returns the symbol table entry for the temporary
so that it can be used by genreloads to generate the reloads.

static Symbol genspill (Node p) {

Symbol temp = newtemp (AUTO, typecode (p)) ;

Node q = p->x.next;

linearize (newnode(ASGN + typecode (p),

newnode(ADDRLP, 0, 0, temp) , p, 0) ,

&p->x. next, p–>x.next) ;

rmask &= ˜1;

for (p = p->x.next; p != q; p = p->x.next)

ralloc(p) ;

rmask |= 1;

return temp;

}

typecode is like optype, but maps U to I because the front-end uses ASGNI and INDIRI
to store and load unsigned values. The front-end’s newtemp(class, type) allocates a
new temporary or reuses an existing one if its storage class and type code match those
requested.

The spill code is an ADDRLP node to compute the address of the temporary and an ASGN
node to store the value into that address. The right operand of the ASGN is simply p , the node
that set the registers to spill, e.g., node 1 above. A node is allocated and initialized by the
front-end function newnode (op, 1, r, sym), where op is the operator, l and r are kids [0]
and kids [1], and sym is the symbol table pointer for leaf nodes. newnode also increments
the reference counts of 1 and r.

Finally, genspill linearizes the spill code and inserts it right after p , which sets the spilled
register. linearize (Node p, Node *last, Node next) linearizes the dag at p and
inserts it into the growing list of nodes between *last and next. The manipulation of
rmask ensures that register allocator, ralloc, assigns register r0 — which is not otherwise

SIMPLE REGISTER SPILLING 95

allocated — to the ADDRLP node to compute the address. The linearized forest after genspill
returns is

op kids syms count uses sets

1. ADDRGP i 1 r1

16. ADDRLP -4 0 r0

17. ASGNP 16 1 0 r0 r1

2. INDIRI 1 0 r1 r2

. . .

Nodes 16 and 17 are the spill code. This code references node 1, so its count goes to
2 momentarily until ralloc processes the reference from the spill code. The remaining
reference is from node 15. Node 16’s symbol -4 is the frame offset to the temporary location.

After genspill returns the temporary, spill frees the registers set by the node and calls
genre loads. genre loads searches the linearized forest after dot for uses of p.

static void genre loads (Node dot, Node p, Symbol temp) {

int i;

Node last;

for (last = dot; dot = dot–>x.next; last = dot)

for (i = 0; i < MAXKIDS; i++)

if (dot ->kids [i] == p) {

dot->kids [i] = newnode (INDIR + typecode (P) ,

newnode (ADDRL+P, 0, 0, temp) , 0, 0) ;

dot->kids [i] ->count = 1;

p->count--;

linearize (dot ->kids [i] , &last->x.next, last->x.next) ;

last = dot->kids [i] ;

}

}

Each use of p is changed to a reload of the temporary temp. The reload code is an ADDRLP
node to compute the address of the temporary and an INDIR node to load the value from that
address. There is only one reference to each reload, so the INDIR ’S count is set accordingly,
and p- >count is decremented to reflect the change. The reload code is linearized and inserted
into the linearized node list immediately before its use. For the example above, a reload is
placed before node 15. Since the reload is beyond the current focus of register allocation,
registers are allocated for these nodes by subsequent calls to ralloc.

The linearized forest after spill returns is

op kids syms count uses sets

1. ADDRGP i 0 r1

16. ADDRLP -4 0 r0

96 C. W. FRASER AND D. R. HANSON

17. ASGNP 16 1 0 r0 r1
2. INDIRI 1 0 r1 r2

. . .
14. CVDI 13 1

18. ADDRLP -4 1

19. INDIRP 18 1

15. ASGNI 19 14 0

Nodes 18 and 19 are the reload. Note that node 1‘s count has become 0; after inserting the
reload, there are no unprocessed references.

Another spill occurs at node 11, which computes a [i] +b [i] . Registers r1 and r2, which
are set by node 10, are spilled, and node 12 is edited to refer to the second temporary, which is
reloaded by nodes 22 and 23 inserted before node 12. The last spill occurs at node 23, which
is the reload created for the second spill. r1 and r2, which are set by node 11, are spilled
again, and node 13 is edited to refer to the third temporary. The final linearized forest and
corresponding VAX code follows; count fields are omitted because they’re all 0, and each
instruction shows which registers are used and set by each node.

VAX instruction

moval i,r1—
moval –4 (fp) , r0

movl r1, (r0)

movl (r1) , r2

movl $3, r3

ashl r3, r2, r2

moval a,r3—
add13 r3, r2, r3

movd (r3) , r3

moval _b, r5

add13 r5, r2, r2

movd (r2) , r1

moval -12 (fp) ,r0

movd r1, (r0)

addd3 r1, r3, r1

moval -20 (fp) , r0

movd r1, (r0)

moval –12 (fp) ,r5

movd (r5) , r1

subd3 r1, r3, r1

moval -20 (fp) , r3

movd (r3) , r3

muld3 r1, r3, r1

cvtdl r1, r1

op
1. ADDRGP

16. ADDRLP

17. ASGNP

2. INDIRI

3. CNSTI

4. LSHI

5. ADDRGP

6. ADDP

7. INDIRD

8. ADDRGP

9. ADDP

10. INDIRD

20. ADDRLP

21. ASGND

11. ADDD

24. ADDRLP

25. ASGND

22. ADDRLP

23. INDIRD

12. SUBD

26. ADDRLP

27. INDIRD

13. MULD

14. CVDI

kids

16 1

1

2 3

4 5

6

4 8

9

20 10

7 10

24 11

22

7 23

26

27 12

13

syms

i

-4

3

a

b

-12

-20

-12

-20

SIMPLE REGISTER SPILLING 97

moval –4(fp), r2 18. ADDRLP -4

movl (r2) ,r2 19. INDIRP 18

movl r1, (r2) 15. ASGNI 19 14

Spills have added nodes 16-27.

EXTENSIONS

The production versions of the functions above are somewhat more general, but even they are
only about 50 percent longer. The extra code accommodates multiple register sets, register
variables, targeting, and nodes that set their destination register before finishing with their
source registers.

More complex register sets complicate the representation of registers and the code that
accesses it. The production code is shared by all targets, so it cannot include any overt
machine-specific code. The sample faces only one set of 16 registers, but production targets
have as many as three sets and 64 registers. The simple rmask above is thus extended
to a vector of masks, one for each register set; the number of register sets is a configuration
parameter. The register ‘representation’ above — a register number plus a mask — is extended
to a structure that records: the register name (often a digit string); the register set; a mask
(usually one or two bits) that identifies which registers in the set are occupied by this register.

Register variables complicate the identification of busy registers. The mechanism above —
scanning the successors of the current node for children with unfreed registers — finds active
expression temporaries but misses register variables that happen to be unused in the rest of the
block. So the production code generators record the node or symbol to which each register
has been assigned. They thus identify busy registers by scanning the register list instead of
the node list.

Register variables also complicate the insertion of spills and reloads. When the register
assigned to a node is spilled, the spill is inserted after the node, and the reloads are inserted
before the later uses of the node. Register variables, however, may not have such nodes in the
block at hand, so something else is needed. The register conventions used to date have been
such that register variables are spilled only by instructions that destroy certain fixed registers.
So the production spill manager puts the spills just before the instruction and the reloads just
after it. Calls may be regarded as destroying a fixed set of registers; if the spill manager were
used to implement a pure caller-save convention, it would spill more and might require tuning.

Targeting complicates reloading. The production compilers use targeting only for in-
structions that require a given child use a constrained set of registers. For example, return
instructions often force their child into a fixed register. If the child is spilled, it must be
reloaded into the same register. So the production compilers record the constraints for each
targeted node, and the production genreload ensures that the reloads share these constraints.

In the production compilers, some nodes are implemented by a sequence of instructions.
For example, on machines like the 68020 whose instructions specify at most two operands,
some ADDI nodes compile into two instructions: the first loads one operand into the destination
register and the second adds the other operand to it. The implementations of spillee and

98 C. W. FRASER AND D. R. HANSON

spill above assume that the instruction or instructions that implement each node read the
source registers before setting the destination register. This assumption permits the register
allocator to reassign registers used by a node to that node, but it gives bad code if our ADDI is
assigned a register not read until its second instruction. The production code generators flag
such instructions and postpone register reuse until the next node.

In one respect, the production functions are simpler than those presented above. The
sample’s code is so naive that it can’t spill a register without having a register (r0) to hold
the address of the temporary. The production code generators can spill a register in a single
instruction, so they need allocate no such register. They are thus spared analogs of the sample’s
rmask manipulations in genspill.

DISCUSSION

The spill manager described above evolved from one that was considerably longer. The most
important simplification was the introduction of a pass to linearize the forest before allocating
registers. The original system did the linearization and allocation in a single pass, so it had to
deal with mixed code: linearized code when looking back to site spills and unlinearized code
when looking ahead to identify the spillee and site reloads.

The resulting complications hid errors that — because spills are so rare — were not
corrected for months, when lcc was used with a Fortran-to-C translator 14 to compile the
complete port 3 numeric library. 13 Numeric codes in Fortran generally include more common
subexpressions, which increases the number of spills. Using such code to test spill managers
is strongly recommended.

The linearization uses a conventional bottom-up traversal of the dags, but it could use any
ordering that obeys the constraints implicit in the dags. Indeed, preliminary work is underway
to replace the linearize with a table-driven instruction scheduler.

Register-hungry numeric computations or targets with limited register sets like the Intel 386
may require register allocators more sophisticated than lcc ‘s, e.g., those based on graph
coloring. 1 Experience with lcc, however, shows that a simple approach to register allocation
and spilling is practical for systems programs written in C and for at least some numeric
software, even when compiled for targets with as few as six registers devoted to expression
evaluation and common subexpressions.

ACKNOWLEDGEMENTS

David Gay helped isolate the errors made when compiling the PORT3 mathematical subroutine
library with the Fortran-to-C translator and lcc. Suggestions from Todd Proebsting improved
the register allocator and spill manager, and Andrew Appel suggested using artificial register
configurations to expose spill costs.

REFERENCES

1. G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W. Markstein,
‘Register allocation via coloring’, Journal of Computer Languages, 6, 47–57 (1981).

SIMPLE REGISTER SPILLING 99

2. F. Chow and J. Hennessy, ‘Register allocation by priority-based coloring’, SIGPLAN Notices, 19,
222–232 (1984).

3. D. Bernstein, D. Q. Goldin, M. C. Golumbic, H. Krawczyk, Y. Mansour, I. Nahshon, and R. Y.
Pinter, ‘Spill code minimization techniques for optimizing compilers’, SIGPLAN Notices, 24,
258–263 (1989).

4. R. Gupta, M. L. Soffa, and T. Steele, ‘Register allocation via clique separators’, SIGPLANNotices,
24, 264–274 (1989).

5. P. Briggs, K. D. Cooper, K. Kennedy, and L. Torczon, ‘Coloring heuristics for register allocation’,
SIGPLAN Notices, 24, 275–284 (1989).

6. B. R. Nickerson, ‘Graph coloring register allocation for processors with multi-register operands’,
SIGPLAN Notices, 25, 40–52 (1990).

7. R. A. Freiburghouse, ‘Register allocation via usage counts’, Comm. of the ACM, 17, 638–642
(1974).

8. W. Hsu, C. N. Fischer, and J. R. Goodman, ‘On the minimization of loads/stores in local register
allocation’, IEEE Trans. on Software Engineering, 15, 1252–1260 (1989).

9. American National Standard for Information Systems, Programming Language C ANSI X3.159–
1989, American National Standards Institute, Inc., New York, 1990.

10. C. W. Fraser and D. R. Hanson, ‘A retargetable compiler for ANSI C’, SIGPLAN Notices, 26, to
appear (1991).

11. R. Sethi and J. D. Unman, ‘The generation of optimal code for arithmetic expressions’, Journal
of the ACM, 17, 715–728 (1970).

12. Standards Performance Evaluation Corp., SPEC Benchmark Suite Release 1.0, October 1989.

13. P. A. Fox, A. D. Hall, and N. L. Schryer, ‘The PORT mathematical subroutine library’, ACM
Trans. on Mathematical Software, 4, 104–126 (1978).

14. S. I. Feldman, D. M. Gay, M. W. Maimone, and N. L. Schryer, ‘A Fortran-to-C converter’,
Technical Report 149, Computing Science Research Center, AT&T Bell Laboratories, Murray
Hill, NJ, May 1990.

15. C. W. Fraser and D. R. Hanson, ‘A code generation interface for ANSI C’, Software—Practice &
Experience, 21, to appear (1991).

	Simple Register Spilling in a Retargetable Compiler
	SUMMARY
	INTRODUCTION
	CODE GENERATION INTERFACE
	REGISTER ALLOCATION
	SPILLS
	EXTENSIONS
	DISCUSSION
	ACKNOWLEDGEMENTS
	REFERENCES

